Пример #1
0
def ModelShare():
    tweet_a = Input(shape=(280, 256))
    tweet_b = Input(shape=(280, 256))

    # This layer can take as input a matrix
    # and will return a vector of size 64
    shared_lstm = LSTM(64, return_sequences=True, name='lstm')

    # When we reuse the same layer instance
    # multiple times, the weights of the layer
    # are also being reused
    # (it is effectively *the same* layer)
    encoded_a = shared_lstm(tweet_a)
    encoded_b = shared_lstm(tweet_b)

    # We can then concatenate the two vectors:
    merged_vector = concatenate([encoded_a, encoded_b], axis=-1)

    # And add a logistic regression on top
    predictions = Dense(1, activation='sigmoid')(merged_vector)

    # We define a trainable model linking the
    # tweet inputs to the predictions
    model = Model(inputs=[tweet_a, tweet_b], outputs=predictions)

    model.compile(optimizer='rmsprop',
                  loss='binary_crossentropy',
                  metrics=['accuracy'])
    return model
Пример #2
0
    def build(self):
        inputs = Input(shape=self.input_shape, name='encoder_input')
        x = Dense(self.intermediate_dim,
                  activation=self.activation_fct)(inputs)
        z_mean = Dense(self.latent_dim, name='z_mean')(x)
        z_log_var = Dense(self.latent_dim, name='z_log_var')(x)

        # use reparameterization trick to push the sampling out as input
        # note that "output_shape" isn't necessary with the TensorFlow backend
        z = Lambda(sampling, output_shape=(self.latent_dim, ),
                   name='z')([z_mean, z_log_var])

        # instantiate encoder model
        encoder = Model(inputs, [z_mean, z_log_var, z], name='encoder')

        # build decoder model
        latent_inputs = Input(shape=(self.latent_dim, ), name='z_sampling')
        x = Dense(self.intermediate_dim,
                  activation=self.activation_fct)(latent_inputs)
        outputs = Dense(self.original_dim, activation='sigmoid')(x)

        # instantiate decoder model
        decoder = Model(latent_inputs, outputs, name='decoder')

        # instantiate VAE model
        outputs = decoder(encoder(inputs)[2])
        vae = Model(inputs, outputs, name='vae_mlp')

        # VAE Loss = mse_loss or xent_loss + kl_loss
        reconstruction_loss = mse(inputs, outputs)

        reconstruction_loss *= self.original_dim
        kl_loss = 1 + z_log_var - K.square(z_mean) - K.exp(z_log_var)
        kl_loss = K.sum(kl_loss, axis=-1)
        kl_loss *= -0.5
        vae_loss = K.mean(reconstruction_loss + kl_loss)
        vae.add_loss(vae_loss)

        vae.compile(optimizer=self.optimizer,
                    loss=self.loss,
                    metrics=['accuracy'])

        x_train_split, x_valid_split = train_test_split(
            self.x_train,
            test_size=self.train_test_split,
            random_state=self.seed)

        vae.fit(x_train_split,
                x_train_split,
                batch_size=self.batch_size,
                epochs=self.epochs,
                verbose=self.verbosity,
                shuffle=True,
                validation_data=(x_valid_split, x_valid_split))

        x_train_pred = vae.predict(self.x_train)
        train_mse = np.mean(np.power(self.x_train - x_train_pred, 2), axis=1)
        self.threshold = np.quantile(train_mse, 0.9)
        self.vae = vae
Пример #3
0
    def modelMasking(self, code_layer_type, input_dim, code_dim):

        self.code_layer_type = code_layer_type
        assert len(code_dim) > 0

        if self.code_layer_type == 'lstm':
            assert len(input_dim) == 2
            input_data = Input(shape=(input_dim[0], input_dim[1]))
            mask = Masking(mask_value=0.)(input_data)
            if len(code_dim) == 1:
                encoded = LSTM(code_dim[0])(mask)
                decoded = RepeatVector(input_dim[0])(encoded)
            elif len(code_dim) > 1:
                encoded = mask
                for i, units in enumerate(code_dim):
                    if i == len(code_dim) - 1:
                        encoded = LSTM(units)(encoded)
                        continue
                    encoded = LSTM(units, return_sequences=True)(encoded)

                for i, units in enumerate(reversed(code_dim)):
                    if i == 1:
                        decoded = LSTM(units, return_sequences=True)(
                            RepeatVector(input_dim[0])(encoded))
                    elif i > 1:
                        decoded = LSTM(units, return_sequences=True)(decoded)
            else:
                raise ValueError("The codDim must be over 0.")

