Пример #1
0
 def _shared_name(self):
   """Returns a shared name to be used by the table."""
   shared_name = "NULL_INITIALIZER_"
   if context.executing_eagerly():
     # Ensure a unique name when eager execution is enabled to avoid spurious
     # sharing issues..
     shared_name += str(backend.get_uid(shared_name))
   return shared_name
Пример #2
0
    def __init__(self,
                 shape,
                 my_initializer='RandomNormal',
                 dtype=None,
                 name=None,
                 mult=1.0,
                 **kwargs):

        
        # some input checking
        if not name:
            prefix = 'local_param'
            name = prefix + '_' + str(backend.get_uid(prefix))
            
        if not dtype:
            dtype = backend.floatx()
        
        self.shape = [1, *shape]
        self.my_initializer = my_initializer
        self.mult = mult

        if not name:
            prefix = 'param'
            name = '%s_%d' % (prefix, K.get_uid(prefix))
        Layer.__init__(self, name=name, **kwargs)

        # Create a trainable weight variable for this layer.
        with K.name_scope(self.name):
            self.kernel = self.add_weight(name='kernel', 
                                            shape=shape,
                                            initializer=self.my_initializer,
                                            dtype=dtype,
                                            trainable=True)

        # prepare output tensor, which is essentially the kernel.
        output_tensor = K.expand_dims(self.kernel, 0) * self.mult
        output_tensor._keras_shape = self.shape
        output_tensor._uses_learning_phase = False
        output_tensor._keras_history = base_layer.KerasHistory(self, 0, 0)
        output_tensor._batch_input_shape = self.shape

        self.trainable = True
        self.built = True    
        self.is_placeholder = False

        # create new node
        Node(self,
            inbound_layers=[],
            node_indices=[],
            tensor_indices=[],
            input_tensors=[],
            output_tensors=[output_tensor],
            input_masks=[],
            output_masks=[None],
            input_shapes=[],
            output_shapes=self.shape)
Пример #3
0
    def __init__(self, label=None, min_value=None, max_value=None, **kwargs):
        if not label:
            prefix = 'C'
            name = prefix + '_' + str(backend.get_uid(prefix))
        else:
            name = label

        dtype = backend.floatx()

        super(ConstantLayer, self).__init__(dtype=dtype, name=name)

        # backend.random_uniform_variable(shape=(20,), low=[0.]*20, high=[1.]*20)
        self._c = self.add_weight(name=label,
                                  shape=(1, len(min_value)),
                                  initializer=K.initializers.RandomUniform(
                                      minval=min_value, maxval=max_value),
                                  trainable=True)
        self.is_placeholder = False
        self.built = True
        self._batch_input_shape = (len(min_value), )
        #self.batch_size = len(min_value)

        #graph = backend.get_graph()
        #with graph.as_default():
        #    fake_input_tensor = backend.constant(backend.get_value(self._c))
        # Create an input node to add to self.outbound_node
        # and set output_tensors' _keras_history.
        fake_input_tensor = self._c
        fake_input_tensor._keras_history = base_layer.KerasHistory(self, 0, 0)
        fake_input_tensor._keras_mask = None
        fake_input_tensor._ltn_doms = []

        node_module.Node(self,
                         inbound_layers=[],
                         node_indices=[],
                         tensor_indices=[],
                         input_tensors=[fake_input_tensor],
                         output_tensors=[fake_input_tensor])
Пример #4
0
  def __init__(self,
               input_shape=None,
               batch_size=None,
               dtype=None,
               input_tensor=None,
               sparse=False,
               name=None,
               **kwargs):
    if 'batch_input_shape' in kwargs:
      batch_input_shape = kwargs.pop('batch_input_shape')
      if input_shape and batch_input_shape:
        raise ValueError('Only provide the input_shape OR '
                         'batch_input_shape argument to '
                         'InputLayer, not both at the same time.')
      batch_size = batch_input_shape[0]
      input_shape = batch_input_shape[1:]
    if kwargs:
      raise ValueError('Unrecognized keyword arguments:', kwargs.keys())

    if not name:
      prefix = 'input'
      name = prefix + '_' + str(K.get_uid(prefix))

    if not dtype:
      if input_tensor is None:
        dtype = K.floatx()
      else:
        dtype = K.dtype(input_tensor)
    super(InputLayer, self).__init__(dtype=dtype, name=name)
    self.built = True
    self.sparse = sparse
    self.batch_size = batch_size

