def testOpWithKeywordArgs(self):
   x = ragged_factory_ops.constant([[3, 1, 4], [], [1, 5]])
   y = ragged_factory_ops.constant([[1, 2, 3], [], [4, 5]])
   self.assertRaggedMapInnerValuesReturns(
       op=math_ops.multiply,
       kwargs=dict(x=x, y=y),
       expected=[[3, 2, 12], [], [4, 25]])
 def testRankMismatch(
     self, params, indices, default_value, error):
   params = ragged_factory_ops.constant(params)
   indices = ragged_factory_ops.constant(indices)
   with self.assertRaises(error):
     _ = ragged_batch_gather_with_default_op.batch_gather_with_default(
         params, indices, default_value)
 def testRaggedTensorSplitsValueMismatchError(self):
   x = ragged_factory_ops.constant([[3, 1, 4], [], [1, 5]])
   y = ragged_factory_ops.constant([[1], [2, 3], [4, 5]])
   self.assertRaisesRegexp(errors.InvalidArgumentError,
                           r'Inputs must have identical ragged splits.*',
                           ragged_functional_ops.map_flat_values, math_ops.add,
                           x, y)
 def testOpWithRaggedTensorListArg(self):
   x = ragged_factory_ops.constant([[1, 2, 3], [], [4, 5]])
   y = ragged_factory_ops.constant([[10, 20, 30], [], [40, 50]])
   self.assertRaggedMapInnerValuesReturns(
       op=math_ops.add_n,
       args=([x, y, x],),
       expected=[[12, 24, 36], [], [48, 60]])
  def testErrors(self):
    if not context.executing_eagerly():
      self.assertRaisesRegexp(ValueError,
                              r'mask\.shape\.ndims must be known statically',
                              ragged_array_ops.boolean_mask, [[1, 2]],
                              array_ops.placeholder(dtypes.bool))

    self.assertRaises(TypeError, ragged_array_ops.boolean_mask, [[1, 2]],
                      [[0, 1]])
    self.assertRaisesRegexp(
        ValueError, 'Tensor conversion requested dtype bool for '
        'RaggedTensor with dtype int32', ragged_array_ops.boolean_mask,
        ragged_factory_ops.constant([[1, 2]]),
        ragged_factory_ops.constant([[0, 0]]))

    self.assertRaisesRegexp(
        ValueError, r'Shapes \(1, 2\) and \(1, 3\) are incompatible',
        ragged_array_ops.boolean_mask, [[1, 2]], [[True, False, True]])

    self.assertRaisesRegexp(errors.InvalidArgumentError,
                            r'Inputs must have identical ragged splits',
                            ragged_array_ops.boolean_mask,
                            ragged_factory_ops.constant([[1, 2]]),
                            ragged_factory_ops.constant([[True, False, True]]))

    self.assertRaisesRegexp(ValueError, 'mask cannot be scalar',
                            ragged_array_ops.boolean_mask, [[1, 2]], True)

    self.assertRaisesRegexp(ValueError, 'mask cannot be scalar',
                            ragged_array_ops.boolean_mask,
                            ragged_factory_ops.constant([[1, 2]]), True)
 def testOpWithRaggedRankThree(self):
   x = ragged_factory_ops.constant([[[3, 1, 4]], [], [[], [1, 5]]])
   y = ragged_factory_ops.constant([[[1, 2, 3]], [], [[], [4, 5]]])
   self.assertRaggedMapInnerValuesReturns(
       op=math_ops.multiply,
       args=(x, y),
       expected=[[[3, 2, 12]], [], [[], [4, 25]]])
 def testInvalidDefaultValueRank(
     self, descr, params, indices, default_value, error, ragged_rank=None,
     indices_ragged_rank=None):
   params = ragged_factory_ops.constant(params, ragged_rank=ragged_rank)
   indices = ragged_factory_ops.constant(
       indices, ragged_rank=indices_ragged_rank)
   with self.assertRaises(error):
     _ = ragged_batch_gather_with_default_op.batch_gather_with_default(
         params, indices, default_value)
 def testOpWithThreeRaggedTensorArgs(self):
   condition = ragged_factory_ops.constant(
       [[True, True, False], [], [True, False]])  # pyformat: disable
   x = ragged_factory_ops.constant([['a', 'b', 'c'], [], ['d', 'e']])
   y = ragged_factory_ops.constant([['A', 'B', 'C'], [], ['D', 'E']])
   self.assertRaggedMapInnerValuesReturns(
       op=array_ops.where,
       args=(condition, x, y),
       expected=[[b'a', b'b', b'C'], [], [b'd', b'E']])
 def testRaggedBatchGatherWithDefault(
     self, descr, params, indices, expected, indices_ragged_rank=None,
     expected_ragged_rank=None, ragged_rank=None, default_value='$NONE^'):
   params = ragged_factory_ops.constant(params, ragged_rank=ragged_rank)
   indices = ragged_factory_ops.constant(
       indices, ragged_rank=indices_ragged_rank or ragged_rank)
   expected = ragged_factory_ops.constant(
       expected, ragged_rank=expected_ragged_rank or ragged_rank)
   result = ragged_batch_gather_with_default_op.batch_gather_with_default(
       params, indices, default_value)
   self.assertRaggedEqual(result, expected)
Пример #10
0
  def testBatchRagged(self):

    def _ragged(i):
      return ragged_tensor.RaggedTensor.from_tensor(i * [[1]])

    dataset = dataset_ops.Dataset.range(10).map(_ragged).batch(5)
    expected_output = [
        ragged_factory_ops.constant([[[0]], [[1]], [[2]], [[3]], [[4]]]),
        ragged_factory_ops.constant([[[5]], [[6]], [[7]], [[8]], [[9]]])
    ]
    self.assertDatasetProduces(dataset, expected_output=expected_output)
Пример #11
0
 def testRaggedSegmentIds(self):
   rt = ragged_factory_ops.constant([
       [[111, 112, 113, 114], [121],],  # row 0
       [],                              # row 1
       [[], [321, 322], [331]],         # row 2
       [[411, 412]]                     # row 3
   ])  # pyformat: disable
   segment_ids = ragged_factory_ops.constant([[1, 2], [], [1, 1, 2], [2]])
   segmented = ragged_math_ops.segment_sum(rt, segment_ids, 3)
   expected = [[],
               [111+321, 112+322, 113, 114],
               [121+331+411, 412]]  # pyformat: disable
   self.assertRaggedEqual(segmented, expected)
  def testGradient(self):
    if context.executing_eagerly():
      return
    # rt1.shape == rt2.shape == [2, (D2), (D3), 2].
    rt1 = ragged_factory_ops.constant(
        [[[[1.0, 2.0], [3.0, 4.0]], [[5.0, 6.0]]]], ragged_rank=2)
    rt2 = ragged_factory_ops.constant(
        [[[[9.0, 8.0], [7.0, 6.0]], [[5.0, 4.0]]]], ragged_rank=2)
    rt = ragged_functional_ops.map_flat_values(math_ops.add, rt1, rt2 * 2.0)
    st = rt.to_sparse()

    g1, g2 = gradients_impl.gradients(st.values,
                                      [rt1.flat_values, rt2.flat_values])
    self.assertRaggedEqual(g1, [[1.0, 1.0], [1.0, 1.0], [1.0, 1.0]])
    self.assertRaggedEqual(g2, [[2.0, 2.0], [2.0, 2.0], [2.0, 2.0]])
Пример #13
0
 def testShapeMismatchError1(self):
   dt = constant_op.constant([1, 2, 3, 4, 5, 6])
   segment_ids = ragged_factory_ops.constant([[1, 2], []])
   self.assertRaisesRegexp(
       ValueError, 'segment_ids.shape must be a prefix of data.shape, '
       'but segment_ids is ragged and data is not.',
       ragged_math_ops.segment_sum, dt, segment_ids, 3)
Пример #14
0
  def testRaggedTile(self,
                     descr,
                     rt_input,
                     multiples,
                     expected,
                     ragged_rank=None):
    rt = ragged_factory_ops.constant(rt_input, ragged_rank)

    expected_shape = [
        None if dim is None else dim * multiple
        for (dim, multiple) in zip(rt.shape.as_list(), multiples)
    ]