            decoded = LSTM(input_dim[-1], return_sequences=True)(decoded)
            self.model = Model(input_data, decoded)

        elif self.code_layer_type == 'cov':
            pass
        elif self.code_layer_type == 'dense':
            assert len(input_dim) == 1
            input_data = Input(shape=(input_dim[0], ))
            # encoded = input_data
            # for i, units in enumerate(codeDim):
            # 	encoded = Dense(units, activation='relu')(encoded)
            # decoded = Dense(inputDim[-1], activation='sigmoid')(encoded)
            # self.model = Model(input_data, decoded)
            encoder = Dense(
                code_dim[0],
                activation="tanh",
                activity_regularizer=regularizers.l1(10e-5))(input_data)
            encoder = Dense(int(code_dim[0] / 2), activation="relu")(encoder)
            decoder = Dense(int(code_dim[0] / 2), activation='tanh')(encoder)
            decoder = Dense(input_dim[0], activation='relu')(decoder)
            self.model = Model(input_data, decoder)
Пример #4
0
    def __init__(self, latent_dim=49):
        config = ConfigProto()
        config.gpu_options.allow_growth = True
        session = InteractiveSession(config=config)

        # ENCODER
        inp = Input((896, 896, 1))
        e = Conv2D(32, (10, 10), activation='relu')(inp)
        e = MaxPooling2D((10, 10))(e)
        e = Conv2D(64, (6, 6), activation='relu')(e)
        e = MaxPooling2D((10, 10))(e)
        e = Conv2D(64, (3, 3), activation='relu')(e)
        l = Flatten()(e)
        l = Dense(49, activation='softmax')(l)
        # DECODER
        d = Reshape((7, 7, 1))(l)
        d = Conv2DTranspose(64, (3, 3),
                            strides=8,
                            activation='relu',
                            padding='same')(d)
        d = BatchNormalization()(d)
        d = Conv2DTranspose(64, (3, 3),
                            strides=8,
                            activation='relu',
                            padding='same')(d)
        d = BatchNormalization()(d)
        d = Conv2DTranspose(64, (3, 3),
                            strides=2,
                            activation='relu',
                            padding='same')(d)
        d = BatchNormalization()(d)
        d = Conv2DTranspose(32, (3, 3), activation='relu', padding='same')(d)
        decoded = Conv2D(1, (3, 3), activation='sigmoid', padding='same')(d)

        self.CAD = tf.keras.Model(inp, decoded)
        opt = tf.keras.optimizers.RMSprop(lr=0.0001, decay=1e-6)

        self.CAD.compile(loss="binary_crossentropy",
                         optimizer=opt,
                         metrics=["accuracy"])

        self.Flow = tf.keras.Sequential([
            tf.keras.layers.LSTM(32, input_shape=(3, 2),
                                 return_sequences=True),
            tf.keras.layers.Dropout(0.4),
            tf.keras.layers.Bidirectional(
                tf.keras.layers.LSTM(32, return_sequences=True)),
            tf.keras.layers.Dropout(0.4),
            tf.keras.layers.TimeDistributed(
                tf.keras.layers.Dense(10, activation='relu')),
            tf.keras.layers.Flatten(),
            tf.keras.layers.Dense(2, activation='relu')
        ])
        opt = tf.keras.optimizers.RMSprop(lr=0.0001, decay=1e-6)
        self.Flow.compile(loss="binary_crossentropy",
                          optimizer="adam",
                          metrics=["accuracy"])

        print(self.Flow.summary())
        print(self.CAD.summary())
Пример #5
0
def modelDemoStandardConvLSTMInception(input_shape, parameter=None):
    # define LSTM
    input = Input(shape=input_shape, name='main_input')

    I_1 = TimeDistributed(Conv2D(16, (1, 1),
                                 activation='relu',
                                 padding='same',
                                 name='C_1'),
                          name='I_11')(input)
    I_1 = TimeDistributed(Conv2D(16, (5, 5),
                                 activation='relu',
                                 padding='same',
                                 name='C_2'),
                          name='I_12')(I_1)

