Пример #1
0
    def test_cpu_multiple_creation(self):
        feature_config = (tpu_embedding_v2_utils.FeatureConfig(
            table=self.table_user, name='friends', max_sequence_length=2), )
        optimizer = tpu_embedding_v2_utils.SGD(learning_rate=0.1)
        embedding_one = tpu_embedding_for_serving.TPUEmbeddingForServing(
            feature_config=feature_config, optimizer=optimizer)
        embedding_two = tpu_embedding_for_serving.TPUEmbeddingForServing(
            feature_config=feature_config, optimizer=optimizer)

        # Both of the tpu embedding tables should be able to build on cpu.
        embedding_one.build()
        embedding_two.build()
Пример #2
0
    def test_cpu_high_dimensional_lookup_ragged(self):
        feature_config = (tpu_embedding_v2_utils.FeatureConfig(
            table=self.table_user, name='friends', output_shape=[2, 2]), )
        optimizer = tpu_embedding_v2_utils.SGD(learning_rate=0.1)
        mid_level = tpu_embedding_for_serving.TPUEmbeddingForServing(
            feature_config=feature_config, optimizer=optimizer)
        features = self._get_ragged_tensors()[2:3]
        result = mid_level(features, weights=None)

        self.assertAllClose(result[0].shape, (2, 2, 2))
Пример #3
0
 def test_cpu_no_optimizer(self):
     feature_config = (tpu_embedding_v2_utils.FeatureConfig(
         table=self.table_video, name='watched', max_sequence_length=2), )
     mid_level = tpu_embedding_for_serving.TPUEmbeddingForServing(
         feature_config=feature_config, optimizer=None)
     # Build the layer manually to create the variables. Normally calling enqueue
     # would do this.
     mid_level.build()
     self.assertEqual(
         list(mid_level._variables[self.table_video.name].keys()),
         ['parameters'])
Пример #4
0
 def test_cpu_high_dimensional_sequence_lookup_ragged(self):
     # Prod of output shape is a factor of the data batch size.
     # The divide result will be the sequence length.
     feature_config = (tpu_embedding_v2_utils.FeatureConfig(
         table=self.table_user, name='friends', output_shape=[2, 4]), )
     optimizer = tpu_embedding_v2_utils.SGD(learning_rate=0.1)
     mid_level = tpu_embedding_for_serving.TPUEmbeddingForServing(
         feature_config=feature_config, optimizer=optimizer)
     features = self._get_ragged_tensors()[2:3]
     result = mid_level(features, weights=None)
     self.assertAllClose(result[0].shape, (2, 4, 2))
Пример #5
0
 def test_cpu_high_dimensional_invalid_lookup_ragged(self):
     # Prod of output shape is not a factor of the data batch size.
     # An error will be raised in this case.
     feature_config = (tpu_embedding_v2_utils.FeatureConfig(
         table=self.table_user, name='friends', output_shape=[3]), )
     optimizer = tpu_embedding_v2_utils.SGD(learning_rate=0.1)
     mid_level = tpu_embedding_for_serving.TPUEmbeddingForServing(
         feature_config=feature_config, optimizer=optimizer)
     features = self._get_ragged_tensors()[2:3]
     with self.assertRaisesRegex(
             ValueError,
             'Output shape set in the FeatureConfig should be the factor'):
         mid_level(features, weights=None)
Пример #6
0
    def test_cpu_sequence_lookup_sparse(self):
        feature_config = (tpu_embedding_v2_utils.FeatureConfig(
            table=self.table_user, name='friends', max_sequence_length=2), )
        optimizer = tpu_embedding_v2_utils.SGD(learning_rate=0.1)
        mid_level = tpu_embedding_for_serving.TPUEmbeddingForServing(
            feature_config=feature_config, optimizer=optimizer)
        features = self._get_sparse_tensors()[2:3]
        result = mid_level(features, weights=None)

        golden = self._numpy_sequence_lookup(
            mid_level.embedding_tables[self.table_user].numpy(),
            features[0].indices.numpy(), features[0].values.numpy(),
            self.data_batch_size, feature_config[0].max_sequence_length,
            self.table_user.dim)

        self.assertAllClose(result[0], golden)
  def test_check_checkpoint_variable_names_are_same_on_cpu_and_tpu(
      self, optimizer):
    # Reinitialize the TPU so that we can re-initialize the embeddings with the
    # given optimizer.
    if optimizer != tpu_embedding_v2_utils.SGD:
      self.skip_if_oss()
    strategy = self._get_strategy()