    # Test with both const & non-const multiples: ragged_tile has a few code
    # paths that optimize the case where multiples[d] is known to be 1.
    const_multiples = constant_op.constant(multiples, dtypes.int64)
    non_const_multiples = array_ops.placeholder_with_default(
        const_multiples, shape=[len(multiples)])

    for multiples_tensor in (const_multiples, non_const_multiples):
      tiled = ragged_array_ops.tile(rt, multiples_tensor)
      self.assertEqual(tiled.ragged_rank, rt.ragged_rank)
      self.assertEqual(tiled.shape.ndims, rt.shape.ndims)
      if multiples_tensor is const_multiples:
        self.assertEqual(tiled.shape.as_list(), expected_shape)
      with self.test_session():
        self.assertEqual(tiled.eval().tolist(), expected)
 def test4DRaggedTensorWithTwoRaggedDimensions(self):
   rt = ragged_factory_ops.constant(
       [[[[1, 2], [3, 4]], [[5, 6], [7, 8], [9, 10]]],
        [[[11, 12]], [], [[13, 14]]], []],
       ragged_rank=2)
   st = self.evaluate(rt.to_sparse())
   self.assertAllEqual(
       st.indices,
       [
           [0, 0, 0, 0],  # index for value=1
           [0, 0, 0, 1],  # index for value=2
           [0, 0, 1, 0],  # index for value=3
           [0, 0, 1, 1],  # index for value=4
           [0, 1, 0, 0],  # index for value=5
           [0, 1, 0, 1],  # index for value=6
           [0, 1, 1, 0],  # index for value=7
           [0, 1, 1, 1],  # index for value=8
           [0, 1, 2, 0],  # index for value=9
           [0, 1, 2, 1],  # index for value=10
           [1, 0, 0, 0],  # index for value=11
           [1, 0, 0, 1],  # index for value=12
           [1, 2, 0, 0],  # index for value=13
           [1, 2, 0, 1],  # index for value=14
       ])
   self.assertAllEqual(st.values,
                       [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14])
   self.assertAllEqual(st.dense_shape, [3, 3, 3, 2])
Пример #16
0
  def testRaggedMapOnStructure_RaggedOutputs(self):
    batman = ragged_factory_ops.constant([[1, 2, 3], [4], [5, 6, 7]])
    # [[10, 20, 30], [40], [50, 60, 70]]
    robin = ragged_functional_ops.map_flat_values(mo.multiply, batman, 10)

    features = {'batman': batman, 'robin': robin}

    def _increment(f):
      return {
          'batman': f['batman'] + 1,
          'robin': f['robin'] + 1,
      }

    output = ragged_map_ops.map_fn(
        fn=_increment,
        elems=features,
        infer_shape=False,
        dtype={
            'batman':
                ragged_tensor.RaggedTensorType(
                    dtype=dtypes.int32, ragged_rank=1),
            'robin':
                ragged_tensor.RaggedTensorType(
                    dtype=dtypes.int32, ragged_rank=1)
        },
    )

    self.assertRaggedEqual(output['batman'], [[2, 3, 4], [5], [6, 7, 8]])
    self.assertRaggedEqual(output['robin'], [[11, 21, 31], [41], [51, 61, 71]])
 def testDocStringExample(self):
   rt = ragged_factory_ops.constant([[1, 2, 3], [4], [], [5, 6]])
   st = self.evaluate(rt.to_sparse())
   self.assertAllEqual(st.indices,
                       [[0, 0], [0, 1], [0, 2], [1, 0], [3, 0], [3, 1]])
   self.assertAllEqual(st.values, [1, 2, 3, 4, 5, 6])
   self.assertAllEqual(st.dense_shape, [4, 3])
 def test_passing_text(self):
   rt = ragged_factory_ops.constant([[[[[[[['H']], [['e']], [['l']], [['l']],
                                          [['o']]],
                                         [[['W']], [['o']], [['r']], [['l']],
                                          [['d']], [['!']]]]],
                                       [[[[['T']], [['h']], [['i']], [['s']]],
                                         [[['i']], [['s']]],
                                         [[['M']], [['e']], [['h']], [['r']],
                                          [['d']], [['a']], [['d']]],
                                         [[['.']]]]]]]])
   output_list = [[['H', 'e', 'l', 'l', 'o'], ['W', 'o', 'r', 'l', 'd', '!']],
                  [['T', 'h', 'i', 's'], ['i', 's'],
                   ['M', 'e', 'h', 'r', 'd', 'a', 'd'], ['.']]]
   ref = ragged_factory_ops.constant(output_list)
   rt_s = ragged_squeeze_op.squeeze(rt, [0, 1, 3, 6, 7])
   self.assertRaggedEqual(rt_s, ref)
Пример #19
0
  def testSplitV2(self,
                  input,
                  expected,
                  input_is_ragged=False,
                  **kwargs):  # pylint: disable=redefined-builtin
    # Check that we are matching the behavior of Python's str.split:
    self.assertEqual(expected, self._py_split(input, **kwargs))

    # Prepare the input tensor.
    if input_is_ragged:
      input = ragged_factory_ops.constant(input, dtype=dtypes.string)
    else:
      input = constant_op.constant(input, dtype=dtypes.string)

    # Check that the public version (which returns a RaggedTensor) works
    # correctly.
    expected_ragged = ragged_factory_ops.constant(
        expected, ragged_rank=input.shape.ndims)
    actual_ragged_v1 = ragged_string_ops.strings_split_v1(
        input, result_type="RaggedTensor", **kwargs)
    actual_ragged_v1_input_kwarg = ragged_string_ops.strings_split_v1(
        input=input, result_type="RaggedTensor", **kwargs)
    actual_ragged_v1_source_kwarg = ragged_string_ops.strings_split_v1(
        source=input, result_type="RaggedTensor", **kwargs)
    actual_ragged_v2 = ragged_string_ops.string_split_v2(input, **kwargs)
    actual_ragged_v2_input_kwarg = ragged_string_ops.string_split_v2(
        input=input, **kwargs)
    self.assertRaggedEqual(expected_ragged, actual_ragged_v1)
    self.assertRaggedEqual(expected_ragged, actual_ragged_v1_input_kwarg)
    self.assertRaggedEqual(expected_ragged, actual_ragged_v1_source_kwarg)
    self.assertRaggedEqual(expected_ragged, actual_ragged_v2)
    self.assertRaggedEqual(expected_ragged, actual_ragged_v2_input_kwarg)