    I_2 = TimeDistributed(MaxPooling2D((3, 3),
                                       strides=(1, 1),
                                       padding='same',
                                       name='C_3'),
                          name='I_21')(input)
    I_2 = TimeDistributed(Conv2D(16, (1, 1),
                                 activation='relu',
                                 padding='same',
                                 name='C_4'),
                          name='I_22')(I_2)

    concatenate_output = concatenate([I_1, I_2], axis=-1)

    # x = TimeDistributed(Flatten())(x)
    x = ConvLSTM2D(filters=32,
                   kernel_size=(3, 3),
                   padding='same',
                   return_sequences=False)(concatenate_output)
    #x = MaxPooling2D((3, 3), strides=(1, 1), padding='same', name='M_1')(x)

    x = (Flatten())(x)

    x = RepeatVector(8)(x)
    x = LSTM(50, return_sequences=True)(x)

    output = TimeDistributed(Dense(8, activation='softmax'),
                             name='main_output')(x)
    #with tensorflow.device('/cpu'):
    model = Model(inputs=[input], outputs=[output])
    # compile the model with gpu

    #parallel_model = multi_gpu_model(model, gpus=2)
    #parallel_model.compile(loss={'main_output': 'categorical_crossentropy'},
    #              loss_weights={'main_output': 1.}, optimizer='adam', metrics=['accuracy'])
    #model = multi_gpu(model, gpus=[1, 2])
    model.compile(loss={'main_output': 'categorical_crossentropy'},
                  loss_weights={'main_output': 1.},
                  optimizer='adam',
                  metrics=['accuracy'])
    return model
Пример #6
0
def ModelVisualQuestionAnswering():
    # First, let's define a vision model using a Sequential model.
    # This model will encode an image into a vector.
    vision_model = Sequential()
    vision_model.add(
        Conv2D(64, (3, 3),
               activation='relu',
               padding='same',
               input_shape=(224, 224, 3)))
    vision_model.add(Conv2D(64, (3, 3), activation='relu'))
    vision_model.add(MaxPooling2D((2, 2)))
    vision_model.add(Conv2D(128, (3, 3), activation='relu', padding='same'))
    vision_model.add(Conv2D(128, (3, 3), activation='relu'))
    vision_model.add(MaxPooling2D((2, 2)))
    vision_model.add(Conv2D(256, (3, 3), activation='relu', padding='same'))
    vision_model.add(Conv2D(256, (3, 3), activation='relu'))
    vision_model.add(Conv2D(256, (3, 3), activation='relu'))
    vision_model.add(MaxPooling2D((2, 2)))
    vision_model.add(Flatten())

    # Now let's get a tensor with the output of our vision model:
    image_input = Input(shape=(224, 224, 3))
    encoded_image = vision_model(image_input)

    # Next, let's define a language model to encode the question into a vector.
    # Each question will be at most 100 words long,
    # and we will index words as integers from 1 to 9999.
    question_input = Input(shape=(100, ), dtype='int32')
    embedded_question = Embedding(input_dim=10000,
                                  output_dim=256,
                                  input_length=100)(question_input)
    encoded_question = LSTM(256)(embedded_question)

    # Let's concatenate the question vector and the image vector:
    merged = concatenate([encoded_question, encoded_image])

    # And let's train a logistic regression over 1000 words on top:
    output = Dense(1000, activation='softmax')(merged)

    # This is our final model:
    vqa_model = Model(inputs=[image_input, question_input], outputs=output)
    return vqa_model
Пример #7
0
    def model(self, code_layer_type, input_dim, code_dim):
        self.code_layer_type = code_layer_type
        assert len(code_dim) > 0

        if self.code_layer_type == 'lstm':
            assert len(input_dim) == 2
            input_data = Input(shape=(input_dim[0], input_dim[1]))

            if len(code_dim) == 1:
                encoded = LSTM(code_dim[0])(input_data)
                decoded = RepeatVector(input_dim[0])(encoded)
            elif len(code_dim) > 1:
                encoded = input_data
                for i, units in enumerate(code_dim):
                    if i == len(code_dim) - 1:
                        encoded = LSTM(units)(encoded)
                        continue
                    encoded = LSTM(units, return_sequences=True)(encoded)

                for i, units in enumerate(reversed(code_dim)):
                    if i == 1:
                        decoded = LSTM(units, return_sequences=True)(
                            RepeatVector(input_dim[0])(encoded))
                    elif i > 1:
                        decoded = LSTM(units, return_sequences=True)(decoded)
            else:
                raise ValueError("The codDim must be over 0.")