    if isinstance(input_shape, tensor_shape.TensorShape):
      input_shape = tuple(input_shape.as_list())

    if input_tensor is None:
      if input_shape is not None:
        batch_input_shape = (batch_size,) + tuple(input_shape)
      else:
        batch_input_shape = None

      if context.executing_eagerly():
        # In eager mode, create a temporary placeholder to call the layer on.
        input_tensor = base_layer.DeferredTensor(  # pylint: disable=protected-access
            shape=batch_input_shape,
            dtype=dtype,
            name=self.name)
      else:
        # In graph mode, create a graph placeholder to call the layer on.
        if sparse:
          input_tensor = array_ops.sparse_placeholder(
              shape=batch_input_shape,
              dtype=dtype,
              name=self.name)
        else:
          input_tensor = array_ops.placeholder(
              shape=batch_input_shape,
              dtype=dtype,
              name=self.name)

      # For compatibility with Keras API.
      self.is_placeholder = True
      self._batch_input_shape = batch_input_shape
    else:
      # For compatibility with Keras API.
      self.is_placeholder = False
      self._batch_input_shape = tuple(input_tensor.get_shape().as_list())

      if context.executing_eagerly():
        raise ValueError('You should not pass an input tensor when executing '
                         'in eager mode. For example, instead of creating an '
                         'InputLayer, you should instantiate your model and '
                         'directly call it on your input.')

    # Create an input node to add to self.outbound_node
    # and set output_tensors' _keras_history.
    input_tensor._keras_history = (self, 0, 0)  # pylint: disable=protected-access
    base_layer.Node(
        self,
        inbound_layers=[],
        node_indices=[],
        tensor_indices=[],
        input_tensors=[input_tensor],
        output_tensors=[input_tensor])
Пример #5
0
    def __init__(self,
                 input_shape=None,
                 batch_size=None,
                 dtype=None,
                 input_tensor=None,
                 sparse=False,
                 name=None,
                 **kwargs):
        if 'batch_input_shape' in kwargs:
            batch_input_shape = kwargs.pop('batch_input_shape')
            if input_shape and batch_input_shape:
                raise ValueError('Only provide the input_shape OR '
                                 'batch_input_shape argument to '
                                 'InputLayer, not both at the same time.')
            batch_size = batch_input_shape[0]
            input_shape = batch_input_shape[1:]
        if kwargs:
            raise ValueError('Unrecognized keyword arguments:', kwargs.keys())

        if not name:
            prefix = 'input'
            name = prefix + '_' + str(K.get_uid(prefix))

        if not dtype:
            if input_tensor is None:
                dtype = K.floatx()
            else:
                dtype = K.dtype(input_tensor)
        super(InputLayer, self).__init__(dtype=dtype, name=name)
        self.built = True
        self.sparse = sparse
        self.batch_size = batch_size

        if isinstance(input_shape, tensor_shape.TensorShape):
            input_shape = tuple(input_shape.as_list())

        if input_tensor is None:
            if input_shape is not None:
                batch_input_shape = (batch_size, ) + tuple(input_shape)
            else:
                batch_input_shape = None

            if context.executing_eagerly():
                # In eager mode, create a temporary placeholder to call the layer on.
                input_tensor = base_layer.DeferredTensor(  # pylint: disable=protected-access
                    shape=batch_input_shape,
                    dtype=dtype,
                    name=self.name)
            else:
                # In graph mode, create a graph placeholder to call the layer on.
                if sparse:
                    input_tensor = array_ops.sparse_placeholder(
                        shape=batch_input_shape, dtype=dtype, name=self.name)
                else:
                    input_tensor = array_ops.placeholder(
                        shape=batch_input_shape, dtype=dtype, name=self.name)

            # For compatibility with Keras API.
            self.is_placeholder = True
            self._batch_input_shape = batch_input_shape
        else:
            # For compatibility with Keras API.
            self.is_placeholder = False
            self._batch_input_shape = tuple(input_tensor.get_shape().as_list())

            if context.executing_eagerly():
                raise ValueError(
                    'You should not pass an input tensor when executing '
                    'in eager mode. For example, instead of creating an '
                    'InputLayer, you should instantiate your model and '
                    'directly call it on your input.')

