'PetalLength', 'PetalWidth', 'Species' ] # Import training dataset training_dataset = pd.read_csv('iris_training.csv', names=COLUMN_NAMES, header=0) train_x = training_dataset.iloc[:, 0:4].values train_y = training_dataset.iloc[:, 4].values # Import testing dataset test_dataset = pd.read_csv('iris_test.csv', names=COLUMN_NAMES, header=0) test_x = test_dataset.iloc[:, 0:4].values test_y = test_dataset.iloc[:, 4].values # Encoding training dataset encoding_train_y = to_categorical(train_y) # Encoding testing dataset encoding_test_y = to_categorical(test_y) #print(encoding_train_y) # Creating a model model = Sequential() model.add(Dense(10, input_dim=4, activation='relu')) model.add(Dense(10, activation='relu')) model.add(Dense(10, activation='relu')) model.add(Dense(3, activation='softmax')) # Compiling model model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])
d[sequence_length * i:sequence_length * (i + 1)] for i in range(d.shape[0] // sequence_length) ] + [d[-sequence_length:]] for d in train_data] train_data = np.array([_ for d in train_data for _ in d]) valid_data = [ _valid_data[l:r] for i in range(valid_subjects) for l, r in (sample_indexes + sample_per_subject * i) ] valid_data = [[ d[sequence_length * i:sequence_length * (i + 1)] for i in range(d.shape[0] // sequence_length) ] + [d[-sequence_length:]] for d in valid_data] valid_data = np.array([_ for d in valid_data for _ in d]) train_X, train_y = train_data[..., :310], to_categorical( train_data[:, 0, 310], num_classes=labels_num) valid_X, valid_y = valid_data[..., :310], to_categorical( valid_data[:, 0, 310], num_classes=labels_num) print(train_X.shape, train_y.shape, valid_X.shape, valid_y.shape) def ModelLSTM(): model = Sequential() model.add( LSTM(units=128, input_shape=(sequence_length, 310), activation='tanh', return_sequences=False)) model.add(Dense(units=labels_num, activation='softmax')) return model
def __init__(self, folds, img_height, img_width, height_scaled, width_scaled, mean, std, batch_size=64, shuffle=True): df = pd.read_csv("../input/train_folds.csv") # print(df.shape) df = df[[ "image_id", "grapheme_root", "vowel_diacritic", "consonant_diacritic", "kfold" ]] df = df[df.kfold.isin(folds)].reset_index(drop=True) self.image_ids = df.image_id.values self.grapheme_root = to_categorical(df.grapheme_root.values) self.vowel_diacritic = to_categorical(df.vowel_diacritic.values) self.consonant_diacritic = to_categorical( df.consonant_diacritic.values) self.batch_size = batch_size self.shuffle = shuffle self.on_epoch_end() if (len(folds) == 1): self.aug = albumentations.Compose([ albumentations.Resize(height_scaled, width_scaled, always_apply=True), albumentations.Normalize(mean, std, always_apply=True) ]) else: self.aug = albumentations.Compose([ albumentations.Resize(height_scaled, width_scaled, always_apply=True), # RandomRotate90(), # Flip(), # Transpose(), # OneOf([ # IAAAdditiveGaussianNoise(), # GaussNoise(), # ], p=0.2), # OneOf([ # MotionBlur(p=0.2), # MedianBlur(blur_limit=3, p=0.1), # Blur(blur_limit=3, p=0.1), # ], p=0.2), # ShiftScaleRotate(shift_limit=0.0625, scale_limit=0.2, rotate_limit=45, p=0.2), # OneOf([ # OpticalDistortion(p=0.3), # GridDistortion(p=0.1), # IAAPiecewiseAffine(p=0.3), # ], p=0.2), # OneOf([ # # CLAHE(clip_limit=2), # IAASharpen(), # IAAEmboss(), # RandomBrightnessContrast(),]), albumentations.Cutout(num_holes=8, max_h_size=40, max_w_size=20, fill_value=0, always_apply=False, p=0.5), CoarseDropout(max_holes=8, max_height=40, max_width=20, p=0.5), albumentations.Normalize(mean, std, always_apply=True), # HorizontalFlip(), ])