            decoded = LSTM(input_dim[-1], return_sequences=True)(decoded)
            self.model = Model(input_data, decoded)

        elif self.code_layer_type == 'dense':
            assert len(input_dim) == 1
            input_data = Input(shape=(input_dim[0], ))
            encoded = input_data
            for i, units in enumerate(code_dim):
                encoded = Dense(units, activation='relu')(encoded)
            decoded = Dense(input_dim[-1], activation='sigmoid')(encoded)
            self.model = Model(input_data, decoded)

        elif self.code_layer_type == 'cov':
            pass
Пример #8
0
def modelB(row, col, parameter=None):
    # define LSTM
    input = Input(shape=(None, row, col, 1), name='main_input')
    '''    x = TimeDistributed(Conv2D(16, (2, 2)))(input)
    x = BatchNormalization()(x)
    x = Activation('relu')(x)
    x = Dropout(0.25)(x)
    '''
    # tower_1 = TimeDistributed(Conv2D(16, (1, 1), padding='same', activation='relu'))(input)
    # tower_1 = TimeDistributed(Conv2D(16, (3, 3), padding='same', activation='relu'))(tower_1)

    tower_2 = TimeDistributed(Conv2D(16, (1, 1), padding='same'))(input)
    x = BatchNormalization()(tower_2)
    x = Activation('relu')(x)
    x = Dropout(0.25)(x)
    tower_2 = TimeDistributed(Conv2D(16, (5, 5), padding='same'))(x)
    x = BatchNormalization()(tower_2)
    x = Activation('relu')(x)
    tower_2 = Dropout(0.25)(x)

    tower_3 = TimeDistributed(
        MaxPooling2D((3, 3), strides=(1, 1), padding='same'))(input)
    tower_3 = TimeDistributed(Conv2D(16, (1, 1), padding='same'))(tower_3)
    x = BatchNormalization()(tower_3)
    x = Activation('relu')(x)
    tower_3 = Dropout(0.25)(x)
    concatenate_output = concatenate([tower_2, tower_3], axis=-1)

    x = TimeDistributed(MaxPooling2D(pool_size=(2, 2),
                                     strides=2))(concatenate_output)
    x = Dropout(0.25)(x)
    x = TimeDistributed(Flatten())(x)
    # convLstm = ConvLSTM2D(filters=40, kernel_size=(3, 3),padding='same', return_sequences=False)(x)
    lstm_output = LSTM(75)(x)
    lstm_output = BatchNormalization()(lstm_output)
    # lstm_output = BatchNormalization()(convLstm)
    # auxiliary_output = Dense(1, activation='sigmoid', name='aux_output')(lstm_output)
    # auxiliary_input = Input(shape=(4,), name='aux_input')
    # x = concatenate([lstm_output, auxiliary_input])

    x = RepeatVector(4)(lstm_output)
    x = LSTM(50, return_sequences=True)(x)
    # model.add(Dropout(0.25))
    x = BatchNormalization()(x)
    output = TimeDistributed(Dense(4, activation='softmax'),
                             name='main_output')(x)

    model = Model(inputs=[input], outputs=[output])
    model.compile(loss={'main_output': 'categorical_crossentropy'},
                  loss_weights={'main_output': 1.},
                  optimizer='adam',
                  metrics=['accuracy'])
    return model
def SingleOutputCNN(
    input_shape,
    output_shape,
    cnns_per_maxpool=1,
    maxpool_layers=1,
    dense_layers=1,
    dense_units=64,
    dropout=0.25,
    regularization=False,
    global_maxpool=False,
    name='',
) -> Model:
    function_name = cast(types.FrameType,
                         inspect.currentframe()).f_code.co_name
    model_name = f"{function_name}-{name}" if name else function_name
    # model_name  = seq([ function_name, name ]).filter(lambda x: x).make_string("-")  # remove dependency on pyfunctional - not in Kaggle repo without internet

