Пример #1
0
    def call(self, inputs, **kwargs):
        # region Getting parameters for extraction
        if self.rank == 1:
            sizes = (1, 1, *self.kernel_size, 1)
            strides = (1, 1, *self.strides, 1)
            rates = (1, 1, *self.dilation_rate, 1)
        else:
            sizes = (1, *self.kernel_size, 1)
            strides = (1, *self.strides, 1)
            rates = (1, *self.dilation_rate, 1)
        # endregion

        # region Extraction
        if self.rank == 1:
            expanded_inputs = tf.expand_dims(inputs, axis=1)
            outputs = extract_image_patches(expanded_inputs, sizes=sizes, strides=strides, rates=rates, padding=self.padding)
            outputs = tf.squeeze(outputs, axis=1)
        elif self.rank == 2:
            outputs = extract_image_patches(inputs, sizes=sizes, strides=strides, rates=rates, padding=self.padding)
        elif self.rank == 3:
            outputs = extract_volume_patches(inputs, ksizes=sizes, strides=strides, padding=self.padding)
        else:
            raise AttributeError("Invalid rank : self.rank is {}.".format(self.rank))
        # endregion

        if len(outputs.shape) != len(inputs.shape):
            raise ValueError(outputs.shape, inputs.shape, self.name)

        return outputs
  def _VerifyValues(self, image, ksizes, strides, rates, padding, patches):
    """Tests input-output pairs for the ExtractImagePatches op.

    Args:
      image: Input tensor with shape: [batch, in_rows, in_cols, depth].
      ksizes: Patch size specified as: [ksize_rows, ksize_cols].
      strides: Output strides, specified as [stride_rows, stride_cols].
      rates: Atrous rates, specified as [rate_rows, rate_cols].
      padding: Padding type.
      patches: Expected output.
    """
    ksizes = [1] + ksizes + [1]
    strides = [1] + strides + [1]
    rates = [1] + rates + [1]

    with self.test_session():
      image_placeholder = array_ops.placeholder(dtypes.float32)
      with self.test_scope():
        out_tensor = array_ops.extract_image_patches(
            image_placeholder,
            ksizes=ksizes,
            strides=strides,
            rates=rates,
            padding=padding,
            name="im2col")
      feed_dict = {image_placeholder: image}
      self.assertAllClose(patches, out_tensor.eval(feed_dict=feed_dict))
Пример #3
0
  def _compute_new_cov(self, idx=0):
    if idx != 0:
      raise ValueError("ConvInputKroneckerFactor only supports idx = 0")

    with maybe_colocate_with(self._inputs):
      filter_height, filter_width, in_channels, _ = self._filter_shape

      # TODO(b/64144716): there is potential here for a big savings in terms of
      # memory use.
      patches = array_ops.extract_image_patches(
          self._inputs,
          ksizes=[1, filter_height, filter_width, 1],
          strides=self._strides,
          rates=[1, 1, 1, 1],
          padding=self._padding)

      flatten_size = (filter_height * filter_width * in_channels)
      # patches_flat below is the matrix [[A_l]] from the KFC paper (tilde
      # omitted over A for clarity). It has shape M|T| x J|Delta| (eq. 14),
      # where M = minibatch size, |T| = number of spatial locations,
      # |Delta| = number of spatial offsets, and J = number of input maps
      # for convolutional layer l.
      patches_flat = array_ops.reshape(patches, [-1, flatten_size])
      # We append a homogenous coordinate to patches_flat if the layer has
      # bias parameters. This gives us [[A_l]]_H from the paper.
      if self._has_bias:
        patches_flat = append_homog(patches_flat)
      # We call compute_cov without passing in a normalizer. compute_cov uses
      # the first dimension of patches_flat i.e. M|T| as the normalizer by
      # default. Hence we end up computing 1/M|T| * [[A_l]]^T [[A_l]], with
      # shape J|Delta| x J|Delta|. This is related to hat{Omega}_l from
      # the paper but has a different scale here for consistency with
      # ConvOutputKroneckerFactor.
      # (Tilde omitted over A for clarity.)
      return compute_cov(patches_flat)
Пример #4
0
    def _compute_new_cov(self, idx=0):
        if idx != 0:
            raise ValueError("ConvInputKroneckerFactor only supports idx = 0")