from tensorflow.keras import datasets, utils from tensorflow.keras import layers, models from tensorflow.keras import optimizers from tensorflow.keras.preprocessing.image import ImageDataGenerator import matplotlib.pyplot as plt ''' Prepare the data ''' (trainX, trainY), (testX, testY) = datasets.cifar10.load_data() trainY = trainY.reshape(50000) testY = testY.reshape(10000) trainY = utils.to_categorical(trainY) testY = utils.to_categorical(testY) trainX = trainX.astype('float32') testX = testX.astype('float32') trainX = trainX / 255.0 testX = testX / 255.0 # Create validation data set validX = trainX[0:5000] validY = trainY[0:5000] trainX = trainX[5000:] trainY = trainY[5000:] ''' Create the NN-model ''' model = models.Sequential() model.add( layers.Conv2D(32, (3, 3),
#Converting lists into numpy arrays data = np.array(data) labels = np.array(labels) print(data.shape, labels.shape) #Splitting training and testing dataset X_train, X_test, y_train, y_test = train_test_split(data, labels, test_size=0.2, random_state=42) print(X_train.shape, X_test.shape, y_train.shape, y_test.shape) #Converting the labels into one hot encoding y_train = to_categorical(y_train, 43) y_test = to_categorical(y_test, 43) #Building the model model = Sequential() model.add( Conv2D(filters=32, kernel_size=(5, 5), activation='relu', input_shape=X_train.shape[1:])) model.add(Conv2D(filters=32, kernel_size=(5, 5), activation='relu')) model.add(MaxPool2D(pool_size=(2, 2))) model.add(Dropout(rate=0.25)) model.add(Conv2D(filters=64, kernel_size=(3, 3), activation='relu')) model.add(Conv2D(filters=64, kernel_size=(3, 3), activation='relu')) model.add(MaxPool2D(pool_size=(2, 2)))
s = np.arange(Cells.shape[0]) np.random.seed(num_classes) np.random.shuffle(s) Cells = Cells[s] labels = labels[s] #Data Augmentation (Xnew_train, Xnew_val) = Cells[(int)(0.2 * len(labels)):], Cells[:(int)(0.2 * len(labels))] Xnew_train = Xnew_train.astype('float32') / 255 Xnew_val = Xnew_val.astype('float32') / 255 (ynew_train, ynew_val) = labels[(int)(0.2 * len(labels)):], labels[:(int)(0.2 * len(labels))] ynew_train = to_categorical(ynew_train, num_classes) ynew_val = to_categorical(ynew_val, num_classes) epochs = 1 #Comparing accuracy of the model on two different datasets history1 = model.fit(Xnew_train, ynew_train, batch_size=32, epochs=epochs, validation_data=(Xnew_val, ynew_val)) history = model.fit(X_train, y_train, batch_size=32, epochs=epochs,
from tensorflow.keras.utils import to_categorical max_len = 50 X = [[word2idx[w[0]] for w in s] for s in sentences] X = pad_sequences(maxlen=max_len, sequences=X, padding='post', value=num_words - 1) y = [[tag2idx[w[2]] for w in s] for s in sentences] y = pad_sequences(maxlen=max_len, sequences=y, padding='post', value=tag2idx["O"]) y = [to_categorical(i, num_classes=num_tags) for i in y] # Building BILSTM from sklearn.model_selection import train_test_split X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.1, random_state=1) from tensorflow.keras import Model, Input from tensorflow.keras.layers import LSTM, Embedding, Dense from tensorflow.keras.layers import TimeDistributed, SpatialDropout1D, Bidirectional input_word = Input(shape=(max_len, ))
] def grayscale(data): data_holder = [] for i in range(len(data)): data_holder.append(rgb2gray(data[i])) data_holder = np.array(data_holder) data_holder = data_holder.reshape(len(data_holder), 32, 32, 1) return data_holder # Loading data (x_train, y_train), (x_test, y_test) = cifar10.load_data() y_test = to_categorical(y_test, 10) # convert to grayscale x_train = grayscale(x_train) x_test_modif = grayscale(x_test) model = tf.keras.models.load_model('cifar80%accuracy.model') prediction = model.predict(x_test_modif) plt.figure(figsize=(15, 10)) for i in range(10): random = np.random.randint(0, 10000) plt.subplot(5, 2, i + 1) plt.imshow(x_test[random]) index = np.argmax(prediction[random]) plt.ylabel('{}'.format(classification_list[index]))