    inputs = Input(shape=input_shape)
    x = inputs

    for cnn1 in range(0, maxpool_layers):
        for cnn2 in range(1, cnns_per_maxpool + 1):
            x = Conv2D(32 * cnn2,
                       kernel_size=(3, 3),
                       padding='same',
                       activation='relu')(x)
        x = MaxPooling2D(pool_size=(2, 2))(x)
        x = BatchNormalization()(x)
        x = Dropout(dropout)(x)

    if global_maxpool:
        x = GlobalMaxPooling2D()(x)

    x = Flatten()(x)

    for nn1 in range(0, dense_layers):
        if regularization:
            x = Dense(dense_units,
                      activation='relu',
                      kernel_regularizer=regularizers.l2(0.01),
                      activity_regularizer=regularizers.l1(0.01))(x)
        else:
            x = Dense(dense_units, activation='relu')(x)

        x = BatchNormalization()(x)
        x = Dropout(dropout)(x)

    x = Dense(output_shape, activation='softmax')(x)

    model = Model(inputs, x, name=model_name)
    # plot_model(model, to_file=os.path.join(os.path.dirname(__file__), f"{name}.png"))
    return model
Пример #10
0
def ModelResidual():
    # input tensor for a 3-channel 256x256 image
    x = Input(shape=(256, 256, 3))
    # 3x3 conv with 3 output channels (same as input channels)
    y = Conv2D(3, (3, 3), padding='same')(x)
    # this returns x + y.
    z = add([x, y])

    model = Model(inputs=[x], outputs=z)

    model.compile(optimizer='rmsprop',
                  loss='binary_crossentropy',
                  metrics=['accuracy'])
    return model
Пример #11
0
def ModelSharedVision():
    # First, define the vision modules
    digit_input = Input(shape=(27, 27, 1))
    x = Conv2D(64, (3, 3))(digit_input)
    x = Conv2D(64, (3, 3))(x)
    x = MaxPooling2D((2, 2))(x)
    out = Flatten()(x)

    vision_model = Model(digit_input, out)

    # Then define the tell-digits-apart model
    digit_a = Input(shape=(27, 27, 1))
    digit_b = Input(shape=(27, 27, 1))

    # The vision model will be shared, weights and all
    out_a = vision_model(digit_a)
    out_b = vision_model(digit_b)

    concatenated = concatenate([out_a, out_b])
    out = Dense(1, activation='sigmoid')(concatenated)

    classification_model = Model([digit_a, digit_b], out)
    return classification_model
Пример #12
0
def modelA(row, col):
    # define LSTM
    input = Input(shape=(None, row, col, 1), name='main_input')
    x = TimeDistributed(Conv2D(16, (2, 2), activation='relu'))(input)
    x = Dropout(0.25)(x)
    x = BatchNormalization()(x)
    x = TimeDistributed(MaxPooling2D(pool_size=(2, 2), strides=2))(x)
    x = Dropout(0.25)(x)
    x = TimeDistributed(Flatten())(x)
    lstm_output = LSTM(75)(x)
    lstm_output = BatchNormalization()(lstm_output)

    auxiliary_output = Dense(1, activation='sigmoid',
                             name='aux_output')(lstm_output)
    auxiliary_input = Input(shape=(4, ), name='aux_input')
    x = concatenate([lstm_output, auxiliary_input])

    x = RepeatVector(8)(x)
    x = LSTM(50, return_sequences=True)(x)
    # model.add(Dropout(0.25))
    x = BatchNormalization()(x)
    output = TimeDistributed(Dense(5, activation='softmax'),
                             name='main_output')(x)

