Пример #1
0
def experimental_tpu_predict_loop(model, dataset, verbose=0, steps=None):
    """Predict loop for predicting with TPU DistributionStrategy.

  Arguments:
      model: Keras Model instance.
      dataset: Dataset for input data.
      verbose: Integer, Verbosity mode 0 or 1.
      steps: Total number of steps (batches of samples)
          before declaring `_predict_loop` finished.
          Ignored with the default value of `None`.

  Returns:
      Array of predictions (if the model has a single output)
      or list of arrays of predictions
      (if the model has multiple outputs).
  """
    dataset_fully_shaped = (
        distributed_training_utils.is_dataset_shape_fully_defined(dataset))
    padding_handler = None
    if not dataset_fully_shaped:
        # TODO(hongjunchoi): Investigate whether operations from
        # PartialBatchPaddingHandler are unnecessarily pruned out
        # during graph optimization.
        padding_handler = padding_util.PartialBatchPaddingHandler(
            model._feed_output_shapes)
        batched_dataset = input_lib._get_batched_dataset(dataset)
        batch_size, _, prefetch_buffer = input_lib._get_batched_dataset_attributes(
            batched_dataset)
        padding_handler.padded_batch_size = batch_size
        padding_handler.padding_mask = dataset.reduce(
            padding_handler.padding_mask, padding_handler.update_mask)

        dataset = dataset.map(padding_handler.pad_batch)
        dataset = dataset.apply(batching.unbatch())
        # Upon this point, it is guaranteed that the dataset does not
        # have partial batches. Thus, we set `drop_remainder=True` to
        # get static shape information about the elements in the dataset.
        dataset = dataset.batch(batch_size, drop_remainder=True)

        if prefetch_buffer is not None:
            dataset = dataset.prefetch(prefetch_buffer)

    current_strategy = model._distribution_strategy
    iterator = distributed_training_utils.get_iterator(dataset,
                                                       current_strategy)

    scope = distributed_training_utils.distributed_scope(
        strategy=current_strategy, learning_phase=0)
    scope.__enter__()

    def _per_device_predict_function(model):
        model._make_predict_function()
        return (model.predict_function.inputs, model.predict_function.outputs,
                model.predict_function.updates_op,
                model.predict_function.session_kwargs)

    def step_fn(ctx, inputs):
        """Clones the model and calls make_predict_function."""
        if model._compile_distribution:
            distributed_training_utils.clone_model_on_replicas(
                model, current_strategy, ModeKeys.PREDICT, inputs=inputs)
        else:
            distributed_training_utils._build_distributed_network(
                model, current_strategy, ModeKeys.PREDICT, inputs)

        (grouped_inputs, grouped_outputs, grouped_updates, grouped_session_args
         ) = current_strategy.extended.call_for_each_replica(
             _per_device_predict_function,
             args=(model._distributed_model_predict, ))

        (all_inputs, all_outputs, all_updates,
         all_session_args) = distributed_training_utils.unwrap_values(
             current_strategy, grouped_inputs, grouped_outputs,
             grouped_updates, grouped_session_args)

        combined_fn = K.function(all_inputs,
                                 all_outputs,
                                 updates=all_updates,
                                 name='distributed_predict_function',
                                 **all_session_args)

        for label, output in zip(model.output_names, combined_fn.outputs):
            ctx.set_last_step_output(label, output)

        return combined_fn.updates_op

    # Add initial dummy values for outputs.
    initial_loop_values = {}
    batch_dimension = distributed_training_utils.get_batch_dimension(iterator)
    for name, tensor in zip(model.output_names, model.outputs):
        # TODO(priyag): This is a workaround as we do not know the batch dimension
        # of the model's output at this point.
        shape = tensor_shape.TensorShape(tensor.shape.dims)
        shape.dims = [batch_dimension] + shape.dims[1:]
        initial_loop_values[name] = array_ops.zeros(shape, tensor.dtype)