test_batch = (unpickle('./cifar-10-batches-py/test_batch')) x_train = batches[0][b'data'] y_train = batches[0][b'labels'] for i in range(1, len(batches)): x_train = np.concatenate((x_train, batches[i][b'data']), axis=0) y_train = y_train + batches[i][b'labels'] x_test = test_batch[b'data'] y_test = test_batch[b'labels'] x_train = np.reshape(x_train, [50000, 32, 32, 3]) x_test = np.reshape(x_test, [10000, 32, 32, 3]) from tensorflow.keras.utils import to_categorical y_train = to_categorical(y_train, 10) y_test = to_categorical(y_test, 10) print("Input shape: {}".format(x_train[0].shape)) print("Training Set: {} samples".format(len(x_train))) print("Test Set: {} samples".format(len(x_test))) class LossHistory(Callback): def on_train_begin(self, logs={}): self.losses = [] def on_batch_end(self, batch, logs={}): self.losses.append(logs.get('loss')) def clear_history(self, logs={}):
# In[7]: # the data, shuffled and split between train and test sets (X_train, y_train), (X_test, y_test) = mnist.load_data() X_train = X_train.reshape(60000, 784) X_test = X_test.reshape(10000, 784) X_train = X_train.astype('float32') X_test = X_test.astype('float32') X_train /= 255. X_test /= 255. print(X_train.shape[0], 'train samples') print(X_test.shape[0], 'test samples') # convert class vectors to binary class matrices Y_train = to_categorical(y_train, nb_classes) Y_test = to_categorical(y_test, nb_classes) hidden_dim = task_params['hidden_dim'] model = Sequential() model.add(Dense(hidden_dim, input_shape=(784, ))) model.add(Activation('relu')) # model.add(Dropout(0.2)) model.add(Dense(hidden_dim)) model.add(Activation('relu')) # model.add(Dropout(0.2)) model.add(Dense(10)) model.add(Activation('softmax')) model.summary()
y = patients.take([13], axis=1) # Normalize X data colT = ColumnTransformer([ ("onehot", OneHotEncoder( categories=[[0, 1], [1, 2, 3, 4], [0, 1], [0, 1, 2], [0, 1], [1, 2, 3], [0, 1, 2, 3], [3, 6, 7]]), [1, 2, 5, 6, 8, 10, 11, 12]), ("norm", Normalizer(norm='l1'), [0, 3, 4, 7, 9]) ]) x = colT.fit_transform(x) # Normalize Y data y = to_categorical(y) # Split the data into train and test data x_train, x_test, y_train, y_test = train_test_split(x, y, random_state=0) # Determined parameters n_input = x_train.shape[1] n_output = y_train.shape[1] input_layer = layers.Input(shape=(n_input, )) hidden_layers = layers.Dense(hidden_nodes, activation=activations.elu)(input_layer) output_layer = layers.Dense(n_output, activation=activations.sigmoid)(hidden_layers) model = Model(input_layer, output_layer)
return batch_loss if __name__ == '__main__': print("preparing dataset...") t = tsp.Tsp() X, Y = t.next_batch(100) #10000 #X.shape #(100, 10, 2) #Y.shape #(100, 10) x_test, y_test = t.next_batch(2) YY = [] for y in Y: YY.append(to_categorical(y)) YY = np.asarray(YY) hidden_size = 128 seq_len = 10 nb_epochs = 100 learning_rate = 0.1 # print("building model...") # main_input = Input(shape=(seq_len, 2), name='main_input') # ##返回返回的是一个list,[encoder,state_h, state_c],其中encoder.shape=(batch_size,time_step,dim),state_h.shape=state_c.shape=(batch_size,dim) # encoder,state_h, state_c = LSTM(hidden_size,return_sequences = True, name="encoder",return_state=True)(main_input) # decoder = PointerLSTM(hidden_size, name="decoder")(encoder,states=[state_h, state_c]) # # model = Model(main_input, decoder) #