    model = Model(inputs=[input, auxiliary_input],
                  outputs=[output, auxiliary_output])
    model.compile(loss={
        'main_output': 'categorical_crossentropy',
        'aux_output': 'binary_crossentropy'
    },
                  loss_weights={
                      'main_output': 1.,
                      'aux_output': 0.2
                  },
                  optimizer='adam',
                  metrics=['accuracy'])
    return model
def get_autoencoder_model128(img_width=128, img_height=128):  # Built for 128x128
    autoencoder = Sequential()
    autoencoder.add(Input(shape=(img_width, img_height, 1)))
    autoencoder.add(Conv2D(64, (5, 5), activation='relu', padding='same'))
    autoencoder.add(MaxPooling2D((2, 2), padding='same'))
    autoencoder.add(Conv2D(128, (3, 3), activation='relu', padding='same'))
    autoencoder.add(MaxPooling2D((2, 2), padding='same'))
    # Decoder
    autoencoder.add(Conv2D(128, (3, 3), activation='relu', padding='same'))
    autoencoder.add(UpSampling2D((2, 2)))
    autoencoder.add(Conv2D(64, (3, 3), activation='relu', padding='same'))
    autoencoder.add(UpSampling2D((2, 2)))
    autoencoder.add(Conv2D(1, (5, 5), activation='sigmoid', padding='same'))
    autoencoder.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy'])
    autoencoder.summary()
    return autoencoder
Пример #14
0
def create_model(step: Tensorflow2ModelStep) -> tf.keras.Model:
    """
    Create a TensorFlow v2 sequence to sequence (seq2seq) encoder-decoder model.

    :param step: The base Neuraxle step for TensorFlow v2 (Tensorflow2ModelStep)
    :return: TensorFlow v2 Keras model
    """
    # shape: (batch_size, seq_length, input_dim)
    encoder_inputs = Input(shape=(None, step.hyperparams['input_dim']),
                           batch_size=None,
                           dtype=tf.dtypes.float32,
                           name='encoder_inputs')

    last_encoder_outputs, last_encoders_states = _create_encoder(
        step, encoder_inputs)
    decoder_outputs = _create_decoder(step, last_encoder_outputs,
                                      last_encoders_states)

    return Model(encoder_inputs, decoder_outputs)
Пример #15
0
def modelDemoStandard(row, col):
    # define LSTM
    input = Input(shape=(None, row, col, 1), name='main_input')
    x = TimeDistributed(Conv2D(16, (2, 2), activation='relu'))(input)

    x = TimeDistributed(Flatten())(x)
    lstm_output = LSTM(75)(x)

    x = RepeatVector(4)(lstm_output)
    x = LSTM(50, return_sequences=True)(x)

    output = TimeDistributed(Dense(4, activation='softmax'),
                             name='main_output')(x)

    model = Model(inputs=[input], outputs=[output])
    model.compile(loss={'main_output': 'categorical_crossentropy'},
                  loss_weights={'main_output': 1.},
                  optimizer='adam',
                  metrics=['accuracy'])
    return model
Пример #16
0
def ModelInception():
    input_img = Input(shape=(256, 256, 3))

    tower_1 = Conv2D(64, (1, 1), padding='same', activation='relu')(input_img)
    tower_1 = Conv2D(64, (3, 3), padding='same', activation='relu')(tower_1)

    tower_2 = Conv2D(64, (1, 1), padding='same', activation='relu')(input_img)
    tower_2 = Conv2D(64, (5, 5), padding='same', activation='relu')(tower_2)

    tower_3 = MaxPooling2D((3, 3), strides=(1, 1), padding='same')(input_img)
    tower_3 = Conv2D(64, (1, 1), padding='same', activation='relu')(tower_3)

    output = concatenate([tower_1, tower_2, tower_3], axis=1)

    model = Model(inputs=[input_img], outputs=output)

    model.compile(optimizer='rmsprop',
                  loss='binary_crossentropy',
                  metrics=['accuracy'])
    return model
Пример #17
0
def get_model(X, N_class, total_words=86627, EMBEDDING_DIM=100, maxlen=53):

    embeddings_index = {}

    f = open('glove.6B/glove.6B.100d.txt')
    for line in f:
        values = line.split()
        word = values[0]
        coefs = np.asarray(values[1:], dtype='float32')
        embeddings_index[word] = coefs
    f.close()

    embedding_matrix = np.zeros((total_words, EMBEDDING_DIM))
    for word, i in X.items():
        embedding_vector = embeddings_index.get(word)
        if embedding_vector is not None:
            embedding_matrix[i] = embedding_vector

    inp = Input(shape=(maxlen, ), dtype='int32')
    embedding = Embedding(total_words,
                          EMBEDDING_DIM,
                          embeddings_initializer=Constant(embedding_matrix),
                          input_length=maxlen,
                          trainable=False)(inp)
    x = LSTM(300, dropout=0.25, recurrent_dropout=0.25,
             return_sequences=True)(embedding)
    x = Dropout(0.25)(x)
    merged = Attention_COSTUM(maxlen)(x)
    merged = Dense(256, activation='relu')(merged)
    merged = Dropout(0.25)(merged)
    merged = BatchNormalization()(merged)
    outp = Dense(N_class, activation='softmax')(merged)