    # Check that the internal version (which returns a SparseTensor) works
    # correctly.  Note: the internal version oly supports vector inputs.
    if input.shape.ndims == 1:
      expected_sparse = self.evaluate(expected_ragged.to_sparse())
      actual_sparse_v1 = ragged_string_ops.strings_split_v1(
          input, result_type="SparseTensor", **kwargs)
      actual_sparse_v2 = string_ops.string_split_v2(input, **kwargs)
      for actual_sparse in [actual_sparse_v1, actual_sparse_v2]:
        self.assertEqual(expected_sparse.indices.tolist(),
                         self.evaluate(actual_sparse.indices).tolist())
        self.assertEqual(expected_sparse.values.tolist(),
                         self.evaluate(actual_sparse.values).tolist())
        self.assertEqual(expected_sparse.dense_shape.tolist(),
                         self.evaluate(actual_sparse.dense_shape).tolist())
  def testRaggedConst(self,
                      pylist,
                      dtype=None,
                      ragged_rank=None,
                      inner_shape=None,
                      expected_shape=None,
                      expected_dtype=None):
    """Tests that `ragged_const(pylist).eval().tolist() == pylist`.

    Args:
      pylist: The `pylist` argument for `ragged_const()`.
      dtype: The `dtype` argument for `ragged_const()`.  If not None, then also
        test that the resulting ragged tensor has this `dtype`.
      ragged_rank: The `ragged_rank` argument for `ragged_const()`.  If not
        None, then also test that the resulting ragged tensor has this
        `ragged_rank`.
      inner_shape: The `inner_shape` argument for `ragged_const()`.  If not
        None, then also test that the resulting ragged tensor has this
        `inner_shape`.
      expected_shape: The expected shape for the resulting ragged tensor.
      expected_dtype: The expected dtype for the resulting ragged tensor (used
        to test default/inferred types when dtype=None).
    """
    rt = ragged_factory_ops.constant(
        pylist, dtype=dtype, ragged_rank=ragged_rank, inner_shape=inner_shape)

    # If dtype was explicitly specified, check it.
    if dtype is not None:
      self.assertEqual(rt.dtype, dtype)
    if expected_dtype is not None:
      self.assertEqual(rt.dtype, expected_dtype)

    # If ragged_rank was explicitly specified, check it.
    if ragged_rank is not None:
      if isinstance(rt, ragged_tensor.RaggedTensor):
        self.assertEqual(rt.ragged_rank, ragged_rank)
      else:
        self.assertEqual(0, ragged_rank)

    # If inner_shape was explicitly specified, check it.
    if inner_shape is not None:
      if isinstance(rt, ragged_tensor.RaggedTensor):
        self.assertEqual(rt.inner_values.shape.as_list()[1:], list(inner_shape))
      else:
        self.assertEqual(rt.shape.as_list(), list(inner_shape))

    if expected_shape is not None:
      self.assertEqual(tuple(rt.shape.as_list()), expected_shape)

    with self.test_session():
      result = self.evaluate(rt)
      if rt.shape.ndims > 0:
        self.assertEqual(result.tolist(), pylist)
        if expected_shape is not None:
          self.assertEqual(result.shape, expected_shape)
      else:
        self.assertEqual(result, pylist)
        if expected_shape is not None:
          self.assertEqual((), expected_shape)
Пример #21
0
  def testBinaryOpSparseAndRagged(self):
    x = ragged_factory_ops.constant([[1, 2, 3], [4, 5]])
    y = sparse_tensor.SparseTensor([[0, 0], [0, 1], [2, 0]], [1, 2, 3], [3, 2])
    with self.assertRaises((TypeError, ValueError)):
      self.evaluate(math_ops.add(x, y))

    with self.assertRaises((TypeError, ValueError)):
      self.evaluate(math_ops.add_n([x, y]))
Пример #22
0
 def _rt_inputs_to_tensors(self, rt_inputs, ragged_ranks=None):
   if ragged_ranks is None:
     ragged_ranks = [None] * len(rt_inputs)
   return [  # pylint: disable=g-long-ternary
       ragged_factory_ops.constant(rt_input, ragged_rank=rrank)
       if rrank != 0 else constant_op.constant(rt_input)
       for (rt_input, rrank) in zip(rt_inputs, ragged_ranks)
   ]
Пример #23
0
 def testMeanNan(self):
   rt_as_list = [[0, 1, 2, 3], [4], [], [5, 6], [7], [8, 9]]
   expected = (
       np.array([0 + 1 + 2 + 3, 4, 0, 5 + 6, 7, 8 + 9]) / np.array(
           [4, 1, 0, 2, 1, 2]))
   rt_input = ragged_factory_ops.constant(rt_as_list)
   reduced = ragged_math_ops.reduce_mean(rt_input, axis=1)
   self.assertEqualWithNan(self.evaluate(reduced), expected)
 def test2DRaggedTensorWithOneRaggedDimension(self):
   rt = ragged_factory_ops.constant([['a', 'b'], ['c', 'd', 'e'], ['f'], [],
                                     ['g']])
   st = self.evaluate(rt.to_sparse())
   self.assertAllEqual(
       st.indices, [[0, 0], [0, 1], [1, 0], [1, 1], [1, 2], [2, 0], [4, 0]])
   self.assertAllEqual(st.values, b'a b c d e f g'.split())
   self.assertAllEqual(st.dense_shape, [5, 3])
Пример #25
0
  def testRagged(self):

    def _ragged(i):
      return ragged_tensor.RaggedTensor.from_tensor(i * [[1]])

    dataset = dataset_ops.Dataset.range(5).map(_ragged)
    self.assertDatasetProduces(
        dataset,
        expected_output=[ragged_factory_ops.constant([[i]]) for i in range(5)])
Пример #26
0
 def testElementwiseOpUnknownRankError(self):
   if context.executing_eagerly():
     return
   x = ragged_factory_ops.constant([[1, 2], [3]])
   y = ragged_tensor.RaggedTensor.from_row_splits(
       array_ops.placeholder_with_default([1, 2, 3], shape=None), x.row_splits)
   with self.assertRaisesRegexp(ValueError,
                                r'Unable to broadcast: unknown rank'):
     math_ops.add(x, y)
Пример #27
0
  def testRaggedSegment_Float(self, segment_op, combiner, segment_ids):
    rt_as_list = [[0., 1., 2., 3.], [4.], [], [5., 6.], [7.], [8., 9.]]
    rt = ragged_factory_ops.constant(rt_as_list)
    num_segments = max(segment_ids) + 1
    expected = self.expected_value(rt_as_list, segment_ids, num_segments,
                                   combiner)

    segmented = segment_op(rt, segment_ids, num_segments)
    self.assertRaggedAlmostEqual(segmented, expected, places=5)
 def testDocStringExamples(self):
   """Test the examples in apply_op_to_ragged_values.__doc__."""
   rt = ragged_factory_ops.constant([[1, 2, 3], [], [4, 5], [6]])
   v1 = ragged_functional_ops.map_flat_values(array_ops.ones_like, rt)
   v2 = ragged_functional_ops.map_flat_values(math_ops.multiply, rt, rt)
   v3 = ragged_functional_ops.map_flat_values(math_ops.add, rt, 5)
   self.assertRaggedEqual(v1, [[1, 1, 1], [], [1, 1], [1]])
   self.assertRaggedEqual(v2, [[1, 4, 9], [], [16, 25], [36]])
   self.assertRaggedEqual(v3, [[6, 7, 8], [], [9, 10], [11]])
Пример #29
0
  def testRaggedSegment_Int(self, segment_op, combiner, segment_ids):
    rt_as_list = [[0, 1, 2, 3], [4], [], [5, 6], [7], [8, 9]]
    rt = ragged_factory_ops.constant(rt_as_list)
    num_segments = max(segment_ids) + 1
    expected = self.expected_value(rt_as_list, segment_ids, num_segments,
                                   combiner)

    segmented = segment_op(rt, segment_ids, num_segments)
    self.assertRaggedEqual(segmented, expected)
Пример #30
0
  def testSingleTensorInput(self):
    """Tests ragged_concat with a single tensor input.