def do_cnn_1d(trainX, testX, trainY, testY, vocab): ''' model = text cnn Args: trainX: testX: trainY: testY: Returns: ''' # Converting labels to binary vectors trainY = to_categorical(trainY, num_classes=4) testY = to_categorical(testY, num_classes=4) # Building convolutional network input_data = Input(shape=(1000, )) # (maxlen, ) embedding = Embedding(input_dim=len(vocab) + 1, output_dim=64)(input_data) cnn1 = Conv1D(filters=32, kernel_size=3, strides=1, padding='valid')(embedding) cnn1 = MaxPool1D(4, padding='valid')(cnn1) # cnn2 = Conv1D(filters=32, kernel_size=4, strides=1, padding='valid')(embedding) # cnn2 = MaxPool1D(4, padding='valid')(cnn2) # cnn3 = Conv1D(filters=32, kernel_size=5, strides=1, padding='valid')(embedding) # cnn3 = MaxPool1D(4, padding='valid')(cnn3) # cnn = Concatenate(axis=-1)([cnn1, cnn2, cnn3]) flatten = Flatten()(cnn1) dropout = Dropout(0.2)(flatten) # batchNormalization = BatchNormalization()(dropout1) # dense1 = Dense(16, activation='relu')(batchNormalization) # dropout2 = Dropout(0.2)(dense1) output_data = Dense(4, activation='softmax')(dropout) model = Model(inputs=[input_data], outputs=[output_data]) model.compile(loss='categorical_crossentropy', optimizer=optimizers.Adam(lr=0.0001), metrics=['accuracy']) model.summary() model.fit(trainX, trainY, validation_data=(testX, testY), epochs=10, batch_size=128, verbose=1) # y_pred = model.predict(x_test) # y_pred_idx = [1 if prob[0] > 0.5 else 0 for prob in y_pred] # print(f1_score(y_test, y_pred_idx)) # print(confusion_matrix(y_test, y_pred_idx)) # 评估误差和准确率 # result = model.predict(testX) # 预测的是类别,结果就是类别号 # result_labels = np.argmax(result, axis=1) # y_predict = list(map(str, result_labels)) # print('准确率', metrics.accuracy_score(testY, result_labels)) # print('平均f1-score:', metrics.f1_score(testY, result_labels, average='weighted')) score, acc = model.evaluate(testX, testY, batch_size=10) print('Test score:', score) print('Test accuracy:', acc)
train_text = train_text + " ".join(n['patterns']) + " ".join( n['responses']) #Creacion del vocabulario corpus = set(text_to_word_sequence(train_text)) corpus = list(sorted(corpus)) df = pd.DataFrame({'words': corpus}) df.to_csv('corpus.csv') size = len(corpus) + 1 # Obtenemos los datos de entrada para entrenamiento tok = Tokenizer() tok.fit_on_texts(corpus) tokens = tok.texts_to_sequences(p) x_train = [np.add.reduce(to_categorical(X, size)) for X in tokens] x_train = np.array(x_train) # Obtenemos los datos de salida para el entrenamiento clases = list(sorted(set(t))) size_s = len(clases) + 1 tok2 = Tokenizer() tok2.fit_on_texts(clases) tokens_s = tok2.texts_to_sequences(t) y_train = [np.add.reduce(to_categorical(Y, size_s)) for Y in tokens_s] y_train = np.array(y_train) model = keras.Sequential() model.add(keras.Input(shape=x_train[0].shape))
# prepare the dataset of input to output pairs encoded as integers seq_length = 1 dataX = [] dataY = [] for i in range(0, len(alphabet) - seq_length, 1): seq_in = alphabet[i:i + seq_length] seq_out = alphabet[i + seq_length] dataX.append([char_to_int[char] for char in seq_in]) dataY.append(char_to_int[seq_out]) print(seq_in, '->', seq_out) # reshape X to be [samples, time steps, features] X = np.reshape(dataX, (len(dataX), seq_length, 1)) # normalize X = X / float(len(alphabet)) # one hot encode the output variable y = to_categorical(dataY) # create and fit the model batch_size = 1 model = Sequential() model.add( LSTM(50, batch_input_shape=(batch_size, X.shape[1], X.shape[2]), stateful=True)) model.add(Dense(y.shape[1], activation='softmax')) model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy']) for i in range(300): model.fit(X, y, epochs=1, batch_size=batch_size, verbose=2, shuffle=False) model.reset_states() # summarize performance of the model
### Neural Network: Setup and Run Tests ### ########################################### #Load MNIST Data (train_data, train_labels), (test_data, test_labels) = mnist.load_data() # Reshape training and test data