        # TODO(jamesmartens): factor this patches stuff out into a utility function
        with _maybe_colocate_with(self._inputs,
                                  self._colocate_cov_ops_with_inputs):
            filter_height, filter_width, in_channels, _ = self._filter_shape

            # TODO(b/64144716): there is potential here for a big savings in terms of
            # memory use.
            patches = array_ops.extract_image_patches(
                self._inputs,
                ksizes=[1, filter_height, filter_width, 1],
                strides=self._strides,
                rates=[1, 1, 1, 1],
                padding=self._padding)

            flatten_size = (filter_height * filter_width * in_channels)
            patches_flat = array_ops.reshape(patches, [-1, flatten_size])

            if self._has_bias:
                patches_flat = _append_homog(patches_flat)

            return _compute_cov(patches_flat)
Пример #5
0
  def _compute_new_cov(self, idx=0):
    with _maybe_colocate_with(self._outputs_grads[idx]):
      if self._patches is None:
        filter_height, filter_width, _, _ = self._filter_shape

        # TODO(b/64144716): there is potential here for a big savings in terms
        # of memory use.
        patches = array_ops.extract_image_patches(
            self._inputs,
            ksizes=[1, filter_height, filter_width, 1],
            strides=self._strides,
            rates=[1, 1, 1, 1],
            padding=self._padding)

        if self._has_bias:
          patches = _append_homog(patches)

        self._patches = patches

      outputs_grad = self._outputs_grads[idx]
      batch_size = array_ops.shape(self._patches)[0]

      new_cov = self._convdiag_sum_of_squares(self._patches, outputs_grad)
      new_cov /= math_ops.cast(batch_size, new_cov.dtype)

      return new_cov
Пример #6
0
  def _compute_new_cov(self, idx=0):
    if idx != 0:
      raise ValueError("ConvInputKroneckerFactor only supports idx = 0")

    with _maybe_colocate_with(self._inputs):
      filter_height, filter_width, in_channels, _ = self._filter_shape

      # TODO(b/64144716): there is potential here for a big savings in terms of
      # memory use.
      patches = array_ops.extract_image_patches(
          self._inputs,
          ksizes=[1, filter_height, filter_width, 1],
          strides=self._strides,
          rates=[1, 1, 1, 1],
          padding=self._padding)

      flatten_size = (filter_height * filter_width * in_channels)
      # patches_flat below is the matrix [[A_l]] from the KFC paper (tilde
      # omitted over A for clarity). It has shape M|T| x J|Delta| (eq. 14),
      # where M = minibatch size, |T| = number of spatial locations,
      # |Delta| = number of spatial offsets, and J = number of input maps
      # for convolutional layer l.
      patches_flat = array_ops.reshape(patches, [-1, flatten_size])
      # We append a homogenous coordinate to patches_flat if the layer has
      # bias parameters. This gives us [[A_l]]_H from the paper.
      if self._has_bias:
        patches_flat = _append_homog(patches_flat)
      # We call _compute_cov without passing in a normalizer. _compute_cov uses
      # the first dimension of patches_flat i.e. M|T| as the normalizer by
      # default. Hence we end up computing 1/M|T| * [[A_l]]^T [[A_l]], with
      # shape J|Delta| x J|Delta|. This is related to hat{Omega}_l from
      # the paper but has a different scale here for consistency with
      # ConvOutputKroneckerFactor.
      # (Tilde omitted over A for clarity.)
      return _compute_cov(patches_flat)
Пример #7
0
 def extract(in_val,
             ksizes=ksizes,
             strides=strides,
             rates=rates,
             padding=padding):
     return array_ops.extract_image_patches(
         in_val, ksizes, strides, rates, padding)
Пример #8
0
    def _VariableShapeGradient(self, test_shape_pattern):
        """Use test_shape_pattern to infer which dimensions are of