    Usually, we pass a list of values in for rt_inputs.  However, you can
    also pass in a single value (as with tf.concat), in which case it simply
    returns that tensor.  This test exercises that path.
    """
    rt_inputs = ragged_factory_ops.constant([[1, 2], [3, 4]])
    concatenated = ragged_concat_ops.concat(rt_inputs, 0)
    self.assertRaggedEqual(concatenated, [[1, 2], [3, 4]])
Пример #31
0
    def test_merge_with_ragged_input(self, layer):
        ragged_data = ragged_factory_ops.constant(
            [[1., 1., 1.], [1., 1.], [1., 1., 1., 1.]], ragged_rank=1)
        dense_data = ragged_data.to_tensor()
        input1 = keras.Input(shape=(None, ), ragged=True)
        input2 = keras.Input(shape=(None, ), ragged=True)
        out = keras.layers.Add()([input1, input2])
        model = keras.models.Model(inputs=[input1, input2], outputs=out)
        out_ragged = model.predict([ragged_data, ragged_data], steps=1)
        out_ragged = ragged_tensor.convert_to_tensor_or_ragged_tensor(
            out_ragged).to_tensor()

        input1 = keras.Input(shape=(None, ))
        input2 = keras.Input(shape=(None, ))
        out = keras.layers.Add()([input1, input2])
        model = keras.models.Model(inputs=[input1, input2], outputs=out)
        out_dense = model.predict([dense_data, dense_data], steps=1)

        self.assertAllEqual(out_dense, out_ragged)
Пример #32
0
    def preserveStaticShape(self):
        rt = ragged_factory_ops.constant([[1, 2], [], [3]])
        rt_s = structure.type_spec_from_value(rt)
        rt_after = structure.from_tensor_list(
            rt_s, structure.to_tensor_list(rt_s, rt))
        self.assertEqual(rt_after.row_splits.shape.as_list(),
                         rt.row_splits.shape.as_list())
        self.assertEqual(rt_after.values.shape.as_list(), [None])

        st = sparse_tensor.SparseTensor(indices=[[3, 4]],
                                        values=[-1],
                                        dense_shape=[4, 5])
        st_s = structure.type_spec_from_value(st)
        st_after = structure.from_tensor_list(
            st_s, structure.to_tensor_list(st_s, st))
        self.assertEqual(st_after.indices.shape.as_list(), [None, 2])
        self.assertEqual(st_after.values.shape.as_list(), [None])
        self.assertEqual(st_after.dense_shape.shape.as_list(),
                         st.dense_shape.shape.as_list())
Пример #33
0
    def test_ragged_tensor_model_predict(self):
        # Create a model that accepts a sparse input and runs a "Dense" layer on it.
        model_input = input_layer.Input(shape=(None, ), ragged=True)
        self.assertEqual([None, None], model_input.shape.as_list())

        layers = [Embedding(input_dim=7, output_dim=5)]
        model = get_model_from_layers_with_input(layers,
                                                 model_input=model_input)

        ragged_input = ragged_factory_ops.constant([
            [1, 2, 3, 4, 5],
            [2, 4],
        ])

        shape = model(ragged_input).shape
        self.assertEqual((2, None, 5), self._normalize_shape(shape))

        shape = model.predict(ragged_input, steps=1).shape
        self.assertEqual((2, None, 5), self._normalize_shape(shape))
Пример #34
0
    def testNestedFields(self):
        PossiblyRaggedTensor = typing.Union[ops.Tensor,
                                            ragged_tensor.RaggedTensor]
        ToyFeatures = typing.Mapping[str, PossiblyRaggedTensor]

        class ToyInfo(extension_type.ExtensionType):
            version: str
            toys: typing.Tuple[typing.Tuple[str, ops.Tensor, ToyFeatures], ...]
            boxes: typing.Mapping[str, ops.Tensor]

        authors = [[b'A', b'Aardvark'], [b'Z', b'Zhook']]
        toys = [('car', 1.0, {
            'size': [8, 3, 2],
            'color': [0.3, 0.2, 0.8]
        }), ('book', 3.7, {
            'authors': ragged_factory_ops.constant(authors)
        })]
        boxes = {'green': ['car'], 'blue': ['car', 'book', 'book']}
        toy_info = ToyInfo(version='1.0 alpha', toys=toys, boxes=boxes)

        self.assertEqual(toy_info.version, '1.0 alpha')
        self.assertEqual(toy_info.toys[0][0], 'car')
        self.assertIsInstance(toy_info.toys[0][1], ops.Tensor)
        self.assertAllEqual(toy_info.toys[0][1], 1.0)
        self.assertEqual(set(toy_info.toys[0][2].keys()), {'size', 'color'})
        self.assertIsInstance(toy_info.toys[0][2]['size'], ops.Tensor)
        self.assertAllEqual(toy_info.toys[0][2]['size'], [8, 3, 2])
        self.assertIsInstance(toy_info.toys[1][2]['authors'],
                              ragged_tensor.RaggedTensor)
        self.assertAllEqual(toy_info.toys[1][2]['authors'], authors)
        self.assertAllEqual(toy_info.boxes['green'], [b'car'])
        self.assertAllEqual(toy_info.boxes['blue'], ['car', 'book', 'book'])

        expected_repr = (
            r"ToyInfo\(version='1.0 alpha', toys=\("
            r"\('car', <tf.Tensor[^>]*>, ImmutableDict\("
            r"{'size': <tf.Tensor[^>]*>, 'color': <tf.Tensor[^>]*>}\)\), "
            r"\('book', <tf.Tensor[^>]*>, ImmutableDict\("
            r"{'authors': (<tf.RaggedTensor[^>]*>|tf.RaggedTensor\(.*\))}\)\)\), "
            r'boxes=ImmutableDict\('
            r"{'green': <tf.Tensor[^>]*>, 'blue': <tf.Tensor[^>]*>}\)\)")

        self.assertRegex(repr(toy_info), expected_repr)
  def test_Bidirectional_ragged_input(self, merge_mode):
    if test.is_built_with_rocm():
      # ragged tenors are not supported in ROCM RNN implementation
      self.skipTest('Test not supported on the ROCm platform')
    np.random.seed(100)
    rnn = keras.layers.LSTM
    units = 3
    x = ragged_factory_ops.constant(
        [[[1, 1, 1], [1, 1, 1]], [[1, 1, 1]],
         [[1, 1, 1], [1, 1, 1], [1, 1, 1], [1, 1, 1]],
         [[1, 1, 1], [1, 1, 1], [1, 1, 1]]],
        ragged_rank=1)
    x = math_ops.cast(x, 'float32')

