def get_model(): return ipu.keras.Sequential( [Embedding(256, 128), LSTM(EMBEDDING_DIM, return_sequences=True), LSTM(EMBEDDING_DIM, return_sequences=True), TimeDistributed(Dense(256, activation='softmax'))], accumulation_count = REPEAT_COUNT)
def get_model(): input_layer = Input(shape=(80), dtype=tf.int32, batch_size=minibatch_size) x = Embedding(max_features, 128)(input_layer) x = LSTM(128, dropout=0.2)(x) x = Dense(16, activation='relu')(x) x = Dense(1, activation='sigmoid')(x) return ipu.keras.Model(input_layer, x)
def get_model(): input_layer = Input(shape=(80), dtype=tf.int32, batch_size=minibatch_size) with ipu.keras.PipelineStage(0): x = Embedding(max_features, 128)(input_layer) with ipu.keras.PipelineStage(1): x = LSTM(128, dropout=0.2)(x) x = Dense(1, activation='sigmoid')(x) return ipu.keras.PipelineModel( input_layer, x, gradient_accumulation_count=gradient_accumulation_count)
def get_model(): input_layer = Input(shape=(80), dtype=dtypes.int32, batch_size=32) with ipu.keras.PipelineStage(0): x = Embedding(max_features, 128)(input_layer) x = LSTM(128, dropout=0.2)(x) with ipu.keras.PipelineStage(1): a = Dense(16, activation='relu')(x) with ipu.keras.PipelineStage(2): b = Dense(16, activation='relu')(x) with ipu.keras.PipelineStage(3): x = Concatenate()([a, b]) x = Dense(1, activation='sigmoid')(x) return ipu.keras.PipelineModel(input_layer, x, gradient_accumulation_count=16, device_mapping=[0, 1, 1, 0])
def get_model(): return ipu.keras.SequentialPipelineModel( [[Embedding(max_features, 128)], [LSTM(128, dropout=0.2), Dense(1, activation='sigmoid')]], gradient_accumulation_count=gradient_accumulation_count)
def get_model(): return ipu.keras.Sequential([ Embedding(max_features, 128), LSTM(128, dropout=0.2), Dense(1, activation='sigmoid') ])
def get_model(): return ipu.keras.PipelinedModel( [[Embedding(max_features, 128)], [LSTM(128, dropout=0.2), Dense(1, activation='sigmoid')]], pipeline_depth=pipeline_depth)