    variable size.
    """
        # Testing shape gradient requires graph mode.
        with ops.Graph().as_default():
            # Set graph seed for determinism.
            random_seed = 42
            random_seed_lib.set_random_seed(random_seed)

            with self.test_session():
                for test_case in self._TEST_CASES:
                    np.random.seed(random_seed)
                    in_shape = test_case['in_shape']
                    test_shape = [
                        x if x is None else y
                        for x, y in zip(test_shape_pattern, in_shape)
                    ]
                    in_val = array_ops.placeholder(shape=test_shape,
                                                   dtype=dtypes.float32)

                    feed_dict = {in_val: np.random.random(in_shape)}
                    for padding in ['VALID', 'SAME']:
                        out_val = array_ops.extract_image_patches(
                            in_val, test_case['ksizes'], test_case['strides'],
                            test_case['rates'], padding)
                        out_val_tmp = out_val.eval(feed_dict=feed_dict)
                        out_shape = out_val_tmp.shape

                        err = gradient_checker.compute_gradient_error(
                            in_val, in_shape, out_val, out_shape)
                        self.assertLess(err, 1e-4)
Пример #9
0
    def _VerifyValues(self, image, ksizes, strides, rates, padding, patches):
        """Tests input-output pairs for the ExtractImagePatches op.

    Args:
      image: Input tensor with shape: [batch, in_rows, in_cols, depth].
      ksizes: Patch size specified as: [ksize_rows, ksize_cols].
      strides: Output strides, specified as [stride_rows, stride_cols].
      rates: Atrous rates, specified as [rate_rows, rate_cols].
      padding: Padding type.
      patches: Expected output.
    """
        ksizes = [1] + ksizes + [1]
        strides = [1] + strides + [1]
        rates = [1] + rates + [1]

        with self.session():
            image_placeholder = array_ops.placeholder(dtypes.float32)
            with self.test_scope():
                out_tensor = array_ops.extract_image_patches(image_placeholder,
                                                             ksizes=ksizes,
                                                             strides=strides,
                                                             rates=rates,
                                                             padding=padding,
                                                             name="im2col")
            feed_dict = {image_placeholder: image}
            self.assertAllClose(patches, out_tensor.eval(feed_dict=feed_dict))
Пример #10
0
    def __init__(self,
                 inputs,
                 outputs_grads,
                 filter_shape,
                 strides,
                 padding,
                 has_bias=False,
                 colocate_cov_ops_with_inputs=False):
        """Creates a ConvDiagonalFactor object.

    Args:
      inputs: Tensor of shape [batch_size, height, width, in_channels].
        Input activations to this layer.
      outputs_grads: Tensor of shape [batch_size, height, width, out_channels].
        Per-example gradients to the loss with respect to the layer's output
        preactivations.
      filter_shape: Tuple of 4 ints: (kernel_height, kernel_width, in_channels,
        out_channels). Represents shape of kernel used in this layer.
      strides: The stride size in this layer (1-D Tensor of length 4).
      padding: The padding in this layer (1-D of Tensor length 4).
      has_bias: Python bool. If True, the layer is assumed to have a bias
        parameter in addition to its filter parameter.
      colocate_cov_ops_with_inputs: Whether to colocate cov_update ops with
          their inputs.
    """
        self._filter_shape = filter_shape
        self._has_bias = has_bias
        self._outputs_grads = outputs_grads
        self._colocate_cov_ops_with_inputs = colocate_cov_ops_with_inputs

        self._orig_tensors_name = scope_string_from_name((inputs, ) +
                                                         tuple(outputs_grads))

        # Note that we precompute the required operations on the inputs since the
        # inputs don't change with the 'idx' argument to _compute_new_cov.  (Only
        # the target entry of _outputs_grads changes with idx.)
        with _maybe_colocate_with(inputs, self._colocate_cov_ops_with_inputs):
            filter_height, filter_width, _, _ = self._filter_shape