    # pylint: disable=g-long-lambda
    with self.cached_session():
      if merge_mode == 'ave':
        merge_func = lambda y, y_rev: (y + y_rev) / 2
      elif merge_mode == 'concat':
        merge_func = lambda y, y_rev: ragged_concat_ops.concat(
            (y, y_rev), axis=-1)
      elif merge_mode == 'mul':
        merge_func = lambda y, y_rev: (y * y_rev)
        # pylint: enable=g-long-lambda

      inputs = keras.Input(
          shape=(None, 3), batch_size=4, dtype='float32', ragged=True)
      layer = keras.layers.Bidirectional(
          rnn(units, return_sequences=True), merge_mode=merge_mode)
      f_merged = keras.backend.function([inputs], layer(inputs))
      f_forward = keras.backend.function([inputs],
                                         layer.forward_layer(inputs))
      f_backward = keras.backend.function(
          [inputs],
          array_ops.reverse(layer.backward_layer(inputs), axis=[1]))

      y_merged = f_merged(x)
      y_expected = merge_func(
          ragged_tensor.convert_to_tensor_or_ragged_tensor(f_forward(x)),
          ragged_tensor.convert_to_tensor_or_ragged_tensor(f_backward(x)))

      y_merged = ragged_tensor.convert_to_tensor_or_ragged_tensor(y_merged)
      self.assertAllClose(y_merged.flat_values, y_expected.flat_values)
Пример #36
0
  def testReduceVar(self):
    x = np.array([[0, 0, 0], [0, 0, 0]], "float32")
    self.assertAllClose(self.evaluate(math_ops.reduce_variance(x)), 0)
    self.assertAllClose(
        self.evaluate(math_ops.reduce_variance(x, axis=0)), [0, 0, 0])

    x = [[1, 2, 1, 1], [1, 1, 0, 1]]
    with self.assertRaisesRegex(TypeError, "must be either real or complex"):
      math_ops.reduce_variance(x)

    x = [[1., 2., 1., 1.], [1., 1., 0., 1.]]
    self.assertEqual(self.evaluate(math_ops.reduce_variance(x)), 0.25)
    x_np = np.array(x)
    self.assertEqual(np.var(x_np), 0.25)
    self.assertEqual(self.evaluate(math_ops.reduce_variance(x_np)), 0.25)

    x = ragged_factory_ops.constant([[5., 1., 4., 1.], [], [5., 9., 2.], [5.],
                                     []])
    self.assertAllClose(math_ops.reduce_variance(x, axis=0), [0., 16., 1., 0.])
Пример #37
0
    def test_ragged_int_input(self):
        vocab_data = np.array([10, 11, 12, 13], dtype=np.int64)
        input_array = ragged_factory_ops.constant(
            [[10, 11, 13], [13, 12, 10, 42]], dtype=np.int64)
        expected_output = [[2, 3, 5], [5, 4, 2, 1]]

        input_data = keras.Input(shape=(None, ),
                                 dtype=dtypes.int64,
                                 ragged=True)
        layer = get_layer_class()(max_tokens=None,
                                  dtype=dtypes.int64,
                                  num_oov_indices=1,
                                  mask_token=0,
                                  oov_token=-1)
        layer.set_vocabulary(vocab_data)
        int_data = layer(input_data)
        model = keras.Model(inputs=input_data, outputs=int_data)
        output_dataset = model.predict(input_array)
        self.assertAllEqual(expected_output, output_dataset)
Пример #38
0
    def test_ragged_string_input(self):
        vocab_data = ["earth", "wind", "and", "fire"]
        input_array = ragged_factory_ops.constant(
            [["earth", "wind", "fire"], ["fire", "and", "earth", "michigan"]])
        expected_output = [[2, 3, 5], [5, 4, 2, 1]]

        input_data = keras.Input(shape=(None, ),
                                 dtype=dtypes.string,
                                 ragged=True)
        layer = get_layer_class()(max_tokens=None,
                                  num_oov_indices=1,
                                  mask_token="",
                                  oov_token="[OOV]",
                                  dtype=dtypes.string)
        layer.set_vocabulary(vocab_data)
        int_data = layer(input_data)
        model = keras.Model(inputs=input_data, outputs=int_data)
        output_dataset = model.predict(input_array)
        self.assertAllEqual(expected_output, output_dataset)
Пример #39
0
    def testDetokenizeFailsForSparseVocab(self):
        vocab = ["a", "##b", "##c"]
        ids = [0, 10, 20]
        init = lookup_ops.KeyValueTensorInitializer(vocab,
                                                    ids,
                                                    key_dtype=dtypes.string,
                                                    value_dtype=dtypes.int64)
        table = lookup_ops.StaticVocabularyTableV1(
            init, num_oov_buckets=1, lookup_key_dtype=dtypes.string)
        self.evaluate(table.initializer)

        tokenizer = WordpieceTokenizer(table)
        words = ragged_factory_ops.constant([["abb", "abc"], ["abcbc"]])
        subwords_ids = tokenizer.tokenize(words)

        with self.assertRaisesRegex(errors_impl.InvalidArgumentError,
                                    "detokenize.*?dense on the interval"):
            result = tokenizer.detokenize(subwords_ids)
            self.evaluate(result)
Пример #40
0
 def testEmptyDimensions(self):
   test_value = ragged_factory_ops.constant(
       [[[b'I love Flume!', b'Good day. . .'], []], [],
        [[b'I love Zhu!', b'Good night'], [b'A scrub is', b'a guy']]])
   expected_tokens = [[[[b'I', b'love', b'Flume!'],
                        [b'Good', b'day.', b'.', b'.']], []], [],
                      [[[b'I', b'love', b'Zhu!'], [b'Good', b'night']],
                       [[b'A', b'scrub', b'is'], [b'a', b'guy']]]]
   expected_offset_starts = [[[[0, 2, 7], [0, 5, 10, 12]], []], [],
                             [[[0, 2, 7], [0, 5]], [[0, 2, 8], [0, 2]]]]
   expected_offset_limits = [[[[1, 6, 13], [4, 9, 11, 13]], []], [],
                             [[[1, 6, 11], [4, 10]], [[1, 7, 10], [1, 5]]]]
   tokens = self.whitespace_tokenizer.tokenize(test_value)
   self.assertRaggedEqual(tokens, expected_tokens)
   (tokens, starts, limits) = (
       self.whitespace_tokenizer.tokenize_with_offsets(test_value))
   self.assertRaggedEqual(tokens, expected_tokens)
   self.assertRaggedEqual(starts, expected_offset_starts)
   self.assertRaggedEqual(limits, expected_offset_limits)
Пример #41
0
    def test_globalpooling_1d_with_ragged(self):
        ragged_data = ragged_factory_ops.constant(
            [[[1.0, 1.0], [2.0, 2.0], [3.0, 3.0]], [[1.0, 1.0], [2.0, 2.0]]],
            ragged_rank=1)
        dense_data = ragged_data.to_tensor()

        inputs = keras.Input(shape=(None, 2), dtype='float32', ragged=True)
        out = keras.layers.GlobalAveragePooling1D()(inputs)
        model = keras.models.Model(inputs=inputs, outputs=out)
        output_ragged = model.predict(ragged_data, steps=1)

        inputs = keras.Input(shape=(None, 2), dtype='float32')
        masking = keras.layers.Masking(mask_value=0.,
                                       input_shape=(3, 2))(inputs)
        out = keras.layers.GlobalAveragePooling1D()(masking)
        model = keras.models.Model(inputs=inputs, outputs=out)
        output_dense = model.predict(dense_data, steps=1)

        self.assertAllEqual(output_ragged, output_dense)
Пример #42
0
  def test_bert_tokenizer(self,
                          text_inputs,
                          expected,
                          vocab=None,
                          expected_extracted=None,
                          lower_case=True,
                          num_oov=1):
    text_inputs = constant_op.constant(text_inputs)
    if not vocab:
      vocab = _VOCAB
    table = _create_table(vocab, num_oov)
    self.evaluate(table.initializer)
    tokenizer = bert_tokenizer.BertTokenizer(
        table, token_out_type=dtypes.string, lower_case=lower_case)
    results = tokenizer.tokenize(text_inputs)
    self.assertAllEqual(results, expected)