        # Create an input node to add to self.outbound_node
        # and set output_tensors' _keras_history.
        input_tensor._keras_history = (self, 0, 0)  # pylint: disable=protected-access
        base_layer.Node(self,
                        inbound_layers=[],
                        node_indices=[],
                        tensor_indices=[],
                        input_tensors=[input_tensor],
                        output_tensors=[input_tensor])
Пример #6
0
    def __init__(self,
                 input_shape=None,
                 batch_size=None,
                 dtype=None,
                 input_tensor=None,
                 sparse=False,
                 name=None,
                 ragged=False,
                 **kwargs):
        strategy = distribution_strategy_context.get_strategy()
        if strategy and batch_size is not None and \
            distributed_training_utils.global_batch_size_supported(strategy):
            if batch_size % strategy.num_replicas_in_sync != 0:
                raise ValueError(
                    'The `batch_size` argument value {} cannot be '
                    'divisible by number of replicas {}'.format(
                        batch_size, strategy.num_replicas_in_sync))
            batch_size = batch_size // strategy.num_replicas_in_sync

        if 'batch_input_shape' in kwargs:
            batch_input_shape = kwargs.pop('batch_input_shape')
            if input_shape and batch_input_shape:
                raise ValueError('Only provide the input_shape OR '
                                 'batch_input_shape argument to '
                                 'InputLayer, not both at the same time.')
            batch_size = batch_input_shape[0]
            input_shape = batch_input_shape[1:]
        if kwargs:
            raise ValueError('Unrecognized keyword arguments:', kwargs.keys())

        if not name:
            prefix = 'input'
            name = prefix + '_' + str(backend.get_uid(prefix))

        if not dtype:
            if input_tensor is None:
                dtype = backend.floatx()
            else:
                dtype = backend.dtype(input_tensor)
        elif input_tensor is not None and input_tensor.dtype != dtype:
            raise ValueError(
                '`input_tensor.dtype` differs from `dtype`: %s vs. %s' %
                (input_tensor.dtype, dtype))
        super(InputLayer, self).__init__(dtype=dtype, name=name)
        self.built = True
        self.sparse = sparse
        self.batch_size = batch_size
        self.supports_masking = True

        if isinstance(input_shape, tensor_shape.TensorShape):
            input_shape = tuple(input_shape.as_list())
        elif isinstance(input_shape, int):
            input_shape = (input_shape, )

        if input_tensor is None:
            if input_shape is not None:
                batch_input_shape = (batch_size, ) + tuple(input_shape)
            else:
                batch_input_shape = None
            graph = backend.get_graph()
            with graph.as_default():
                input_tensor = backend.placeholder(shape=batch_input_shape,
                                                   dtype=dtype,
                                                   name=self.name,
                                                   sparse=sparse,
                                                   ragged=ragged)

            self.is_placeholder = True
            self._batch_input_shape = batch_input_shape
        else:
            if not tf_utils.is_symbolic_tensor(input_tensor):
                raise ValueError(
                    'You should not pass an EagerTensor to `Input`. '
                    'For example, instead of creating an '
                    'InputLayer, you should instantiate your model and '
                    'directly call it on your input.')
            self.is_placeholder = False
            self._batch_input_shape = tuple(input_tensor.shape.as_list())

        # Create an input node to add to self.outbound_node
        # and set output_tensors' _keras_history.
        input_tensor._keras_history = base_layer.KerasHistory(self, 0, 0)
        input_tensor._keras_mask = None
        node_module.Node(self,
                         inbound_layers=[],
                         node_indices=[],
                         tensor_indices=[],
                         input_tensors=[input_tensor],
                         output_tensors=[input_tensor])
Пример #7
0
    def __init__(self,
                 input_shape=None,
                 batch_size=None,
                 dtype=None,
                 input_tensor=None,
                 sparse=False,
                 name=None,
                 **kwargs):
        if 'batch_input_shape' in kwargs:
            batch_input_shape = kwargs.pop('batch_input_shape')
            if input_shape and batch_input_shape:
                raise ValueError('Only provide the input_shape OR '
                                 'batch_input_shape argument to '
                                 'InputLayer, not both at the same time.')
            batch_size = batch_input_shape[0]
            input_shape = batch_input_shape[1:]
        if kwargs:
            raise ValueError('Unrecognized keyword arguments:', kwargs.keys())

        if not name:
            prefix = 'input'
            name = prefix + '_' + str(backend.get_uid(prefix))

        if not dtype:
            if input_tensor is None:
                dtype = backend.floatx()
            else:
                dtype = backend.dtype(input_tensor)
        super(InputLayer, self).__init__(dtype=dtype, name=name)
        self.built = True
        self.sparse = sparse
        self.batch_size = batch_size
        self.supports_masking = True
        self._can_use_graph_functions = True

