Пример #1
0
    def train(self, epochs):
        """
        functional API with model.fit doesn't support sparse tensors with the current implementation =>
        we write the training loop ourselves
        """
        callbacks = CallbackList([
            EvaluateCallback(self.valid_generator, prepend_str='val_'),
            TensorBoard(self.log_dir, profile_batch=0),
            ModelCheckpoint(self.model_save_path / 'best.h5py',
                            monitor='val_kendal',
                            save_best_only=True,
                            verbose=1,
                            mode='max'),
            EarlyStopping(monitor='val_kendal',
                          patience=5,
                          mode='max',
                          restore_best_weights=True),
            ReduceLROnPlateau(
                monitor='val_kendal', patience=2, factor=0.5, mode='max'),
        ],
                                 add_history=True,
                                 add_progbar=True,
                                 verbose=1,
                                 model=self.model,
                                 epochs=epochs,
                                 steps=len(self.train_generator))

        callbacks.on_train_begin()
        for epoch in range(epochs):
            if epoch % 5 == 0:
                self.train_generator.gen_new_graphs()
                self.valid_generator.gen_new_graphs()

            callbacks.on_epoch_begin(epoch)
            [c.on_train_begin() for c in callbacks]
            for batch, (x, y) in enumerate(self.train_generator):
                callbacks.on_train_batch_begin(batch)
                logs = self.model.train_on_batch(x, y, return_dict=True)
                callbacks.on_train_batch_end(batch, logs)

            epoch_logs = copy.copy(logs)
            callbacks.on_epoch_end(epoch, logs=epoch_logs)
            pd.DataFrame(self.model.history.history).to_csv(self.log_dir /
                                                            'history.csv',
                                                            index=False)
            if self.model.stop_training:
                break

        callbacks.on_train_end(copy.copy(epoch_logs))
        print(self.model.history.history)
Пример #2
0
    def fit(self,
            x=None,
            y=None,
            batch_size=None,
            epochs=1,
            verbose=1,
            initial_epoch=0,
            validation_split=0.,
            validation_data=None,
            shuffle=True,
            callbacks=None):
        """

        :param x: Numpy array of training data (if the model has a single input), or list of Numpy arrays (if the model has multiple inputs).If input layers in the model are named, you can also pass a
            dictionary mapping input names to Numpy arrays.
        :param y: Numpy array of target (label) data (if the model has a single output), or list of Numpy arrays (if the model has multiple outputs).
        :param batch_size: Integer or `None`. Number of samples per gradient update. If unspecified, `batch_size` will default to 256.
        :param epochs: Integer. Number of epochs to train the model. An epoch is an iteration over the entire `x` and `y` data provided. Note that in conjunction with `initial_epoch`, `epochs` is to be understood as "final epoch". The model is not trained for a number of iterations given by `epochs`, but merely until the epoch of index `epochs` is reached.
        :param verbose: Integer. 0, 1, or 2. Verbosity mode. 0 = silent, 1 = progress bar, 2 = one line per epoch.
        :param initial_epoch: Integer. Epoch at which to start training (useful for resuming a previous training run).
        :param validation_split: Float between 0 and 1. Fraction of the training data to be used as validation data. The model will set apart this fraction of the training data, will not train on it, and will evaluate the loss and any model metrics on this data at the end of each epoch. The validation data is selected from the last samples in the `x` and `y` data provided, before shuffling.
        :param validation_data: tuple `(x_val, y_val)` or tuple `(x_val, y_val, val_sample_weights)` on which to evaluate the loss and any model metrics at the end of each epoch. The model will not be trained on this data. `validation_data` will override `validation_split`.
        :param shuffle: Boolean. Whether to shuffle the order of the batches at the beginning of each epoch.
        :param callbacks: List of `deepctr_torch.callbacks.Callback` instances. List of callbacks to apply during training and validation (if ). See [callbacks](https://tensorflow.google.cn/api_docs/python/tf/keras/callbacks). Now available: `EarlyStopping` , `ModelCheckpoint`

        :return: A `History` object. Its `History.history` attribute is a record of training loss values and metrics values at successive epochs, as well as validation loss values and validation metrics values (if applicable).
        """
        if isinstance(x, dict):
            x = [x[feature] for feature in self.feature_index]

        do_validation = False
        if validation_data:
            do_validation = True
            if len(validation_data) == 2:
                val_x, val_y = validation_data
                val_sample_weight = None
            elif len(validation_data) == 3:
                val_x, val_y, val_sample_weight = validation_data  # pylint: disable=unpacking-non-sequence
            else:
                raise ValueError(
                    'When passing a `validation_data` argument, '
                    'it must contain either 2 items (x_val, y_val), '
                    'or 3 items (x_val, y_val, val_sample_weights), '
                    'or alternatively it could be a dataset or a '
                    'dataset or a dataset iterator. '
                    'However we received `validation_data=%s`' %
                    validation_data)
            if isinstance(val_x, dict):
                val_x = [val_x[feature] for feature in self.feature_index]