    # Verify that the int ids are the same.
    expected_rt = ragged_factory_ops.constant(expected)
    expected_int = table.lookup(expected_rt.flat_values)
    expected_int_rt = ragged_tensor.RaggedTensor.from_nested_row_splits(
        expected_int, expected_rt.nested_row_splits)
    int_tokenizer = bert_tokenizer.BertTokenizer(
        vocab_lookup_table=table,
        token_out_type=dtypes.int64,
        lower_case=lower_case)
    results_int = int_tokenizer.tokenize(text_inputs)
    self.assertAllEqual(results_int, expected_int_rt)

    # Verify that the offsets can extract the expected tokens
    _, begin, end = tokenizer.tokenize_with_offsets(text_inputs)

    extracted_wordpieces = _ragged_substr(text_inputs, begin, end)
    if expected_extracted:
      self.assertAllEqual(extracted_wordpieces, expected_extracted)
    else:
      # The extracted won't have any wordpieces with '##' prefix. Strip them
      # out.
      stripped_prefix_flat = string_ops.regex_replace(expected_rt.flat_values,
                                                      '##', '')
      stripped_prefix = expected_rt.with_flat_values(stripped_prefix_flat)
      self.assertAllEqual(extracted_wordpieces, stripped_prefix)
Пример #43
0
    def testWordPieceOpAndVerifyOffsets(self,
                                        tokens,
                                        expected_subwords,
                                        vocab,
                                        expected_start=None,
                                        expected_limit=None,
                                        use_unknown_token=True,
                                        unknown_token="[UNK]",
                                        token_out_type=dtypes.string,
                                        max_bytes_per_word=100,
                                        split_unknown_characters=False):
        for horizon in self._FORWARD_COMPATIBILITY_HORIZONS:
            with compat.forward_compatibility_horizon(*horizon):
                tokens_t = ragged_factory_ops.constant(tokens)
                vocab_table = _CreateTable(vocab)
                self.evaluate(vocab_table.initializer)
                tokenizer = WordpieceTokenizer(
                    vocab_table,
                    unknown_token=unknown_token,
                    token_out_type=token_out_type,
                    max_bytes_per_word=max_bytes_per_word,
                    split_unknown_characters=split_unknown_characters,
                )
                subwords_t, begin_t, end_t = tokenizer.tokenize_with_offsets(
                    tokens_t)
                self.assertAllEqual(subwords_t, expected_subwords)

                # Verify the indices by performing the following:
                # - Extract subwords and join them together to form the original tokens.
                # - Then compare the extracted tokens and original tokens.
                begin, end = (self.evaluate((begin_t, end_t)))

                # If expected start/limit offsets were provided, check them explicitly.
                # Otherwise test the offsets by extracting subwords using token offsets
                # from the original 'tokens' input.
                if expected_start is None or expected_limit is None:
                    extracted_tokens = _GetTokensFromWordpieceOffsets(
                        tokens, begin, end)
                    self.assertAllEqual(extracted_tokens, tokens)
                else:
                    self.assertAllEqual(begin, expected_start)
                    self.assertAllEqual(end, expected_limit)
Пример #44
0
 def test_ragged_input(self,
                       x,
                       expected_indices,
                       expected_values,
                       expected_shape,
                       maxlength=None,
                       minlength=None,
                       binary_count=False,
                       weights=None,
                       axis=-1):
     x_ragged = ragged_factory_ops.constant(x)
     y = bincount.sparse_bincount(x_ragged,
                                  weights=weights,
                                  minlength=minlength,
                                  maxlength=maxlength,
                                  binary_count=binary_count,
                                  axis=axis)
     self.assertAllEqual(expected_indices, y.indices)
     self.assertAllEqual(expected_values, y.values)
     self.assertAllEqual(expected_shape, y.dense_shape)
    def testOpWithRaggedRankGreaterThanOne(self):
        # ragged_rank=0
        x0 = [3, 1, 4, 1, 5, 9, 2, 6, 5]
        y0 = [1, 2, 3, 4, 5, 6, 7, 8, 9]
        self.assertAllEqual(math_ops.multiply(x0, y0),
                            [3, 2, 12, 4, 25, 54, 14, 48, 45])

        # ragged_rank=1
        x1 = ragged_factory_ops.constant([[3, 1, 4], [], [1, 5], [9, 2],
                                          [6, 5]])
        y1 = ragged_factory_ops.constant([[1, 2, 3], [], [4, 5], [6, 7],
                                          [8, 9]])
        self.assertRaggedMapInnerValuesReturns(op=math_ops.multiply,
                                               args=(x1, y1),
                                               expected=[[3, 2, 12], [],
                                                         [4, 25], [54, 14],
                                                         [48, 45]])

        # ragged_rank=2
        x2 = ragged_factory_ops.constant([[[3, 1, 4]], [], [[], [1, 5]],
                                          [[9, 2], [6, 5]]])
        y2 = ragged_factory_ops.constant([[[1, 2, 3]], [], [[], [4, 5]],
                                          [[6, 7], [8, 9]]])
        self.assertRaggedMapInnerValuesReturns(
            op=math_ops.multiply,
            args=(x2, y2),
            expected=[
                [[3, 2, 12]],  # row 0
                [],  # row 1
                [[], [4, 25]],  # row 2
                [[54, 14], [48, 45]]  # row 3
            ])  # pyformat: disable

