Пример #1
0
def save_generated_images(generated_images, generator_iteration):

    # Create the plot
    plt.figure(figsize=(8, 8), num=1)
    gs1 = gridspec.GridSpec(8, 8)
    gs1.update(wspace=0, hspace=0)

    for i in range(64):
        ax1 = plt.subplot(gs1[i])
        ax1.set_aspect('equal')
        image = generated_images[i, :, :, :]
        image += 1
        image *= 127.5
        fig = plt.imshow(image.astype(np.uint8))
        plt.axis('off')
        fig.axes.get_xaxis().set_visible(False)
        fig.axes.get_yaxis().set_visible(False)

    plt.tight_layout()
    save_name = 'generated images/generatedSamples_genIter' + \
        str(generator_iteration + 1) + '.png'

    plt.savefig(save_name, bbox_inches='tight', pad_inches=0)
    plt.pause(0.0000000001)
    plt.show()
 def plot_img_with_class_activation_map(image, class_activation_map):
     image_height = image.shape[0]
     image_width = image.shape[1]
     cam_resized = tf.image.resize(class_activation_map, [image_height, image_width]).numpy()
     fig, ax = plt.subplots()
     ax.imshow(image.astype(int))
     ax.imshow(cam_resized, cmap='jet', alpha=0.5)
     plt.axis('off')
     return fig  
Пример #3
0
def HistEqualization(image, number_bins = 256):         #implementing the histogram equalization
  # get the image histogram
  image_Hist, bins = np.histogram(image.flatten(), number_bins, [0, 256])
  cdf = image_Hist.cumsum() # cumulative distribution function
  cdf = image_Hist.max()*cdf/cdf.max()  #normalize
  cdf_mask = np.ma.masked_equal(cdf, 0)
  cdf_mask = (cdf_mask - cdf_mask.min())*255/(cdf_mask.max()-cdf_mask.min())
  cdf = np.ma.filled(cdf_mask,0).astype('uint8')
  return cdf[image.astype('uint8')]
Пример #4
0
def load_image_pixels(filename, shape):
    image = load_img(filename, target_size=shape)
    # convert to numpy array
    image = img_to_array(image)
    # scale pixel values to [0, 1]
    image = image.astype('float32')
    image /= 255.0
    # add a dimension so that we have one sample
    image = expand_dims(image, 0)
    return image
Пример #5
0
def preprocess_image(image, target_size):
    '''function to preprocess input image'''
    if image.mode != "RGB":
        image = image.convert("RGB")  # if image is not RGB then convert to RGB
    image = image.resize(target_size)  # resize image to defined target size
    # image = image.img_to_array(image)  # convert image to an array of numbers
    image = asarray(image)
    image = image.astype(np.float32)  # convert from uint8 to float32
    image = np.expand_dims(image, axis=0)  # expand the dimension of the image

    return image
Пример #6
0
def traitement(image_data, model):
        
    size = (165,133)
     
    image = ImageOps.fit(image_data, size, Image.ANTIALIAS)
    image=np.asarray(image)
    image = (image.astype(np.float32) / 255.0)
    img_reshape = np.expand_dims(image, axis = 0)
    img_reshape = image[np.newaxis,...,np.newaxis]

    prediction = model.predict(img_reshape)
    
    return prediction
Пример #7
0
def generate_with_pillow(models, seeds, color_channels, sample=False):
    if sample:
        images = sample_images()
    else:
        model = keras.models.load_model(models[-1])  # last models is the best
        images = model(seeds, training=False)

    img_size = (SIZE * NUM_HEIGHT, SIZE * NUM_WIDTH)

    if color_channels == 3:
        img = Image.new('RGB', img_size)
        for i in range(NUM_HEIGHT):
            for j in range(NUM_WIDTH):
                pos = i * NUM_HEIGHT + j
                image = images[pos]
                image = np.asarray(image)
                image = image[:, :, :] * 127.5 + 127.5
                #             image = image[:, :, :] * 127.5 + 127.5
                #             print(image.astype(int))
                #             print(image.shape)
                #             image = image.reshape((SIZE, SIZE))
                image = image.astype(np.uint8)
                im = Image.fromarray(image)
                img.paste(im, (i * SIZE, j * SIZE))
    else:
        img = Image.new('L', img_size)
        for i in range(NUM_HEIGHT):
            for j in range(NUM_WIDTH):
                pos = i * NUM_HEIGHT + j
                image = images[pos]
                image = np.asarray(image)
                image = image[:, :, 0] * 127.5 + 127.5
                image = image.astype(np.uint8)
                im = Image.fromarray(image)
                img.paste(im, (i * SIZE, j * SIZE))

    img.save('../report/collage_{}x{}_{}.png'.format(NUM_HEIGHT, NUM_WIDTH,
                                                     FOLDER_NAME))
Пример #8
0
def load_image_pixels(filename, shape):
        # load the image to get its shape
        image = load_img(filename)
        width, height = image.size
        # load the image with the required size
        image = load_img(filename, target_size=shape)
        # convert to numpy array
        image = img_to_array(image)
        # scale pixel values to [0, 1]
        image = image.astype('float32')
        image /= 255.0
        # add a dimension so that we have one sample
        image = expand_dims(image, 0)
        return image, width, height
Пример #9
0
def face_alignment(image):             # implementing face alignment
  image = np.array(image)
  image = image.astype(np.uint8)
  gray_image = image
  #gray_image = cv2.cvtColor(image ,cv2.COLOR_BGR2GRAY) # convert color image to grayscale image
  rects = detector(gray_image ,1)             # detect faces in the grayscale image
  if len(rects) > 0:

    images = []
    for (i, rect) in enumerate(rects):
      shape = predictor(image, rect)
      shape = shape_to_np(shape)

      rotated_image = rotate_image(image , shape)
      images.append(rotated_image)
    if len(rects) == 1 :
      return rotated_image
    else:
      return images
  else:
    #print("Error : number of detected face is zero, so we just return original image")
    return image