    with strategy.scope():
      first_mid_level_contents = np.ones((4, 4))
      first_mid_level_optimizer = optimizer(learning_rate=0.1)
      initializer = init_ops_v2.Constant(first_mid_level_contents)

      table = tpu_embedding_v2_utils.TableConfig(
          vocabulary_size=4,
          dim=4,
          initializer=initializer,
          combiner='sum',
          name='table')
      feature_config = (tpu_embedding_v2_utils.FeatureConfig(
          table=table, name='feature'),)

      first_mid_level = tpu_embedding_v1.TPUEmbeddingV0(
          feature_config, first_mid_level_optimizer)

      first_mid_level.build()

    cpu_mid_level_optimizer = optimizer(learning_rate=0.1)
    cpu_mid_level = tpu_embedding_for_serving.TPUEmbeddingForServing(
        feature_config, cpu_mid_level_optimizer)
    cpu_mid_level.build()

    tpu_checkpoint = util.Checkpoint(model=first_mid_level)
    tpu_checkpoint.save(self._get_tmpdir('save-tpu', 'save'))
    tpu_variables = checkpoint_utils.list_variables(
        self._get_tmpdir('save-tpu'))

    cpu_checkpoint = util.Checkpoint(model=cpu_mid_level)
    cpu_checkpoint.save(self._get_tmpdir('save-cpu', 'save'))
    cpu_variables = checkpoint_utils.list_variables(
        self._get_tmpdir('save-cpu'))

    self.assertAllEqual(tpu_variables, cpu_variables)
  def test_model_export_cpu(self):
    strategy = self._get_strategy()

    with strategy.scope():
      first_mid_level_contents = np.ones((4, 4))
      first_mid_level_optimizer = tpu_embedding_v2_utils.SGD(learning_rate=0.1)
      initializer = init_ops_v2.Constant(first_mid_level_contents)

      table = tpu_embedding_v2_utils.TableConfig(
          vocabulary_size=4,
          dim=4,
          initializer=initializer,
          combiner='sum',
          name='table')
      feature_config = (tpu_embedding_v2_utils.FeatureConfig(
          table=table, name='feature'),)

      first_mid_level = tpu_embedding_v1.TPUEmbeddingV0(
          feature_config, first_mid_level_optimizer)

      first_mid_level.build()

    cpu_mid_level_optimizer = tpu_embedding_v2_utils.SGD(learning_rate=0.1)
    cpu_mid_level = tpu_embedding_for_serving.TPUEmbeddingForServing(
        feature_config, cpu_mid_level_optimizer)

    cpu_mid_level.build()

    tpu_checkpoint = util.Checkpoint(model=first_mid_level)
    tpu_checkpoint.save(self._get_tmpdir('export_cpu', 'save'))

    # We restore the checkpoint of our tpu mid level onto our cpu mid level.
    cpu_checkpoint = util.Checkpoint(model=cpu_mid_level)
    cpu_checkpoint.restore(self._get_tmpdir('export_cpu', 'save-1'))

    @def_function.function
    def serve_tensors(features):
      features = tpu_embedding_for_serving.cpu_embedding_lookup(
          features, None, cpu_mid_level.embedding_tables,
          cpu_mid_level._feature_config)
      return features[0]

    signatures = {
        'serving_default':
            serve_tensors.get_concrete_function((tensor_spec.TensorSpec(
                shape=(2,), dtype=dtypes.int32, name='feature'),))
    }
    save.save(
        cpu_mid_level,
        export_dir=self._get_tmpdir('export_cpu', 'exported_model'),
        signatures=signatures)

    imported = load.load(self._get_tmpdir('export_cpu', 'exported_model'))
    predict_fn = imported.signatures['serving_default']

    input_feature_value = np.array([1, 0])
    input_batch = (constant_op.constant(
        input_feature_value, dtype=dtypes.int32),)
    prediction = predict_fn(*input_batch)['output_0']
    self.assertAllClose(prediction.numpy(),
                        first_mid_level_contents[input_feature_value])
Пример #9
0
 def _create_mid_level(self):
     optimizer = tpu_embedding_v2_utils.SGD(learning_rate=0.1)
     return tpu_embedding_for_serving.TPUEmbeddingForServing(
         feature_config=self.feature_config, optimizer=optimizer)