    AttentionLSTM = Model(inputs=inp, outputs=outp)
    AttentionLSTM.compile(loss='sparse_categorical_crossentropy',
                          optimizer='adam',
                          metrics=['acc'])

    return AttentionLSTM
Пример #18
0
def modelDemoStandardConvLSTM(row, col):
    # define LSTM
    input = Input(shape=(None, row, col, 1), name='main_input')
    # x = TimeDistributed(Flatten())(x)
    x = ConvLSTM2D(filters=75,
                   kernel_size=(3, 3),
                   padding='same',
                   return_sequences=False)(input)
    x = (Flatten())(x)

    x = RepeatVector(4)(x)
    x = LSTM(50, return_sequences=True)(x)

    output = TimeDistributed(Dense(4, activation='softmax'),
                             name='main_output')(x)

    model = Model(inputs=[input], outputs=[output])
    model.compile(loss={'main_output': 'categorical_crossentropy'},
                  loss_weights={'main_output': 1.},
                  optimizer='adam',
                  metrics=['accuracy'])
    return model
def train_model(x_data, y_data, rain_data, k):
    k_fold = KFold(n_splits=k, shuffle=True, random_state=0)
    #stratified_k_fold = StratifiedKFold(n_splits=k, shuffle=True, random_state=0)

    model_number = 0
    #for train_idx, val_idx in tqdm(stratified_k_fold.split(x_data, rain_data)):
    for train_idx, val_idx in tqdm(k_fold.split(x_data)):
        x_train, y_train = x_data[train_idx], y_data[train_idx]
        x_val, y_val = x_data[val_idx], y_data[val_idx]

        input_layer = Input(x_train.shape[1:])
        output_layer = train2_unet2_model(input_layer, 32)
        model = Model(input_layer, output_layer)

        callbacks_list = [
            # 스케쥴러?
            #tf.keras.callbacks.ReduceLROnPlateau(
            #    monitor='val_loss',
            #    patience=3,
            #    factor=0.8
            #),

            tf.keras.callbacks.ModelCheckpoint(
                filepath='./models/model' + str(model_number) + '.h5',
                monitor='score',
                save_best_only=True,
                #save_weights_only=True,
                verbose=1
            )
        ]

        model.compile(loss='mae', optimizer=RAdamOptimizer(learning_rate=1e-3)
                        , metrics=[score, maeOverFscore_keras, fscore_keras])
        # stratified_k_fold 사용시 batch_size는 최소 128에서 256이 되어야한다.
        model.fit(x_train, y_train, epochs=50, batch_size=128, shuffle=True, validation_data=(x_val, y_val),
                  callbacks=callbacks_list)

        model_number += 1
Пример #20
0
    def build(self):
        input_img = Input(shape=(28, 28, 1))

        cnn = Conv2D(32, (3, 3), activation='relu', padding='same')(input_img)
        cnn = MaxPooling2D((2, 2), padding='same')(cnn)
        cnn = Conv2D(32, (3, 3), activation='relu', padding='same')(cnn)
        cnn = MaxPooling2D((2, 2), padding='same')(cnn)
        cnn = Conv2D(32, (3, 3), activation='relu', padding='same')(cnn)
        encoded = MaxPooling2D((2, 2), padding='same')(cnn)

        cnn = Conv2D(32, (3, 3), activation='relu', padding='same')(encoded)
        cnn = UpSampling2D((2, 2))(cnn)
        cnn = Conv2D(32, (3, 3), activation='relu', padding='same')(cnn)
        cnn = UpSampling2D((2, 2))(cnn)
        cnn = Conv2D(32, (3, 3), activation='relu')(cnn)
        cnn = UpSampling2D((2, 2))(cnn)
        decoded = Conv2D(1, (3, 3), activation='sigmoid', padding='same')(cnn)

        cnn_autoencoder = Model(input_img, decoded)
        cnn_autoencoder.compile(optimizer='adam', loss='binary_crossentropy')

        x_train = self.x_train.reshape(-1, 28, 28, 1)

        x_train_split, x_valid_split = train_test_split(x_train, test_size=self.train_test_split,
                                                        random_state=self.seed)

        cnn_autoencoder.fit(x_train_split, x_train_split,
                            epochs=self.epochs,
                            batch_size=self.batch_size,
                            validation_data=(x_valid_split, x_valid_split),
                            verbose=self.verbosity)

        x_train_pred = cnn_autoencoder.predict(x_train)
        mse = np.mean(np.power(x_train - x_train_pred, 2), axis=1)