        elif validation_split and 0. < validation_split < 1.:
            do_validation = True
            if hasattr(x[0], 'shape'):
                split_at = int(x[0].shape[0] * (1. - validation_split))
            else:
                split_at = int(len(x[0]) * (1. - validation_split))
            x, val_x = (slice_arrays(x, 0,
                                     split_at), slice_arrays(x, split_at))
            y, val_y = (slice_arrays(y, 0,
                                     split_at), slice_arrays(y, split_at))

        else:
            val_x = []
            val_y = []
        for i in range(len(x)):
            if len(x[i].shape) == 1:
                x[i] = np.expand_dims(x[i], axis=1)

        train_tensor_data = Data.TensorDataset(
            torch.from_numpy(np.concatenate(x, axis=-1)), torch.from_numpy(y))
        if batch_size is None:
            batch_size = 256

        model = self.train()
        loss_func = self.loss_func
        optim = self.optim

        if self.gpus:
            print('parallel running on these gpus:', self.gpus)
            model = torch.nn.DataParallel(model, device_ids=self.gpus)
            batch_size *= len(
                self.gpus)  # input `batch_size` is batch_size per gpu
        else:
            print(self.device)

        train_loader = DataLoader(dataset=train_tensor_data,
                                  shuffle=shuffle,
                                  batch_size=batch_size)

        sample_num = len(train_tensor_data)
        steps_per_epoch = (sample_num - 1) // batch_size + 1

        # configure callbacks
        callbacks = (callbacks or []) + [self.history]  # add history callback
        callbacks = CallbackList(callbacks)
        callbacks.on_train_begin()
        callbacks.set_model(self)
        if not hasattr(callbacks, 'model'):
            callbacks.__setattr__('model', self)
        callbacks.model.stop_training = False

        # Train
        print(
            "Train on {0} samples, validate on {1} samples, {2} steps per epoch"
            .format(len(train_tensor_data), len(val_y), steps_per_epoch))
        for epoch in range(initial_epoch, epochs):
            callbacks.on_epoch_begin(epoch)
            epoch_logs = {}
            start_time = time.time()
            loss_epoch = 0
            total_loss_epoch = 0
            train_result = {}
            try:
                with tqdm(enumerate(train_loader), disable=verbose != 1) as t:
                    for _, (x_train, y_train) in t:
                        x = x_train.to(self.device).float()
                        y = y_train.to(self.device).float()

                        y_pred = model(x).squeeze()

                        optim.zero_grad()
                        loss = loss_func(y_pred, y.squeeze(), reduction='sum')
                        reg_loss = self.get_regularization_loss()

                        total_loss = loss + reg_loss + self.aux_loss

                        loss_epoch += loss.item()
                        total_loss_epoch += total_loss.item()
                        total_loss.backward()
                        optim.step()

                        if verbose > 0:
                            for name, metric_fun in self.metrics.items():
                                if name not in train_result:
                                    train_result[name] = []
                                train_result[name].append(
                                    metric_fun(
                                        y.cpu().data.numpy(),
                                        y_pred.cpu().data.numpy().astype(
                                            "float64")))

            except KeyboardInterrupt:
                t.close()
                raise
            t.close()

            # Add epoch_logs
            epoch_logs["loss"] = total_loss_epoch / sample_num
            for name, result in train_result.items():
                epoch_logs[name] = np.sum(result) / steps_per_epoch

            if do_validation:
                eval_result = self.evaluate(val_x, val_y, batch_size)
                for name, result in eval_result.items():
                    epoch_logs["val_" + name] = result
            # verbose
            if verbose > 0:
                epoch_time = int(time.time() - start_time)
                print('Epoch {0}/{1}'.format(epoch + 1, epochs))

                eval_str = "{0}s - loss: {1: .4f}".format(
                    epoch_time, epoch_logs["loss"])

                for name in self.metrics:
                    eval_str += " - " + name + \
                                ": {0: .4f}".format(epoch_logs[name])

                if do_validation:
                    for name in self.metrics:
                        eval_str += " - " + "val_" + name + \
                                    ": {0: .4f}".format(epoch_logs["val_" + name])
                print(eval_str)
            callbacks.on_epoch_end(epoch, epoch_logs)
            if self.stop_training:
                break

        callbacks.on_train_end()

        return self.history
Пример #3
0
    def fit_dataset(self,
                    dataset,
                    steps_per_epoch=None,
                    batch_size=32,
                    epochs=1,
                    verbose=1,
                    callbacks=None,
                    on_sample=None,
                    on_scores=None):
        """Train the model on the given dataset for a given number of epochs.