    # TODO(priyag, sourabhbajaj): Support steps_per_run if/when we add outfeed.
    ctx = current_strategy.extended.experimental_run_steps_on_iterator(
        step_fn,
        iterator,
        iterations=1,
        initial_loop_values=initial_loop_values)

    predict_op = ctx.run_op
    output_tensors = ctx.last_step_outputs

    if verbose == 1:
        progbar = Progbar(target=steps)

    if model._compile_distribution:
        distributed_training_utils._copy_weights_to_distributed_model(
            model, ModeKeys.PREDICT)

    distributed_training_utils._reset_metrics(model)

    assert steps is not None
    # Since we do not know how many samples we will see, we cannot pre-allocate
    # the returned Numpy arrays. Instead, we store one array per batch seen
    # and concatenate them upon returning.
    unconcatenated_outs = [[] for _ in model.outputs]
    for step in range(steps):
        _, batch_outs = K.get_session().run([predict_op, output_tensors])
        # TODO(priyag): maybe need to unwrap the outputs first for MirroredStrategy.
        for i, label in enumerate(model.output_names):
            unconcatenated_outs[i].extend(batch_outs[label])
        if verbose >= 1:
            progbar.update(step + 1)

    scope.__exit__(None, None, None)

    if len(unconcatenated_outs) == 1:
        prediction_result = np.concatenate(unconcatenated_outs[0], axis=0)
    else:
        prediction_result = [
            np.concatenate(unconcatenated_outs[i], axis=0)
            for i in range(len(unconcatenated_outs))
        ]

    if padding_handler:
        prediction_result = padding_handler.apply_mask(prediction_result)

    return prediction_result
Пример #2
0
def experimental_tpu_predict_loop(model,
                                  dataset,
                                  verbose=0,
                                  steps=None,
                                  callbacks=None):
    """Predict loop for predicting with TPU tf.distribute.Strategy.

  Arguments:
      model: Keras Model instance.
      dataset: Dataset for input data.
      verbose: Integer, Verbosity mode 0 or 1.
      steps: Total number of steps (batches of samples)
          before declaring `_predict_loop` finished.
          Ignored with the default value of `None`.
      callbacks: List of callbacks to be called during training

  Returns:
      Array of predictions (if the model has a single output)
      or list of arrays of predictions
      (if the model has multiple outputs).
  """
    mode = ModeKeys.PREDICT
    dataset_fully_shaped = dist_utils.is_dataset_shape_fully_defined(dataset)
    padding_handler = None
    if not dataset_fully_shaped:
        # TODO(hongjunchoi): Investigate whether operations from
        # PartialBatchPaddingHandler are unnecessarily pruned out
        # during graph optimization.
        padding_handler = padding_util.PartialBatchPaddingHandler(
            model._feed_output_shapes)
        batch_size, _, prefetch_buffer = input_lib._get_dataset_attributes(
            dataset)
        padding_handler.padded_batch_size = batch_size
        padding_handler.padding_mask = dataset.reduce(
            padding_handler.padding_mask, padding_handler.update_mask)

        dataset = dataset.map(padding_handler.pad_batch)
        dataset = dataset.unbatch()
        # Upon this point, it is guaranteed that the dataset does not
        # have partial batches. Thus, we set `drop_remainder=True` to
        # get static shape information about the elements in the dataset.
        dataset = dataset.batch(batch_size, drop_remainder=True)

        if prefetch_buffer is not None:
            dataset = dataset.prefetch(prefetch_buffer)

    current_strategy = model._distribution_strategy
    iterator = dist_utils.get_iterator(dataset, current_strategy)

    scope = dist_utils.distributed_scope(strategy=current_strategy,
                                         learning_phase=0)
    scope.__enter__()

    def _predict_step_fn(inputs):
        """A fn that returns output of single prediction step."""

        (distribution_strategy_context.get_replica_context().merge_call(
            _build_model, args=(model, mode, inputs)))

        (_, outputs, updates, _) = _per_replica_execution_function(
            dist_utils.get_distributed_model(model, mode), mode)

        with ops.control_dependencies([updates]):
            return [array_ops.identity(out) for out in outputs]