        if isinstance(input_shape, tensor_shape.TensorShape):
            input_shape = tuple(input_shape.as_list())

        if input_tensor is None:
            if input_shape is not None:
                batch_input_shape = (batch_size, ) + tuple(input_shape)
            else:
                batch_input_shape = None
            graph = backend.get_graph()
            with context.graph_mode():
                with graph.as_default():
                    # In graph mode, create a graph placeholder to call the layer on.
                    if sparse:
                        input_tensor = array_ops.sparse_placeholder(
                            shape=batch_input_shape,
                            dtype=dtype,
                            name=self.name)
                    else:
                        input_tensor = array_ops.placeholder(
                            shape=batch_input_shape,
                            dtype=dtype,
                            name=self.name)

            self.is_placeholder = True
            self._batch_input_shape = batch_input_shape
        else:
            if not tf_utils.is_symbolic_tensor(input_tensor):
                raise ValueError(
                    'You should not pass an EagerTensor to `Input`. '
                    'For example, instead of creating an '
                    'InputLayer, you should instantiate your model and '
                    'directly call it on your input.')
            self.is_placeholder = False
            self._batch_input_shape = tuple(input_tensor.get_shape().as_list())

        # Create an input node to add to self.outbound_node
        # and set output_tensors' _keras_history.
        input_tensor._keras_history = (self, 0, 0)  # pylint: disable=protected-access
        base_layer.Node(self,
                        inbound_layers=[],
                        node_indices=[],
                        tensor_indices=[],
                        input_tensors=[input_tensor],
                        output_tensors=[input_tensor])
Пример #8
0
  def __init__(self,
               input_shape=None,
               batch_size=None,
               dtype=None,
               input_tensor=None,
               sparse=False,
               name=None,
               **kwargs):
    if 'batch_input_shape' in kwargs:
      batch_input_shape = kwargs.pop('batch_input_shape')
      if input_shape and batch_input_shape:
        raise ValueError('Only provide the input_shape OR '
                         'batch_input_shape argument to '
                         'InputLayer, not both at the same time.')
      batch_size = batch_input_shape[0]
      input_shape = batch_input_shape[1:]
    if kwargs:
      raise ValueError('Unrecognized keyword arguments:', kwargs.keys())

    if not name:
      prefix = 'input'
      name = prefix + '_' + str(backend.get_uid(prefix))

    if not dtype:
      if input_tensor is None:
        dtype = backend.floatx()
      else:
        dtype = backend.dtype(input_tensor)
    super(InputLayer, self).__init__(dtype=dtype, name=name)
    self.built = True
    self.sparse = sparse
    self.batch_size = batch_size
    self.supports_masking = True

    if isinstance(input_shape, tensor_shape.TensorShape):
      input_shape = tuple(input_shape.as_list())

    if input_tensor is None:
      if input_shape is not None:
        batch_input_shape = (batch_size,) + tuple(input_shape)
      else:
        batch_input_shape = None
      graph = backend.get_graph()
      with graph.as_default():
        # In graph mode, create a graph placeholder to call the layer on.
        if sparse:
          input_tensor = backend.placeholder(
              shape=batch_input_shape,
              dtype=dtype,
              name=self.name,
              sparse=True)
        else:
          input_tensor = backend.placeholder(
              shape=batch_input_shape,
              dtype=dtype,
              name=self.name)

      self.is_placeholder = True
      self._batch_input_shape = batch_input_shape
    else:
      if not tf_utils.is_symbolic_tensor(input_tensor):
        raise ValueError('You should not pass an EagerTensor to `Input`. '
                         'For example, instead of creating an '
                         'InputLayer, you should instantiate your model and '
                         'directly call it on your input.')
      self.is_placeholder = False
      self._batch_input_shape = tuple(input_tensor.get_shape().as_list())