            # TODO(b/64144716): there is potential here for a big savings in terms of
            # memory use.
            patches = array_ops.extract_image_patches(
                inputs,
                ksizes=[1, filter_height, filter_width, 1],
                strides=strides,
                rates=[1, 1, 1, 1],
                padding=padding)

            if has_bias:
                patches = _append_homog(patches)

            self._patches = patches

        super(ConvDiagonalFactor, self).__init__()
Пример #11
0
  def __init__(self,
               inputs,
               outputs_grads,
               filter_shape,
               strides,
               padding,
               has_bias=False,
               colocate_cov_ops_with_inputs=False):
    """Creates a ConvDiagonalFactor object.

    Args:
      inputs: Tensor of shape [batch_size, height, width, in_channels].
        Input activations to this layer.
      outputs_grads: Tensor of shape [batch_size, height, width, out_channels].
        Per-example gradients to the loss with respect to the layer's output
        preactivations.
      filter_shape: Tuple of 4 ints: (kernel_height, kernel_width, in_channels,
        out_channels). Represents shape of kernel used in this layer.
      strides: The stride size in this layer (1-D Tensor of length 4).
      padding: The padding in this layer (1-D of Tensor length 4).
      has_bias: Python bool. If True, the layer is assumed to have a bias
        parameter in addition to its filter parameter.
      colocate_cov_ops_with_inputs: Whether to colocate cov_update ops with
          their inputs.
    """
    self._filter_shape = filter_shape
    self._has_bias = has_bias
    self._outputs_grads = outputs_grads
    self._colocate_cov_ops_with_inputs = colocate_cov_ops_with_inputs

    self._orig_tensors_name = scope_string_from_name(
        (inputs,) + tuple(outputs_grads))

    # Note that we precompute the required operations on the inputs since the
    # inputs don't change with the 'idx' argument to _compute_new_cov.  (Only
    # the target entry of _outputs_grads changes with idx.)
    with _maybe_colocate_with(inputs, self._colocate_cov_ops_with_inputs):
      filter_height, filter_width, _, _ = self._filter_shape

      # TODO(b/64144716): there is potential here for a big savings in terms of
      # memory use.
      patches = array_ops.extract_image_patches(
          inputs,
          ksizes=[1, filter_height, filter_width, 1],
          strides=strides,
          rates=[1, 1, 1, 1],
          padding=padding)

      if has_bias:
        patches = _append_homog(patches)

      self._patches = patches

    super(ConvDiagonalFactor, self).__init__()
Пример #12
0
def extract_image_patches(image, ksizes, strides, padding, name=None):
    """Extracts image patches for an N-dimensional convolution.

  This function is a compatibility wrapper over tf.extract_image_patches(), as
  ExtractImagePatches isn't yet implemented in XLA.

  Args:
    image: Tensor of shape [batch, in_x, in_y, ..., in_channels]. Input images.
      All dimensions except 'batch' must be defined.
    ksizes: [filter_x, filter_y, ...]. Spatial shape of filter in each
      dimension.
    strides: [stride_x, stride_y, ...]. Spatial stride for filter in each
      dimension.
    padding: str. "VALID" or "SAME".
    name: str or None. name of Op.

  Returns:
    result: [batch, out_x, out_y, ..., filter_x, filter_y, ..., in_channels].
      Contains image patches to which conv kernel would be applied for each
      output location. [out_x, out_y, ...] depends on padding.
  """
    if not utils.on_tpu():
        return array_ops.extract_image_patches(
            image,
            ksizes=([1] + list(ksizes) + [1]),
            strides=([1] + list(strides) + [1]),
            rates=[1, 1, 1, 1],
            padding=padding,
            name=name)

    with tf_ops.name_scope(name, "extract_image_patches",
                           [image, ksizes, strides, padding]):
        batch = image.shape.as_list()[0]
        in_channels = image.shape.as_list()[-1]