to add an additional dimension of 1 channel train_data = train_data.reshape((60000, 28, 28, 1)) test_data = test_data.reshape((10000, 28, 28, 1)) # Revise pixel data to 0.0 to 1.0, 32-bit float train_data = train_data.astype('float32') / 255 # ndarray/scalar op test_data = test_data.astype('float32') / 255 # Turn 1-value labels to 10-value vectors train_labels = to_categorical(train_labels) test_labels = to_categorical(test_labels) #Setup Image Generation datagen = ImageDataGenerator(rotation_range=5, shear_range=.2, zoom_range=.1, width_shift_range=2, height_shift_range=2) #Setup Tests into LyrParam instances allConfigurations = [] allConfigurations = setupTests() print("----------------------------------") print("Number of test combinations: " + str(len(allConfigurations)))
from tensorflow.keras.callbacks import ModelCheckpoint, EarlyStopping #======== model paramters ======= input_path = './input/' latent_dim = 512 // 2 #======== train paramters ======= epochs = 30 batch_size = 128 weight_path = './weight/bidirectional_lstm_model_weights.h5' #================================ model_config = load_object(input_path+'model_config.pkl') tar_vocab_size = model_config['tar_vocab_size'] tokenizers = load_object(input_path+'tokenizers.pkl') encoder_input_seq, decoder_input_seq, decoder_target_seq = load_object(input_path+'inputs.pkl') decoder_target_matrix = to_categorical(decoder_target_seq, tar_vocab_size) model_config['latent_dim'] = latent_dim enc_dec_model, enc_mode, dec_model = enc_dec_lstm(**model_config) if not os.path.exists('./weight/'): os.mkdir('./weight/') try: enc_dec_model.load_weights(weight_path) print('load from previous model') except: print('train a new model') checkpoint = ModelCheckpoint(filepath=weight_path,
]) #compiling the model; compute the loss and also determine the optimizer model.compile( 'adam', loss = 'categorical_crossentropy', metrics = ['accuracy'] ) #train the model model.fit( train_images, to_categorical(train_labels), epochs = 5, validation_data=(test_images, to_categorical(test_labels)) ) #the % accuracy is 97.3% #cost is 0.0855 #predict an image model.predict(test_images[:3])
data.append(image) # Extract the labels from the path label = image_path.split(os.path.sep)[-3] # rename positive to smiling and negative to not smiling label = "smiling" if label == "positives" else "not_smiling" # print(label) labels.append(label) # normalize the raw pixels to the range [0,1] data = np.array(data, dtype="float") / 255.0 labels = np.array(labels) # Encode the labels le = LabelEncoder() labels = utils.to_categorical(le.fit_transform(labels), 2) # Handle the data imbalance by computing the class weight total_classes = labels.sum(axis=0) # print("total classes: ", total_classes) class_weights = total_classes.max() / total_classes class_weights = {i: class_weights[i] for i in range(1, -1, -1)} print("class weights: ", class_weights) # class_weights = { # 0: 1., # 1: 2.56 # } # train-test split
# import matplotlib.pyplot as plt import numpy as np (train_X, train_Y), (test_X, test_Y) = cifar10.load_data() n = 6 plt.figure(figsize=(20, 10)) # for i in range(n): # plt.subplot(330+1+i) # plt.imshow(train_X[i]) train_x = train_X.astype('float32') test_X = test_X.astype('float32') train_X = train_X / 255.0 test_X = test_X / 255.0 train_Y = to_categorical(train_Y) test_Y = to_categorical(test_Y) num_classes = test_Y.shape[1] model = Sequential() model.add( Conv2D(32, (3, 3), input_shape=(32, 32, 3), padding='same', activation='relu', kernel_constraint=MaxNorm(3))) model.add(Dropout(0.2)) model.add( Conv2D(32, (3, 3), activation='relu',
x_train = x_train.astype("float32") x_test = x_test.astype("float32") x_train = x_train[..., np.newaxis] x_test = x_test[..., np.newaxis] x_train /= 256.0 x_test /= 256.0 print(x_train.shape[0], "train samples") print(x_test.shape[0], "test samples") print(y_train[0:10]) y_train = to_categorical(y_train, NB_CLASSES) y_test = to_categorical(y_test, NB_CLASSES) x = x_in = Input(x_train.shape[1:-1] + (1, )) x = QConv2D(32, kernel_size=(3, 3), kernel_quantizer=quantized_bits(4, 0, 1), bias_quantizer=quantized_bits(4, 0, 1))(x) x = QActivation("quantized_relu(4,0)")(x) x = QConv2D(16, kernel_size=(3, 3), kernel_quantizer=quantized_bits(4, 0, 1), bias_quantizer=quantized_bits(4, 0, 1))(x) x = QActivation("quantized_relu(4,0)")(x) x = QConv2D(8, kernel_size=(3, 3),
x = BatchNormalization()(x) x = Dense( 200, activation='relu', )(x) x = Dropout(0.22)(x) x = BatchNormalization()(x) pred = Dense(11, activation='softmax')(x) model = Model(inputs=seq, outputs=pred) model.compile(loss='categorical_crossentropy', optimizer=Adam()) return model Y_age = to_categorical(train['age']) sub2 = np.zeros((X_test.shape[0], 11)) oof_pref2 = np.zeros((X.shape[0], 11)) score = [] count = 0 for i, (train_index, test_index) in enumerate(kfold.split(X, train['age'])): print("FOLD | ", count + 1) filepath2 = "age_weights_best_%d.h5" % count checkpoint2 = ModelCheckpoint(filepath2, monitor='val_loss', verbose=1, save_best_only=True, mode='min') reduce_lr2 = ReduceLROnPlateau(monitor='val_loss',
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) image = cv2.resize(image, (224, 224)) # update the data and labels lists, respectively data.append(image) labels.append(label) # convert the data and labels to NumPy arrays while scaling the pixel # intensities to the range [0, 255] data = np.array(data) / 255.0 labels = np.array(labels) # perform one-hot encoding on the labels lb = LabelBinarizer() labels = lb.fit_transform(labels) labels = to_categorical(labels) # partition the data into training and testing splits using 80% of # the data for training and the remaining 20% for testing (trainX, testX, trainY, testY) = train_test_split(data, labels, test_size=0.20, stratify=labels, random_state=42) # initialize the training data augmentation object trainAug = ImageDataGenerator(rotation_range=15, fill_mode="nearest") # load the VGG16 network, ensuring the head FC layer sets are left # off baseModel = VGG16(weights="imagenet",
# create a weight matrix for words in training docs (load word2vec word vectors) decoder_embedding_matrix = np.zeros((num_cmd_tokens, 300)) for word, i in tokenizer.word_index.items(): embedding_vector = getVector(word) if embedding_vector is not None: decoder_embedding_matrix[i] = embedding_vector print("Dencoder embedding shape {}".format(decoder_embedding_matrix.shape)) decoder_target_data = list() for token_seq in tokenized_cmd_lines: decoder_target_data.append(token_seq[1:]) padded_cmd_lines = preprocessing.sequence.pad_sequences( decoder_target_data, maxlen=max_output_length, padding='post') onehot_cmd_lines = utils.to_categorical(padded_cmd_lines, num_cmd_tokens) decoder_target_data = np.array(onehot_cmd_lines) print('Decoder target data shape -> {}'.format(decoder_target_data.shape)) encoder_inputs = tf.keras.layers.Input(shape=(None, )) encoder_embedding = tf.keras.layers.Embedding( num_desc_tokens, 300, weights=[encoder_embedding_matrix])(encoder_inputs) encoder_outputs, state_h, state_c = tf.keras.layers.LSTM( 300, return_state=True)(encoder_embedding) encoder_states = [state_h, state_c] decoder_inputs = tf.keras.layers.Input(shape=(None, )) decoder_embedding = tf.keras.layers.Embedding( num_cmd_tokens, 300, weights=[decoder_embedding_matrix])(decoder_inputs) decoder_lstm = tf.keras.layers.LSTM(300, return_state=True,
X_train, X_test, y_train, y_test = train_test_split(data, labels, test_size=0.2, random_state=68) print(X_train.shape) print(X_train.shape) if (scenarioBlackAndWhite): X_train = X_train.reshape(list(X_train.shape) + [1]) X_test = X_test.reshape(list(X_test.shape) + [1]) #Converting the labels into one hot encoding y_train = to_categorical(y_train, classes) y_test = to_categorical(y_test, classes) #Building the model model = Sequential() model.add( Conv2D(filters=32, kernel_size=(5, 5), activation='relu', input_shape=X_train.shape[1:])) model.add(Conv2D(filters=32, kernel_size=(5, 5), activation='relu')) model.add(MaxPool2D(pool_size=(2, 2))) model.add(Dropout(rate=0.25)) model.add(Conv2D(filters=64, kernel_size=(3, 3), activation='relu')) model.add(Conv2D(filters=64, kernel_size=(3, 3), activation='relu')) model.add(MaxPool2D(pool_size=(2, 2)))
print(sequences[:5]) word_index = tokenizer.word_index vocab_size = len(word_index) + 1 print('단어 집합(Vocabulary)의 크기 :', vocab_size) print('문장의 최대 길이 :', max(len(l) for l in sequences)) print('문장의 평균 길이 :', sum(map(len, sequences)) / len(sequences)) plt.hist([len(s) for s in sequences], bins=50) plt.xlabel('length of samples') plt.ylabel('number of samples') plt.show() max_len = 30 intent_train = pad_sequences(sequences, maxlen=max_len) label_train = to_categorical(np.asarray(label_train)) print('전체 데이터의 크기(shape):', intent_train.shape) print('레이블 데이터의 크기(shape):', label_train.shape) print(intent_train[1]) print(label_train[1]) indices = np.arange(intent_train.shape[0]) np.random.shuffle(indices) print(indices) intent_train = intent_train[indices] label_train = label_train[indices] n_of_val = int(0.1 * intent_train.shape[0]) print(n_of_val)
import os os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3' # or any {'0', '1', '2'} import tensorflow_datasets as tfds import tensorflow as tf import matplotlib.pyplot as plt from plots import * from mycallbacks import * from tensorflow.keras.utils import to_categorical from tensorflow.keras import models, optimizers, regularizers, layers, callbacks print('TF:', tf.__version__) data_dir = os.path.join(os.path.dirname(__file__), 'data') (x_train, y_train), (x_test, y_test) = cifar10.load_data() y_train = to_categorical(y_train, num_classes=10) y_test = to_categorical(y_test, num_classes=10) datagen_augment = ImageDataGenerator(featurewise_center= True,\ featurewise_std_normalization= True,\ width_shift_range=0.1,\ shear_range=0.1,\ zoom_range= 0.1) datagen_non_augment = ImageDataGenerator(featurewise_center= True,\ featurewise_std_normalization= True) datagen_augment.fit(x_train) datagen_non_augment.fit(x_train) train_gen = datagen_augment.flow(x_train, y_train, batch_size= 32) val_gen = datagen_non_augment.flow(x_test, y_test, batch_size= 32)
for i in range(0, input_len - seq_length, 1): #using sequence length, define in and out sequences in_seq = processed_inputs[i:i + seq_length] out_seq = processed_inputs[i + seq_length] x_data.append([char_to_num[char] for char in in_seq]) y_data.append(char_to_num[out_seq]) n_patterns = len(x_data) print("total patterns: ", n_patterns) #convert into a numpy array between 0-1 which the sigmoid fn can use X = numpy.reshape(x_data, (n_patterns, seq_length, 1)) X = X / float(vocab_len) #hot-one encoding y = utils.to_categorical(y_data) #Now define our nn model model = Sequential() model.add( LSTM(256, input_shape=(X.shape[1], X.shape[2]), return_sequences=True)) model.add(Dropout(0.2)) model.add(LSTM(256, return_sequences=True)) model.add(Dropout(0.2)) model.add(LSTM(128)) model.add(Dropout(0.2)) model.add(Dense(y.shape[1], activation='softmax')) model.compile(loss='categorical_crossentropy', optimizer='adam') #Now we save the weights for the future