    # Create an input node to add to self.outbound_node
    # and set output_tensors' _keras_history.
    input_tensor._keras_history = (self, 0, 0)  # pylint: disable=protected-access
    base_layer.Node(
        self,
        inbound_layers=[],
        node_indices=[],
        tensor_indices=[],
        input_tensors=[input_tensor],
        output_tensors=[input_tensor])
Пример #9
0
  def __init__(self,
               input_shape=None,
               batch_size=None,
               dtype=None,
               input_tensor=None,
               sparse=False,
               name=None,
               **kwargs):
    strategy = distribution_strategy_context.get_strategy()
    if strategy and batch_size is not None and \
        distributed_training_utils.global_batch_size_supported(strategy):
      if batch_size % strategy.num_replicas_in_sync != 0:
        raise ValueError('The `batch_size` argument value {} cannot be '
                         'divisible by number of replicas {}'.format(
                             batch_size, strategy.num_replicas_in_sync))
      batch_size = batch_size // strategy.num_replicas_in_sync

    if 'batch_input_shape' in kwargs:
      batch_input_shape = kwargs.pop('batch_input_shape')
      if input_shape and batch_input_shape:
        raise ValueError('Only provide the input_shape OR '
                         'batch_input_shape argument to '
                         'InputLayer, not both at the same time.')
      batch_size = batch_input_shape[0]
      input_shape = batch_input_shape[1:]
    if kwargs:
      raise ValueError('Unrecognized keyword arguments:', kwargs.keys())

    if not name:
      prefix = 'input'
      name = prefix + '_' + str(backend.get_uid(prefix))

    if not dtype:
      if input_tensor is None:
        dtype = backend.floatx()
      else:
        dtype = backend.dtype(input_tensor)
    elif input_tensor is not None and input_tensor.dtype != dtype:
      raise ValueError('`input_tensor.dtype` differs from `dtype`: %s vs. %s' %
                       (input_tensor.dtype, dtype))
    super(InputLayer, self).__init__(dtype=dtype, name=name)
    self.built = True
    self.sparse = sparse
    self.batch_size = batch_size
    self.supports_masking = True

    if isinstance(input_shape, tensor_shape.TensorShape):
      input_shape = tuple(input_shape.as_list())
    elif isinstance(input_shape, int):
      input_shape = (input_shape,)

    if input_tensor is None:
      if input_shape is not None:
        batch_input_shape = (batch_size,) + tuple(input_shape)
      else:
        batch_input_shape = None
      graph = backend.get_graph()
      with graph.as_default():
        # In graph mode, create a graph placeholder to call the layer on.
        if sparse:
          input_tensor = backend.placeholder(
              shape=batch_input_shape,
              dtype=dtype,
              name=self.name,
              sparse=True)
        else:
          input_tensor = backend.placeholder(
              shape=batch_input_shape,
              dtype=dtype,
              name=self.name)

      self.is_placeholder = True
      self._batch_input_shape = batch_input_shape
    else:
      if not tf_utils.is_symbolic_tensor(input_tensor):
        raise ValueError('You should not pass an EagerTensor to `Input`. '
                         'For example, instead of creating an '
                         'InputLayer, you should instantiate your model and '
                         'directly call it on your input.')
      self.is_placeholder = False
      self._batch_input_shape = tuple(input_tensor.shape.as_list())

    # Create an input node to add to self.outbound_node
    # and set output_tensors' _keras_history.
    input_tensor._keras_history = (self, 0, 0)  # pylint: disable=protected-access
    input_tensor._keras_mask = None
    base_layer.Node(
        self,
        inbound_layers=[],
        node_indices=[],
        tensor_indices=[],
        input_tensors=[input_tensor],
        output_tensors=[input_tensor])
Пример #10
0
    def __init__(self,
                 input_shape=None,
                 batch_size=None,
                 dtype=None,
                 input_tensor=None,
                 sparse=None,
                 name=None,
                 ragged=None,
                 type_spec=None,
                 **kwargs):
        self._init_input_shape = input_shape
        self._init_batch_size = batch_size
        self._init_dtype = dtype
        self._init_sparse = sparse
        self._init_ragged = ragged
        self._init_type_spec = type_spec

        strategy = distribution_strategy_context.get_strategy()
        if strategy and batch_size is not None and \
            distributed_training_utils.global_batch_size_supported(strategy):
            if batch_size % strategy.num_replicas_in_sync != 0:
                raise ValueError(
                    'The `batch_size` argument ({}) must be divisible by '
                    'the number of replicas ({})'.format(
                        batch_size, strategy.num_replicas_in_sync))
            batch_size = batch_size // strategy.num_replicas_in_sync

        if 'batch_input_shape' in kwargs:
            batch_input_shape = kwargs.pop('batch_input_shape')
            if input_shape and batch_input_shape:
                raise ValueError('Only provide the input_shape OR '
                                 'batch_input_shape argument to '
                                 'InputLayer, not both at the same time.')
            batch_size = batch_input_shape[0]
            input_shape = batch_input_shape[1:]
        if kwargs:
            raise ValueError('Unrecognized keyword arguments:', kwargs.keys())

        if sparse and ragged:
            raise ValueError(
                'Cannot set both sparse and ragged to True in a Keras input.')