        # Map each input feature to a location in the output.
        out_channels = np.prod(ksizes) * in_channels
        filters = linalg_ops.eye(out_channels),
        filters = array_ops.reshape(filters,
                                    ksizes + [in_channels, out_channels])

        result = nn.convolution(image, filters, padding, strides=strides)
        out_spatial = result.shape.as_list()[1:-1]
        result = array_ops.reshape(result, [batch or -1] + out_spatial +
                                   ksizes + [in_channels])

        return result
Пример #13
0
def extract_pointwise_conv2d_patches(inputs,
                                     filter_shape,
                                     name=None,
                                     data_format=None):
    """Extract patches for a 1x1 conv2d.

  Args:
    inputs: 4-D Tensor of shape [batch_size, height, width, in_channels].
    filter_shape: List of 4 ints. Shape of filter to apply with conv2d()
    name: None or str. Name for Op.
    data_format: None or str. Format for data. See 'data_format' in
      tf.nn.conv2d() for details.

  Returns:
    Tensor of shape [batch_size, ..spatial_input_shape..,
    ..spatial_filter_shape.., in_channels]

  Raises:
    ValueError: if inputs is not 4-D.
    ValueError: if filter_shape is not [1, 1, ?, ?]
    ValueError: if data_format is not channels-last.
  """
    if inputs.shape.ndims != 4:
        raise ValueError("inputs must have 4 dims.")
    if len(filter_shape) != 4:
        raise ValueError("filter_shape must have 4 dims.")
    if filter_shape[0] != 1 or filter_shape[1] != 1:
        raise ValueError(
            "filter_shape must have shape 1 along spatial dimensions.")
    if not is_data_format_channel_last(data_format):
        raise ValueError("data_format must be channels last.")
    with ops.name_scope(name, "extract_pointwise_conv2d_patches",
                        [inputs, filter_shape]):
        ksizes = [1, 1, 1, 1]  # Spatial shape is 1x1.
        strides = [1, 1, 1, 1]  # Operate on all pixels.
        rates = [1, 1, 1, 1]  # Dilation has no meaning with spatial shape = 1.
        padding = "VALID"  # Doesn't matter.
        result = array_ops.extract_image_patches(inputs, ksizes, strides,
                                                 rates, padding)

        batch_size, input_height, input_width, in_channels = inputs.shape.as_list(
        )
        filter_height, filter_width, in_channels, _ = filter_shape
        return array_ops.reshape(result, [
            batch_size, input_height, input_width, filter_height, filter_width,
            in_channels
        ])
 def testConstructGradientWithLargeImages(self):
   batch_size = 4
   height = 1024
   width = 1024
   ksize = 5
   images = variable_scope.get_variable('inputs',
                                        (batch_size, height, width, 1))
   patches = array_ops.extract_image_patches(images,
                                             ksizes=[1, ksize, ksize, 1],
                                             strides=[1, 1, 1, 1],
                                             rates=[1, 1, 1, 1],
                                             padding='SAME')
   # Github issue: #20146
   # tf.extract_image_patches() gradient very slow at graph construction time
   gradients = gradients_impl.gradients(patches, images)
   # Won't time out.
   self.assertIsNotNone(gradients)
 def testConstructGradientWithLargeImages(self):
     batch_size = 4
     height = 1024
     width = 1024
     ksize = 5
     images = variable_scope.get_variable('inputs',
                                          (batch_size, height, width, 1))
     patches = array_ops.extract_image_patches(images,
                                               ksizes=[1, ksize, ksize, 1],
                                               strides=[1, 1, 1, 1],
                                               rates=[1, 1, 1, 1],
                                               padding='SAME')
     # Github issue: #20146
     # tf.extract_image_patches() gradient very slow at graph construction time
     gradients = gradients_impl.gradients(patches, images)
     # Won't time out.
     self.assertIsNotNone(gradients)
Пример #16
0
def extract_pointwise_conv2d_patches(inputs,
                                     filter_shape,
                                     name=None,
                                     data_format=None):
  """Extract patches for a 1x1 conv2d.