        # ragged_rank=3
        x3 = ragged_factory_ops.constant([[[[3, 1, 4]], []], [], [[[], [1,
                                                                        5]]],
                                          [[[9, 2], [6, 5]]]])
        y3 = ragged_factory_ops.constant([[[[1, 2, 3]], []], [], [[[], [4,
                                                                        5]]],
                                          [[[6, 7], [8, 9]]]])
        self.assertRaggedMapInnerValuesReturns(
            op=math_ops.multiply,
            args=(x3, y3),
            expected=[
                [[[3, 2, 12]], []],  # row 0
                [],  # row 1
                [[[], [4, 25]]],  # row 2
                [[[54, 14], [48, 45]]]  # row 3
            ])  # pyformat: disable
Пример #46
0
    def testSimpleSignature(self):
        int_checker = dispatch.MakeInstanceChecker(int)
        rt_checker = dispatch.MakeInstanceChecker(ragged_tensor.RaggedTensor)
        checker = dispatch.PySignatureChecker([(0, int_checker),
                                               (2, rt_checker)])
        rt = ragged_factory_ops.constant([[1, 2], [3]])

        self.check_signatures(checker, [
            ((1, 2, rt), True),
            ((1, 2, 3), False),
            ((1, 2), False),
            ((), False),
            ((5, 'x', rt, None), True),
            (([5], 'x', rt, None), False),
            ((5, 'x', [rt], None), False),
        ])  # pyformat: disable

        self.assertEqual(
            repr(checker),
            '<PySignatureChecker args[0]:int, args[2]:RaggedTensor>')
Пример #47
0
    def testZip(self):
        x = ragged_factory_ops.constant(
            [[10, 20], [30, 40], [50, 60], [70], [80, 90, 100]], dtypes.int64)
        y = array_ops.expand_dims(mo.range(x.nrows(out_type=dtypes.int64)),
                                  axis=1)

        def _zip(foo):
            y_val, x_val = foo
            bar = array_ops.tile(y_val, array_ops.shape(x_val))
            return array_ops.stack([bar, x_val], axis=1)

        output = ragged_map_ops.map_fn(_zip, (y, x),
                                       dtype=ragged_tensor.RaggedTensorType(
                                           dtype=dtypes.int64, ragged_rank=1),
                                       infer_shape=False)

        self.assertAllEqual(
            output,
            [[[0, 10], [0, 20]], [[1, 30], [1, 40]], [[2, 50], [2, 60]],
             [[3, 70]], [[4, 80], [4, 90], [4, 100]]])
Пример #48
0
    def test_tf_ragged_tensor(self):
        def body(i):
            nonlocal s
            s = s * 10 + i[0]

        def set_state(loop_vars):
            nonlocal s
            s, = loop_vars

        s = 0
        control_flow.for_stmt(ragged_factory_ops.constant([[1], [2, 4], [3]]),
                              extra_test=None,
                              body=body,
                              get_state=lambda: (s, ),
                              set_state=set_state,
                              symbol_names=('s', ),
                              opts={})

        self.assertEqual(s, (123, ))
        self.assertOpCreated('StatelessWhile')
Пример #49
0
 def test3DimMatrixRagged(self):
     test_value = ragged_factory_ops.constant(
         [[['I love Flume!'], ['I don\'t want', 'no scrubs']],
          [['I love Zhu!', 'Good night']]])
     expected_tokens = [[[['I', 'love', 'Flume', '!']],
                         [['I', 'don', '\'', 't', 'want'], ['no',
                                                            'scrubs']]],
                        [[['I', 'love', 'Zhu', '!'], ['Good', 'night']]]]
     expected_offset_starts = [[[[0, 2, 7, 12]], [[0, 2, 5, 6, 8], [0, 3]]],
                               [[[0, 2, 7, 10], [0, 5]]]]
     expected_offset_limits = [[[[1, 6, 12, 13]], [[1, 5, 6, 7, 12], [2,
                                                                      9]]],
                               [[[1, 6, 10, 11], [4, 10]]]]
     tokens = self.tokenizer.tokenize(test_value)
     self.assertRaggedEqual(tokens, expected_tokens)
     (tokens, starts,
      limits) = (self.tokenizer.tokenize_with_offsets(test_value))
     self.assertRaggedEqual(tokens, expected_tokens)
     self.assertRaggedEqual(starts, expected_offset_starts)
     self.assertRaggedEqual(limits, expected_offset_limits)
 def testRaggedOneHot(self,
                      indices,
                      depth,
                      on_value=None,
                      off_value=None,
                      axis=None,
                      dtype=None,
                      expected=None,
                      ragged_rank=None):
   ragged_indices = ragged_factory_ops.constant(
       indices, ragged_rank=ragged_rank)
   result = ragged_array_ops.ragged_one_hot(
       ragged_indices,
       depth,
       on_value=on_value,
       off_value=off_value,
       axis=axis,
       dtype=dtype)
   self.assertAllEqual(result, expected)
   self.assertEqual(result.ragged_rank, ragged_indices.ragged_rank)
Пример #51
0
    def test_hash_ragged_string_input(self):
        layer = hashing.Hashing(num_bins=2)
        inp_data = ragged_factory_ops.constant(
            [['omar', 'stringer', 'marlo', 'wire'],
             ['marlo', 'skywalker', 'wire']],
            dtype=dtypes.string)
        out_data = layer(inp_data)
        self.assertEqual(out_data.values.numpy().max(), 1)
        self.assertEqual(out_data.values.numpy().min(), 0)
        # hash of 'marlo' should be same.
        self.assertAllClose(out_data[0][2], out_data[1][0])
        # hash of 'wire' should be same.
        self.assertAllClose(out_data[0][3], out_data[1][2])

        inp_t = input_layer.Input(shape=(None, ),
                                  ragged=True,
                                  dtype=dtypes.string)
        out_t = layer(inp_t)
        model = training.Model(inputs=inp_t, outputs=out_t)
        self.assertAllClose(out_data, model.predict(inp_data))
 def test_different_ranks(self,
                          input_array,
                          axis,
                          keepdims,
                          truth,
                          truth_shape,
                          separator=''):
     with self.cached_session():
         input_tensor = ragged_factory_ops.constant(input_array)
         output = ragged_string_ops.reduce_join(inputs=input_tensor,
                                                axis=axis,
                                                keepdims=keepdims,
                                                separator=separator)
         output_array = self.evaluate(output)
     self.assertAllEqual(truth, output_array)
     if all(isinstance(s, tensor_shape.Dimension) for s in output.shape):
         output_shape = [dim.value for dim in output.shape]
     else:
         output_shape = output.shape
     self.assertAllEqual(truth_shape, output_shape)
 def testNextSentencePredictionExtractor(self,
                                         sentences,
                                         expected_segment_a,
                                         expected_segment_b,
                                         expected_labels,
                                         random_next_sentence_threshold=0.5,
                                         test_description=""):
     sentences = ragged_factory_ops.constant(sentences)
     # Set seed and rig the shuffle function to a deterministic reverse function
     # instead. This is so that we have consistent and deterministic results.
     random_seed.set_seed(1234)
     nsp = segment_extractor_ops.NextSentencePredictionExtractor(
         shuffle_fn=functools.partial(array_ops.reverse, axis=[-1]),
         random_next_sentence_threshold=random_next_sentence_threshold,
     )
     results = nsp.get_segments(sentences)
     actual_segment_a, actual_segment_b, actual_labels = results
     self.assertAllEqual(expected_segment_a, actual_segment_a)
     self.assertAllEqual(expected_segment_b, actual_segment_b)
     self.assertAllEqual(expected_labels, actual_labels)
Пример #54
0
 def test3DimMatrixWithRagged2ndDim(self, encoding):
     test_value = ragged_factory_ops.constant(
         [[[72, 101, 108, 108, 111], [87, 111, 114, 108, 100]],
          [[102, 105, 120, 101, 100]],
          [[72, 121, 112, 101, 114], [119, 111, 114, 100, 115],
           [99, 117, 98, 101, 46]]], np.int32)
     expected_value = [
         [u"Hello".encode(encoding), u"World".encode(encoding)],
         [u"fixed".encode(encoding)],
         [
             u"Hyper".encode(encoding), u"words".encode(encoding),
             u"cube.".encode(encoding)
         ]
     ]
     unicode_encode_op = ragged_string_ops.unicode_encode(
         test_value, encoding)
     with self.cached_session():
         result = unicode_encode_op.eval()
         self.assertEqual(unicode_encode_op.ragged_rank, 1)
         self.assertAllEqual(result.tolist(), expected_value)
Пример #55
0
 def testGetSelectionMask(self,
                          masking_inputs,
                          expected_selected_items,
                          unselectable_ids=None,
                          axis=1,
                          shuffle_fn="",
                          description=""):
     shuffle_fn = (functools.partial(array_ops.reverse, axis=[-1])
                   if shuffle_fn == "reverse" else array_ops.identity)
     masking_inputs = ragged_factory_ops.constant(masking_inputs)
     item_selector = item_selector_ops.RandomItemSelector(
         max_selections_per_batch=2,
         selection_rate=1,
         shuffle_fn=shuffle_fn,
         unselectable_ids=unselectable_ids,
     )
     selection_mask = item_selector.get_selection_mask(masking_inputs, axis)
     selected_items = ragged_array_ops.boolean_mask(masking_inputs,
                                                    selection_mask)
     self.assertAllEqual(selected_items, expected_selected_items)
 def testErrors(self,
                indices,
                depth,
                on_value=None,
                off_value=None,
                axis=None,
                dtype=None,
                exception=ValueError,
                message=None,
                ragged_rank=None):
   ragged_indices = ragged_factory_ops.constant(
       indices, ragged_rank=ragged_rank)
   with self.assertRaisesRegex(exception, message):
     array_ops.one_hot(
         ragged_indices,
         depth,
         on_value=on_value,
         off_value=off_value,
         axis=axis,
         dtype=dtype)
Пример #57
0
    def testDocStringExamples(self):
        # Sliding window (width=3) across a sequence of tokens
        data = constant_op.constant(
            ['one', 'two', 'three', 'four', 'five', 'six'])
        output = sliding_window_op.sliding_window(data=data, width=3, axis=0)
        self.assertRaggedEqual(
            output, [[b'one', b'two', b'three'], [b'two', b'three', b'four'],
                     [b'three', b'four', b'five'], [b'four', b'five', b'six']])
        self.assertEqual('Shape: %s -> %s' % (data.shape, output.shape),
                         'Shape: (6,) -> (4, 3)')