        if not name:
            prefix = 'input'
            name = prefix + '_' + str(backend.get_uid(prefix))

        if not dtype:
            if input_tensor is None:
                dtype = backend.floatx()
            else:
                dtype = backend.dtype(input_tensor)
        elif input_tensor is not None and input_tensor.dtype != dtype:
            raise ValueError(
                '`input_tensor.dtype` differs from `dtype`: %s vs. %s' %
                (input_tensor.dtype, dtype))
        super(InputLayer, self).__init__(dtype=dtype, name=name)
        self.built = True
        self.sparse = True if sparse else False
        self.ragged = True if ragged else False
        self.batch_size = batch_size
        self.supports_masking = True

        if isinstance(input_shape, tensor_shape.TensorShape):
            input_shape = tuple(input_shape.as_list())
        elif isinstance(input_shape, int):
            input_shape = (input_shape, )

        if type_spec is not None:
            args_that_must_be_none = [
                ('(input_)shape', self._init_input_shape),
                ('batch_size', self._init_batch_size),
                ('dtype', self._init_dtype),
                ('input_tensor', input_tensor),
                ('sparse', self._init_sparse),
                ('ragged', self._init_ragged),
            ]
            for arg_name, arg in args_that_must_be_none:
                _assert_other_arg_none(arg_name, arg)
            if not keras_tensor.keras_tensors_enabled():
                raise ValueError(
                    'Creating Keras inputs from a type_spec is only '
                    'supported when eager execution is enabled.')
            input_tensor = keras_tensor.keras_tensor_from_type_spec(type_spec)
            if isinstance(input_tensor, keras_tensor.SparseKerasTensor):
                self.sparse = True
            if isinstance(input_tensor, keras_tensor.RaggedKerasTensor):
                self.ragged = True
            self.is_placeholder = True
            try:
                self._batch_input_shape = tuple(input_tensor.shape.as_list())
            except ValueError:
                # If the shape cannot be represented as a tuple (e.g. unknown rank)
                self._batch_input_shape = None
        elif input_tensor is None:
            if input_shape is not None:
                batch_input_shape = (batch_size, ) + tuple(input_shape)
            else:
                batch_input_shape = None
            graph = backend.get_graph()
            with graph.as_default():
                input_tensor = backend.placeholder(shape=batch_input_shape,
                                                   dtype=dtype,
                                                   name=self.name,
                                                   sparse=sparse,
                                                   ragged=ragged)

            self.is_placeholder = True
            self._batch_input_shape = batch_input_shape
        else:
            if keras_tensor.keras_tensors_enabled():
                if not isinstance(input_tensor, keras_tensor.KerasTensor):
                    input_tensor = keras_tensor.keras_tensor_from_tensor(
                        input_tensor)
            else:
                if not tf_utils.is_symbolic_tensor(input_tensor):
                    raise ValueError(
                        'You should not pass an EagerTensor to `Input`. '
                        'For example, instead of creating an '
                        'InputLayer, you should instantiate your model and '
                        'directly call it on your input.')
            self.is_placeholder = False
            try:
                self._batch_input_shape = tuple(input_tensor.shape.as_list())
            except ValueError:
                # If the shape cannot be represented as a tuple (e.g. unknown rank)
                self._batch_input_shape = None
        # Create an input node.
        input_tensor._keras_mask = None
        node_module.Node(layer=self, outputs=input_tensor)

        # Store type spec
        if isinstance(input_tensor, keras_tensor.KerasTensor) or (
                tf_utils.is_extension_type(input_tensor)):
            self._type_spec = input_tensor._type_spec  # pylint: disable=protected-access
        else:
            self._type_spec = tensor_spec.TensorSpec(shape=input_tensor.shape,
                                                     dtype=input_tensor.dtype,
                                                     name=self.name)
Пример #11
0
def _get_unique_name(name, prefix=None):
    if prefix is not None:
        name = prefix + '_' + name
    name += '_' + str(K.get_uid(name))
    return name
Пример #12
0
 def __init__(self, **kwargs):
     name = kwargs.get('name')
     if not name:
         prefix = self.__class__.__name__
         name = self._to_snake_case(prefix) + '_' + str(K.get_uid(prefix))
     self.name = name
Пример #13
0
def _unique(name):
    """
    Return a unique name string.
    """
    return name + '_' + str(K.get_uid(name))