  Args:
    inputs: 4-D Tensor of shape [batch_size, height, width, in_channels].
    filter_shape: List of 4 ints. Shape of filter to apply with conv2d()
    name: None or str. Name for Op.
    data_format: None or str. Format for data. See 'data_format' in
      tf.nn.conv2d() for details.

  Returns:
    Tensor of shape [batch_size, ..spatial_input_shape..,
    ..spatial_filter_shape.., in_channels]

  Raises:
    ValueError: if inputs is not 4-D.
    ValueError: if filter_shape is not [1, 1, ?, ?]
    ValueError: if data_format is not channels-last.
  """
  if inputs.shape.ndims != 4:
    raise ValueError("inputs must have 4 dims.")
  if len(filter_shape) != 4:
    raise ValueError("filter_shape must have 4 dims.")
  if filter_shape[0] != 1 or filter_shape[1] != 1:
    raise ValueError("filter_shape must have shape 1 along spatial dimensions.")
  if not is_data_format_channel_last(data_format):
    raise ValueError("data_format must be channels last.")
  with ops.name_scope(name, "extract_pointwise_conv2d_patches",
                      [inputs, filter_shape]):
    ksizes = [1, 1, 1, 1]  # Spatial shape is 1x1.
    strides = [1, 1, 1, 1]  # Operate on all pixels.
    rates = [1, 1, 1, 1]  # Dilation has no meaning with spatial shape = 1.
    padding = "VALID"  # Doesn't matter.
    result = array_ops.extract_image_patches(inputs, ksizes, strides, rates,
                                             padding)

    batch_size, input_height, input_width, in_channels = inputs.shape.as_list()
    filter_height, filter_width, in_channels, _ = filter_shape
    return array_ops.reshape(result, [
        batch_size, input_height, input_width, filter_height, filter_width,
        in_channels
    ])
Пример #17
0
  def _compute_new_cov(self, idx=0):
    if idx != 0:
      raise ValueError("ConvInputKroneckerFactor only supports idx = 0")

    # TODO(jamesmartens): factor this patches stuff out into a utility function
    filter_height, filter_width, in_channels, _ = self._filter_shape
    patches = array_ops.extract_image_patches(
        self._inputs,
        ksizes=[1, filter_height, filter_width, 1],
        strides=self._strides,
        rates=[1, 1, 1, 1],
        padding=self._padding)

    flatten_size = (filter_height * filter_width * in_channels)
    patches_flat = array_ops.reshape(patches, [-1, flatten_size])

    if self._has_bias:
      patches_flat = _append_homog(patches_flat)

    return _compute_cov(patches_flat)
Пример #18
0
    def testGradient(self):
        # Set graph seed for determinism.
        random_seed = 42
        random_seed_lib.set_random_seed(random_seed)

        with self.cached_session():
            for test_case in self._TEST_CASES:
                np.random.seed(random_seed)
                in_shape = test_case['in_shape']
                in_val = constant_op.constant(np.random.random(in_shape),
                                              dtype=dtypes.float32)

                for padding in ['VALID', 'SAME']:
                    out_val = array_ops.extract_image_patches(
                        in_val, test_case['ksizes'], test_case['strides'],
                        test_case['rates'], padding)
                    out_shape = out_val.get_shape().as_list()

                    err = gradient_checker.compute_gradient_error(
                        in_val, in_shape, out_val, out_shape)
                    self.assertLess(err, 1e-4)
    def _compute_new_cov(self, idx=0):
        if idx != 0:
            raise ValueError("ConvInputKroneckerFactor only supports idx = 0")

        with _maybe_colocate_with(self._inputs, self._colocate_cov_ops_with_inputs):
            filter_height, filter_width, in_channels, _ = self._filter_shape

            patches = array_ops.extract_image_patches(
                self._inputs,
                ksizes=[1, filter_height, filter_width, 1],
                strides=self._strides,
                rates=[1, 1, 1, 1],
                padding=self._padding)