    # TODO(hongjunchoi): When numpy array is passed as an input to `predict()`
    # use numpy arrays directly to avoid cumulating unnecessary input pipeline
    # ops.
    predict_input_data = iterator.get_next()
    per_replica_outputs = current_strategy.run(_predict_step_fn,
                                               args=(predict_input_data, ))
    output_tensors = dist_utils.flatten_per_replica_values(
        current_strategy, per_replica_outputs)

    if verbose >= 1:
        progbar = Progbar(target=steps)

    if model._compile_distribution:
        dist_utils._copy_weights_to_distributed_model(model, mode)

    dist_utils._reset_metrics(model)

    callbacks = cbks.configure_callbacks(callbacks,
                                         model,
                                         do_validation=False,
                                         epochs=1,
                                         steps_per_epoch=steps,
                                         verbose=verbose,
                                         count_mode='steps',
                                         mode=mode)
    callbacks._call_begin_hook(mode)

    # Since we do not know how many samples we will see, we cannot pre-allocate
    # the returned Numpy arrays. Instead, we store one array per batch seen
    # and concatenate them upon returning.
    num_model_outputs = len(model.output_names)
    unconcatenated_outs = [[] for _ in range(num_model_outputs)]
    if steps is not None:
        target_steps = steps
    else:
        raise ValueError(
            'Number of steps could not be inferred from the data, '
            'please pass the steps argument.')

    current_step = 0
    while current_step < target_steps:
        batch_logs = {'batch': current_step, 'size': 1}
        callbacks._call_batch_hook(mode, 'begin', current_step, batch_logs)
        try:
            predict_ops = control_flow_ops.group(output_tensors)
            _, batch_outs = K.batch_get_value([predict_ops, output_tensors])

        except errors.OutOfRangeError:
            warning_msg = (
                'Make sure that your dataset can generate at least '
                '`steps` batches (in this case, {} batches).'.format(steps))

            logging.warning('Your dataset iterator ran out of data; '
                            'interrupting evaluation. ' + warning_msg)
            break

        # TODO(priyag): maybe need to unwrap the outputs first for MirroredStrategy.
        for i in range(num_model_outputs):
            output_start_index = i * current_strategy.num_replicas_in_sync
            output_end_index = (output_start_index +
                                current_strategy.num_replicas_in_sync)
            single_model_output = batch_outs[
                output_start_index:output_end_index]
            unconcatenated_outs[i].extend(single_model_output)

        batch_logs = cbks.make_logs(model, batch_logs, batch_outs, mode)
        callbacks._call_batch_hook(mode, 'end', current_step, batch_logs)
        if verbose == 1:
            progbar.update(current_step + 1)
        current_step += 1

    if verbose >= 1:
        # Progress bar finishes at the end.
        progbar.update(current_step)

    callbacks._call_end_hook(mode)

    scope.__exit__(None, None, None)

    if len(unconcatenated_outs) == 1:
        prediction_result = np.concatenate(unconcatenated_outs[0], axis=0)
    else:
        prediction_result = [
            np.concatenate(out, axis=0) for out in unconcatenated_outs
        ]

    if padding_handler:
        prediction_result = padding_handler.apply_mask(prediction_result)

    return prediction_result
Пример #3
0
def experimental_tpu_predict_loop(model,
                                  dataset,
                                  verbose=0,
                                  steps=None,
                                  callbacks=None):
    """Predict loop for predicting with TPU DistributionStrategy.

  Arguments:
      model: Keras Model instance.
      dataset: Dataset for input data.
      verbose: Integer, Verbosity mode 0 or 1.
      steps: Total number of steps (batches of samples)
          before declaring `_predict_loop` finished.
          Ignored with the default value of `None`.
      callbacks: List of callbacks to be called during training

  Returns:
      Array of predictions (if the model has a single output)
      or list of arrays of predictions
      (if the model has multiple outputs).
  """
    mode = ModeKeys.PREDICT
    steps = training_utils.infer_steps_for_dataset(dataset,
                                                   steps,
                                                   steps_name='steps')
    dataset_fully_shaped = (
        distributed_training_utils.is_dataset_shape_fully_defined(dataset))
    padding_handler = None
    if not dataset_fully_shaped:
        # TODO(hongjunchoi): Investigate whether operations from
        # PartialBatchPaddingHandler are unnecessarily pruned out
        # during graph optimization.
        padding_handler = padding_util.PartialBatchPaddingHandler(
            model._feed_output_shapes)
        batch_size, _, prefetch_buffer = input_lib._get_dataset_attributes(
            dataset)
        padding_handler.padded_batch_size = batch_size
        padding_handler.padding_mask = dataset.reduce(
            padding_handler.padding_mask, padding_handler.update_mask)

