def before_run(self, run_context): self._request_summary = (self._next_step is None or self._timer.should_trigger_for_step( self._next_step)) requests = {} #{"global_step": self._global_step_tensor} opts = tf.RunOptions(trace_level=tf.RunOptions.FULL_TRACE) return SessionRunArgs(requests, options=opts)
def before_run(self, _): # cprnt(train="BEFORE Comet Histograms") return SessionRunArgs( fetches={ "global_step": tf.get_collection(tf.GraphKeys.GLOBAL_STEP), "trainables": self.trainables, })
def before_run(self, _): # cprnt(**{self.mode: "BEFORE Console Logger"}) fetches = { "global_step": tf.get_collection(tf.GraphKeys.GLOBAL_STEP), **(self.tensors if self.mode == ModeKeys.TRAIN else {}), } return SessionRunArgs(fetches=fetches)
def before_run(self, _): return SessionRunArgs( # noqa fetches={ "global_step": tf.get_collection(tf.GraphKeys.GLOBAL_STEP), "attention": tf.get_collection("ATTENTION"), "targets": self.targets, "labels": self.labels, "predictions": self.predictions, } )
def before_run(self, _): # cprnt(train="BEFORE Summary Saving ({})".format(self._global_step)) this_step = self._global_step + 1 fetches = { "global_step": tf.get_collection(tf.GraphKeys.GLOBAL_STEP), **({ "summary": self.summary_op } if this_step % self.summary_freq == 0 or this_step == 1 else {}), } return SessionRunArgs(fetches=fetches)
def before_run(self, _): # cprnt(**{self.mode: "BEFORE Metadata"}) this_step = self.counter + 1 log_metadata = (self.mode == ModeKeys.EVAL and self.freq == "once" if isinstance(self.freq, str) else this_step == 1 or this_step % self.freq == 0) return SessionRunArgs( fetches={ "global_step": tf.get_collection(tf.GraphKeys.GLOBAL_STEP) }, options=( tf.RunOptions(trace_level=tf.RunOptions.FULL_TRACE # pylint: disable=E1101 ) if log_metadata else None), )
def before_run(self, run_context): return SessionRunArgs(self._global_step_tensor)
def before_run(self, _): # cprnt(**{self.mode: "BEFORE Comet Progress"}) return SessionRunArgs( fetches={ "global_step": tf.get_collection(tf.GraphKeys.GLOBAL_STEP) })