            flatten_size = (filter_height * filter_width * in_channels)
            patches_flat = array_ops.reshape(patches, [-1, flatten_size])

            if self._has_bias:
                patches_flat = _append_homog(patches_flat)

            return _compute_cov(patches_flat)
Пример #20
0
def avg_pool(value,
             ksize,
             strides,
             padding,
             quantizer,
             data_format="NHWC",
             name=None):
    """Performs the average pooling on the input (quantized version).
  Each entry in `output` is the mean of the corresponding size `ksize`
  window in `value`.
  Args:
    value: A 4-D `Tensor` of shape `[batch, height, width, channels]` and type
      `float32`, `float64`, `qint8`, `quint8`, or `qint32`.
    ksize: A list of ints that has length >= 4.
      The size of the window for each dimension of the input tensor.
    strides: A list of ints that has length >= 4.
      The stride of the sliding window for each dimension of the
      input tensor.
    padding: A string, either `'VALID'` or `'SAME'`. The padding algorithm.
      See the @{tf.nn.convolution$comment here}
    quantizer: The quantizer which is applied after every step.
    data_format: A string. 'NHWC' and 'NCHW' are supported.
    name: Optional name for the operation.
  Returns:
    A `Tensor` with the same type as `value`.  The average pooled output tensor.
  """
    kelems = ksize[1] * ksize[2]
    with ops.name_scope(name, "AvgPool", [value]) as name:
        value = ops.convert_to_tensor(value, name="input")
        output = array_ops.extract_image_patches(value, ksize, strides,
                                                 [1, 1, 1, 1], padding)
        output = array_ops.reshape(output, [
            output.shape.dims[0].value, output.shape.dims[1].value,
            output.shape.dims[2].value, kelems, value.shape.dims[3].value
        ])
        output = math_ops.reduce_sum(output, axis=3)
        output = quantizer.quantize(output)
        output = output / kelems
        output = quantizer.quantize(output)
        return output
  def testGradient(self):
    # Set graph seed for determinism.
    random_seed = 42
    random_seed_lib.set_random_seed(random_seed)

    with self.test_session():
      for test_case in self._TEST_CASES:
        np.random.seed(random_seed)
        in_shape = test_case['in_shape']
        in_val = constant_op.constant(
            np.random.random(in_shape), dtype=dtypes.float32)

        for padding in ['VALID', 'SAME']:
          out_val = array_ops.extract_image_patches(in_val, test_case['ksizes'],
                                                    test_case['strides'],
                                                    test_case['rates'], padding)
          out_shape = out_val.get_shape().as_list()

          err = gradient_checker.compute_gradient_error(in_val, in_shape,
                                                        out_val, out_shape)

          print('extract_image_patches gradient err: %.4e' % err)
          self.assertLess(err, 1e-4)
  def _VerifyValues(self, image, ksizes, strides, rates, padding, patches):
    """Tests input-output pairs for the ExtractImagePatches op.

    Args:
      image: Input tensor with shape: [batch, in_rows, in_cols, depth].
      ksizes: Patch size specified as: [ksize_rows, ksize_cols].
      strides: Output strides, specified as [stride_rows, stride_cols].
      rates: Atrous rates, specified as [rate_rows, rate_cols].
      padding: Padding type.
      patches: Expected output.
    """
    ksizes = [1] + ksizes + [1]
    strides = [1] + strides + [1]
    rates = [1] + rates + [1]

    out_tensor = array_ops.extract_image_patches(
        constant_op.constant(image),
        ksizes=ksizes,
        strides=strides,
        rates=rates,
        padding=padding,
        name="im2col")
    self.assertAllClose(patches, self.evaluate(out_tensor))
Пример #23
0
  def make_covariance_update_op(self, ema_decay):
    with maybe_colocate_with(self._inputs):
      filter_height, filter_width, _, _ = self._filter_shape