        # Sliding window (width=2) across the inner dimension of a ragged matrix
        # containing a batch of token sequences
        data = ragged_factory_ops.constant([['Up', 'high', 'in', 'the', 'air'],
                                            ['Down', 'under', 'water'],
                                            ['Away', 'to', 'outer', 'space']])
        output = sliding_window_op.sliding_window(data, width=2, axis=-1)
        self.assertRaggedEqual(
            output,
            [[[b'Up', b'high'], [b'high', b'in'], [b'in', b'the'],
              [b'the', b'air']], [[b'Down', b'under'], [b'under', b'water']],
             [[b'Away', b'to'], [b'to', b'outer'], [b'outer', b'space']]
             ])  # pyformat: disable
        self.assertEqual(
            'Shape: %s -> %s' % (data.shape.as_list(), output.shape.as_list()),
            'Shape: [3, None] -> [3, None, 2]')

        # Sliding window across the second dimension of a 3-D tensor containing
        # batches of sequences of embedding vectors:
        data = constant_op.constant([[[1, 1, 1], [2, 2, 1], [3, 3, 1],
                                      [4, 4, 1], [5, 5, 1]],
                                     [[1, 1, 2], [2, 2, 2], [3, 3, 2],
                                      [4, 4, 2], [5, 5, 2]]])
        output = sliding_window_op.sliding_window(data=data, width=2, axis=1)
        self.assertRaggedEqual(
            output, [[[[1, 1, 1], [2, 2, 1]], [[2, 2, 1], [3, 3, 1]],
                      [[3, 3, 1], [4, 4, 1]], [[4, 4, 1], [5, 5, 1]]],
                     [[[1, 1, 2], [2, 2, 2]], [[2, 2, 2], [3, 3, 2]],
                      [[3, 3, 2], [4, 4, 2]], [[4, 4, 2], [5, 5, 2]]]])
        self.assertEqual('Shape: %s -> %s' % (data.shape, output.shape),
                         'Shape: (2, 5, 3) -> (2, 4, 2, 3)')
Пример #58
0
    def SKIP_test_ragged_input_with_padding(self):
        input_data = get_input_dataset(
            ragged_factory_ops.constant([[[1, 2, 3, 4, 5]], [[2], [3]]]))
        expected_output = np.array([[[1., 2., 3., 4., 5.],
                                     [-1., -1., -1., -1., -1.]],
                                    [[2., -1., -1., -1., -1.],
                                     [3., -1., -1., -1., -1.]]])

        layers = [ToDense(pad_value=-1), Final()]
        model = testing_utils.get_model_from_layers(layers,
                                                    input_shape=(None, None),
                                                    input_ragged=True,
                                                    input_dtype=dtypes.int32)
        model.compile(optimizer="sgd",
                      loss="mse",
                      metrics=["accuracy"],
                      run_eagerly=testing_utils.should_run_eagerly(),
                      experimental_run_tf_function=testing_utils.
                      should_run_tf_function())
        output = model.predict(input_data)
        self.assertAllEqual(output, expected_output)
Пример #59
0
 def testRaggedStack(self,
                     descr,
                     rt_inputs,
                     axis,
                     expected,
                     ragged_ranks=None,
                     expected_ragged_rank=None,
                     expected_shape=None):
   if ragged_ranks is None:
     ragged_ranks = [None] * len(rt_inputs)
   rt_inputs = [
       ragged_factory_ops.constant(rt_input, ragged_rank=rrank)  # pylint: disable=g-long-ternary
       if rrank != 0 else constant_op.constant(rt_input)
       for (rt_input, rrank) in zip(rt_inputs, ragged_ranks)
   ]
   stacked = ragged_concat_ops.stack(rt_inputs, axis)
   if expected_ragged_rank is not None:
     self.assertEqual(stacked.ragged_rank, expected_ragged_rank)
   if expected_shape is not None:
     self.assertEqual(stacked.shape.as_list(), expected_shape)
   self.assertAllEqual(stacked, expected)
Пример #60
0
  def testRaggedRankTwo(self):
    rt = ragged_factory_ops.constant([
        [[111, 112, 113, 114], [121],],  # row 0
        [],                              # row 1
        [[], [321, 322], [331]],         # row 2
        [[411, 412]]                     # row 3
    ])  # pyformat: disable
    segment_ids1 = [0, 2, 2, 2]
    segmented1 = ragged_math_ops.segment_sum(rt, segment_ids1, 3)
    expected1 = [[[111, 112, 113, 114], [121]],     # row 0
                 [],                                # row 1
                 [[411, 412], [321, 322], [331]]    # row 2
                ]  # pyformat: disable
    self.assertAllEqual(segmented1, expected1)

    segment_ids2 = [1, 2, 1, 1]
    segmented2 = ragged_math_ops.segment_sum(rt, segment_ids2, 3)
    expected2 = [[],
                 [[111+411, 112+412, 113, 114], [121+321, 322], [331]],
                 []]  # pyformat: disable
    self.assertAllEqual(segmented2, expected2)