        Arguments
        ---------
            dataset: Instance of `BaseDataset` that provides the data
                     to train on.
            steps_per_epoch: int or None, number of gradient updates before
                             considering an epoch has passed. If None it is set
                             to be `len(dataset.train_data) / batch_size`.
            batch_size: int, number of samples per gradient update
            epochs: int, number of times to iterate `steps_per_epoch` times
            verbose: {0, >0}, whether to employ the progress bar Keras
                     callback or not
            callbacks: list of Keras callbacks to be called during training
            on_sample: callable that accepts the sampler, idxs, w, scores
            on_scores: callable that accepts the sampler and scores
        """
        try:
            if len(dataset.train_data) < batch_size:
                raise ValueError(("The model cannot be trained with "
                                  "batch_size > training set"))
        except RuntimeError as e:
            assert "no size" in str(e)

        # Set steps_per_epoch properly
        if steps_per_epoch is None:
            steps_per_epoch = len(dataset.train_data) // batch_size

        # Create the callbacks list
        self.history = History()
        callbacks = [BaseLogger()] + (callbacks or []) + [self.history]
        if verbose > 0:
            callbacks += [ProgbarLogger(count_mode="steps")]
        callbacks = CallbackList(callbacks)
        callbacks.set_model(self.original_model)
        callbacks.set_params({
            "epochs":
            epochs,
            "steps":
            steps_per_epoch,
            "verbose":
            verbose,
            "do_validation":
            len(dataset.test_data) > 0,
            "metrics":
            self.metrics_names + ["val_" + n for n in self.metrics_names]
        })

        # Create the sampler
        sampler = self.sampler(dataset, batch_size, steps_per_epoch, epochs)

        # Start the training loop
        epoch = 0
        self.original_model.stop_training = False
        callbacks.on_train_begin()
        while epoch < epochs:
            callbacks.on_epoch_begin(epoch)
            for step in range(steps_per_epoch):
                batch_logs = {"batch": step, "size": batch_size}
                callbacks.on_batch_begin(step, batch_logs)

                # Importance sampling is done here
                idxs, (x, y), w = sampler.sample(batch_size)
                # Train on the sampled data
                loss, metrics, scores = self.model.train_batch(x, y, w)
                # Update the sampler
                sampler.update(idxs, scores)

                values = map(lambda x: x.mean(), [loss] + metrics)
                for l, o in zip(self.metrics_names, values):
                    batch_logs[l] = o
                callbacks.on_batch_end(step, batch_logs)

                if on_scores is not None and hasattr(self, "_latest_scores"):
                    on_scores(sampler, self._latest_scores)

                if on_sample is not None:
                    on_sample(sampler, self._latest_sample_event["idxs"],
                              self._latest_sample_event["w"],
                              self._latest_sample_event["predicted_scores"])

                if self.original_model.stop_training:
                    break

            # Evaluate now that an epoch passed
            epoch_logs = {}
            if len(dataset.test_data) > 0:
                val = self.model.evaluate(*dataset.test_data[:],
                                          batch_size=batch_size)
                epoch_logs = {
                    "val_" + l: o
                    for l, o in zip(self.metrics_names, val)
                }
            callbacks.on_epoch_end(epoch, epoch_logs)
            if self.original_model.stop_training:
                break
            epoch += 1
        callbacks.on_train_end()

        return self.history
Пример #4
0
    def fit_generator(self,
                      generator,
                      n_steps_per_epoch,
                      n_epochs=1,
                      validation_data=None,
                      n_validation_steps=None):
        """Train the network on batches of data generated from `generator`

        :param generator: a generator yielding batches indefinitely, where each
         batch is a tuple of (inputs, targets)
        :type generator: generator
        :param n_steps_per_epoch: number of batches to train on in one epoch
        :type n_steps_per_epoch: int
        :param n_epochs: number of epochs to train the model
        :type n_epochs: int
        :param validation_data: generator yielding batches to evaluate the loss
         on at the end of each epoch, where each batch is a tuple of (inputs,
         targets)
        :type validation_data: generator
        :param n_validation_steps: number of batches to evaluate on from
         `validation_data`
        :raises RuntimeError: if only one of `validation_data` and
         `n_validation_steps` are passed in
        """

        default_callbacks = self._default_callbacks()
        callbacks = CallbackList(default_callbacks)

        self._assert_compiled()

        invalid_inputs = (
            (validation_data is not None and n_validation_steps is None)
            or (n_validation_steps is not None and validation_data is None))
        if invalid_inputs:
            msg = ('`validation_data` and `n_validation_steps` must both be '
                   'passed, or neither.')
            raise RuntimeError(msg)

        if self.device:
            self.network.to(self.device)

        callbacks.set_params({
            'epochs': n_epochs,
            'metrics': ['loss', 'val_loss'],
            'steps': n_steps_per_epoch,
            'verbose': True
        })
        callbacks.set_model(self)

        callbacks.on_train_begin()
        for idx_epoch in range(n_epochs):
            if self.stop_training:
                break

            epoch_logs = {}
            callbacks.on_epoch_begin(idx_epoch)

            for idx_batch in range(n_steps_per_epoch):
                batch_logs = {'batch': idx_batch, 'size': 1}
                callbacks.on_batch_begin(idx_batch, batch_logs)

                inputs, targets = next(generator)
                loss = self.train_on_batch(inputs, targets)

                batch_logs['loss'] = loss
                callbacks.on_batch_end(idx_batch, batch_logs)

                if self.stop_training:
                    break

            if validation_data:
                val_loss = self.evaluate_generator(validation_data,
                                                   n_validation_steps)
                epoch_logs['val_loss'] = val_loss
            callbacks.on_epoch_end(idx_epoch, epoch_logs)
        callbacks.on_train_end()