      # TODO(b/64144716): there is potential here for a big savings in terms
      # of memory use.
      patches = array_ops.extract_image_patches(
          self._inputs,
          ksizes=[1, filter_height, filter_width, 1],
          strides=self._strides,
          rates=[1, 1, 1, 1],
          padding=self._padding)

      if self._has_bias:
        patches = append_homog(patches)

      self._patches = patches

    op = super(ConvDiagonalFactor, self).make_covariance_update_op(ema_decay)

    self._patches = None

    return op
Пример #24
0
    def _VerifyValues(self, image, ksizes, strides, rates, padding, patches):
        """Tests input-output pairs for the ExtractImagePatches op.

    Args:
      image: Input tensor with shape: [batch, in_rows, in_cols, depth].
      ksizes: Patch size specified as: [ksize_rows, ksize_cols].
      strides: Output strides, specified as [stride_rows, stride_cols].
      rates: Atrous rates, specified as [rate_rows, rate_cols].
      padding: Padding type.
      patches: Expected output.
    """
        ksizes = [1] + ksizes + [1]
        strides = [1] + strides + [1]
        rates = [1] + rates + [1]

        out_tensor = array_ops.extract_image_patches(
            constant_op.constant(image),
            ksizes=ksizes,
            strides=strides,
            rates=rates,
            padding=padding,
            name="im2col")
        self.assertAllClose(patches, self.evaluate(out_tensor))
Пример #25
0
    def make_covariance_update_op(self, ema_decay):
        with maybe_colocate_with(self._inputs):
            filter_height, filter_width, _, _ = self._filter_shape

            # TODO(b/64144716): there is potential here for a big savings in terms
            # of memory use.
            patches = array_ops.extract_image_patches(
                self._inputs,
                ksizes=[1, filter_height, filter_width, 1],
                strides=self._strides,
                rates=[1, 1, 1, 1],
                padding=self._padding)

            if self._has_bias:
                patches = append_homog(patches)

            self._patches = patches

        op = super(ConvDiagonalFactor,
                   self).make_covariance_update_op(ema_decay)

        self._patches = None

        return op
Пример #26
0
 def testConstructGradientWithLargeImages(self, use_tape):
     with test_util.AbstractGradientTape(use_tape=use_tape) as tape:
         batch_size = 4
         # Prevent OOM by setting reasonably large image size (b/171808681).
         height = 512
         width = 512
         ksize = 5
         shape = (batch_size, height, width, 1)
         images = variables.Variable(
             np.random.uniform(size=np.prod(shape)).reshape(shape),
             name='inputs')
         tape.watch(images)
         patches = array_ops.extract_image_patches(
             images,
             ksizes=[1, ksize, ksize, 1],
             strides=[1, 1, 1, 1],
             rates=[1, 1, 1, 1],
             padding='SAME')
         # Github issue: #20146
         # tf.image.extract_image_patches() gradient very slow at graph
         # construction time.
         gradients = tape.gradient(patches, images)
         # Won't time out.
         self.assertIsNotNone(gradients)
Пример #27
0
  def _compute_new_cov(self, idx=0):
    if idx != 0:
      raise ValueError("ConvInputKroneckerFactor only supports idx = 0")

    # TODO(jamesmartens): factor this patches stuff out into a utility function
    with _maybe_colocate_with(self._inputs, self._colocate_cov_ops_with_inputs):
      filter_height, filter_width, in_channels, _ = self._filter_shape

      # TODO(b/64144716): there is potential here for a big savings in terms of
      # memory use.
      patches = array_ops.extract_image_patches(
          self._inputs,
          ksizes=[1, filter_height, filter_width, 1],
          strides=self._strides,
          rates=[1, 1, 1, 1],
          padding=self._padding)

      flatten_size = (filter_height * filter_width * in_channels)
      patches_flat = array_ops.reshape(patches, [-1, flatten_size])

      if self._has_bias:
        patches_flat = _append_homog(patches_flat)

      return _compute_cov(patches_flat)