(x_train, y_train), (x_test, y_test) = mnist.load_data() print(x_train.shape, y_train.shape) # (60000, 28, 28), (60000,) print(x_test.shape, y_test.shape) # (10000, 28, 28), (10000,) print(x_train[0]) print(y_train[0]) print(x_train[0].shape) # (28, 28) x_train = x_train.reshape(60000, 28, 28, 1) / 255. x_test = x_test.reshape(10000, 28, 28, 1) / 255. from tensorflow.keras.utils import to_categorical y_train = to_categorical(y_train) y_test = to_categorical(y_test) from tensorflow.keras.models import Sequential from tensorflow.keras.layers import Dense, Conv2D, MaxPooling2D, Flatten, Dropout from tensorflow.keras.layers import BatchNormalization, Activation from tensorflow.keras.regularizers import l1, l2, l1_l2 model = Sequential() model.add( Conv2D(filters=256, kernel_size=(2, 2), padding='same', strides=1, input_shape=(28, 28, 1))) model.add(BatchNormalization())
from tensorflow.keras.utils import to_categorical import os import matplotlib.pyplot as plt from sklearn.model_selection import train_test_split data_train = pd.read_csv( "/home/razorback/BTP/metamorphic_testing/MNIST/fashionmnist/fashion-mnist_train.csv" ) data_test = pd.read_csv( "/home/razorback/BTP/metamorphic_testing/MNIST/fashionmnist/fashion-mnist_test.csv" ) img_rows, img_cols = 28, 28 input_shape = (img_rows, img_cols, 1) X = np.array(data_train.iloc[:, 1:]) y = to_categorical(np.array(data_train.iloc[:, 0])) #Here we split validation data to optimiza classifier during training X_train, X_val, y_train, y_val = train_test_split(X, y, test_size=0.2, random_state=13) #Test data X_test = np.array(data_test.iloc[:, 1:]) y_test = to_categorical(np.array(data_test.iloc[:, 0])) X_train = X_train.reshape(X_train.shape[0], img_rows, img_cols, 1) X_test = X_test.reshape(X_test.shape[0], img_rows, img_cols, 1) X_val = X_val.reshape(X_val.shape[0], img_rows, img_cols, 1)
#https://www.youtube.com/watch?v=V23DmbdzMvg import tensorflow as tf from tensorflow.keras.models import Sequential from tensorflow.keras.layers import Dense from tensorflow.keras.utils import to_categorical from sklearn.datasets import load_iris from sklearn.model_selection import train_test_split from sklearn import preprocessing iris = load_iris() X = preprocessing.scale(iris['data']) Y = to_categorical(iris['target']) #print(X) #print(Y) #training data and test data X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size=0.2) #model model = Sequential() model.add(Dense(10, input_dim=4, activation='relu')) model.add(Dense(10, activation='relu')) model.add(Dense(3, activation='softmax')) model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy']) #fitting the model model.fit(X_train, Y_train, validation_data=(X_test, Y_test), epochs=200, batch_size=10)
from sklearn.metrics import accuracy_score, f1_score, roc_auc_score import matplotlib.pyplot as plt from sklearn.model_selection import GridSearchCV import pandas as pd import numpy as np data = fetch_openml('hls4ml_lhc_jets_hlf') x_data, y_data = data['data'], data['target'] # ======================= PREPROCESSING ============================== # encode data using one-hot, i.e turn 1 column of categorical labels into # 5 columns of dummy varaiables # also split data into 80-20 train test split le = LabelEncoder() y_data_one_hot = le.fit_transform(y_data) y_data_one_hot = to_categorical(y_data_one_hot, 5) x_train, x_test, y_train_one_hot, y_test_one_hot = train_test_split(x_data, y_data_one_hot, test_size=0.2, random_state=42) x_train, x_test, y_train, y_test = train_test_split(x_data, y_data, test_size=0.2, random_state=42) # normalize our data (using standard normal distribution - Gaussian) scaler = StandardScaler() x_train = scaler.fit_transform(x_train) x_test = scaler.transform(x_test)