        dataset = dataset.map(padding_handler.pad_batch)
        dataset = dataset.apply(batching.unbatch())
        # Upon this point, it is guaranteed that the dataset does not
        # have partial batches. Thus, we set `drop_remainder=True` to
        # get static shape information about the elements in the dataset.
        dataset = dataset.batch(batch_size, drop_remainder=True)

        if prefetch_buffer is not None:
            dataset = dataset.prefetch(prefetch_buffer)

    current_strategy = model._distribution_strategy
    iterator = distributed_training_utils.get_iterator(dataset,
                                                       current_strategy)

    scope = distributed_training_utils.distributed_scope(
        strategy=current_strategy, learning_phase=0)
    scope.__enter__()

    out_labels = model.output_names
    step_fn = _make_step_fn(model, ModeKeys.PREDICT, current_strategy,
                            out_labels)

    # Add initial dummy values for outputs.
    initial_loop_values = {}
    batch_dimension = distributed_training_utils.get_batch_dimension(iterator)
    for name, tensor in zip(model.output_names, model.outputs):
        # TODO(priyag): This is a workaround as we do not know the batch dimension
        # of the model's output at this point.
        shape = tensor_shape.TensorShape(tensor.shape.dims)
        shape.dims = [batch_dimension] + shape.dims[1:]
        initial_loop_values[name] = array_ops.zeros(shape, tensor.dtype)

    # TODO(priyag, sourabhbajaj): Support steps_per_run if/when we add outfeed.
    ctx = current_strategy.extended.experimental_run_steps_on_iterator(
        step_fn,
        iterator,
        iterations=1,
        initial_loop_values=initial_loop_values)

    predict_op = ctx.run_op
    output_tensors = ctx.last_step_outputs

    if verbose == 1:
        progbar = Progbar(target=steps)

    if model._compile_distribution:
        distributed_training_utils._copy_weights_to_distributed_model(
            model, mode)

    distributed_training_utils._reset_metrics(model)

    callbacks = cbks.configure_callbacks(callbacks,
                                         model,
                                         do_validation=False,
                                         epochs=1,
                                         steps_per_epoch=steps,
                                         verbose=verbose,
                                         count_mode='steps',
                                         mode=mode)
    callbacks._call_begin_hook(mode)

    # Since we do not know how many samples we will see, we cannot pre-allocate
    # the returned Numpy arrays. Instead, we store one array per batch seen
    # and concatenate them upon returning.
    unconcatenated_outs = [[] for _ in model.outputs]
    if steps is not None:
        target_steps = steps
    else:
        target_steps = np.inf

    current_step = 0
    while current_step < target_steps:
        batch_logs = {'batch': current_step, 'size': 1}
        callbacks._call_batch_hook(mode, 'begin', current_step, batch_logs)
        try:
            _, batch_outs = K.batch_get_value([predict_op, output_tensors])
        except errors.OutOfRangeError:
            if steps is not None:
                warning_msg = 'Make sure that your dataset can generate at least '
                '`steps` batches (in this case, {} batches).'.format(steps)
            else:
                warning_msg = 'Number of steps ran: {} steps'.format(
                    current_step)

            logging.warning('Your dataset iterator ran out of data; '
                            'interrupting evaluation. ' + warning_msg)
            break

        # TODO(priyag): maybe need to unwrap the outputs first for MirroredStrategy.
        for i, label in enumerate(model.output_names):
            unconcatenated_outs[i].extend(batch_outs[label])
        batch_logs = cbks.make_logs(model, batch_logs, batch_outs, mode)
        callbacks._call_batch_hook(mode, 'end', current_step, batch_logs)
        if verbose >= 1:
            progbar.update(current_step + 1)
        current_step += 1

    callbacks._call_end_hook(mode)

    scope.__exit__(None, None, None)

    if len(unconcatenated_outs) == 1:
        prediction_result = np.concatenate(unconcatenated_outs[0], axis=0)
    else:
        prediction_result = [
            np.concatenate(unconcatenated_outs[i], axis=0)
            for i in range(len(unconcatenated_outs))
        ]

    if padding_handler:
        prediction_result = padding_handler.apply_mask(prediction_result)

    return prediction_result