        # Semi-supervised due to given threshold
        self.threshold = np.quantile(mse, 0.9)
        self.cnn_autoencoder = cnn_autoencoder
Пример #21
0
    def _build_model(self, hl1_dims, hl2_dims, hl3_dims, input_layer_size,
                     output_layer_size, optimizer, loss):

        input_v = Input(shape=(1, input_layer_size))

        branch_v = Flatten()(input_v)
        branch_v = Dense(hl1_dims, activation='relu')(branch_v)
        branch_v = BatchNormalization()(branch_v)
        branch_v = Dense(hl2_dims, activation='relu')(branch_v)
        branch_v = BatchNormalization()(branch_v)
        out_v = Dense(hl3_dims, activation='relu')(branch_v)
        out_v = BatchNormalization()(out_v)
        out_v = Dense(output_layer_size, activation='linear')(out_v)
        model = Model(inputs=input_v, outputs=out_v)

        #model = Model(inputs=m_v.inputs, outputs=out_v)
        # print(model.summary())

        model.compile(
            optimizer=optimizer, loss=loss
        )  # Use Huber Loss Function for DQN based on TensorBoard analysis

        return model
Пример #22
0
def modelStandardB(row, col):
    # define LSTM
    input_img = Input(shape=(None, row, col, 1), name='input')
    x = TimeDistributed(Conv2D(16, (2, 2), activation='relu'))(input_img)
    x = Dropout(0.25)(x)
    x = BatchNormalization()(x)
    x = TimeDistributed(MaxPooling2D(pool_size=(2, 2), strides=2))(x)
    x = Dropout(0.25)(x)
    x = TimeDistributed(Flatten())(x)
    x = LSTM(75)(x)
    # model.add(Dropout(0.25))
    x = BatchNormalization()(x)

    x = RepeatVector(4)(x)
    x = LSTM(50, return_sequences=True)(x)
    # model.add(Dropout(0.25))
    x = BatchNormalization()(x)
    output = TimeDistributed(Dense(4, activation='softmax'))(x)

    model = Model(input_img, output)
    model.compile(loss='categorical_crossentropy',
                  optimizer='adam',
                  metrics=['accuracy'])
    return model
# 가중치의 체크 포인트 이름 저장
checkpoint_path = ".saved_weight/cp.ckpt"
checkpoint_dir = os.path.dirname(checkpoint_path)

# 체크포인트 콜백 만들기
cp_callback = tf.keras.callbacks.ModelCheckpoint(checkpoint_path, save_weights_only=True, verbose=1)

# 데이터 파이프라인 만들기
train_dataset = tf.data.Dataset.from_generator(trainGenerator, (tf.float32, tf.float32),
                                               (tf.TensorShape([40, 40, my_col]), tf.TensorShape([40, 40, 1])))

# batch크기가 512로 너무 큰거 같다는 생각이 듬 논문을 참고하면 32에서 64가 이미지 분석에는 적당하다고 봄
train_dataset = train_dataset.batch(32).prefetch(1)

input_layer = Input((40, 40, my_col))
# 처음 시작 뉴론 32개 말고 다른것으로 변경해 볼 것

#output_layer = resnet_model(input_layer)
output_layer = unet_model(input_layer, 32)

model = Model(input_layer, output_layer)
# 저장된 가중치 불러오기
model.load_weights(checkpoint_path)


# ################## compile 메서드로 모형 완성 ###########################
adam = tf.keras.optimizers.Adam(learning_rate=0.0005, beta_1=0.9, beta_2=0.999, epsilon=1e-07,amsgrad=True, name='Adam')
model.compile(loss="mae", optimizer=adam, metrics=[maeOverFscore_keras, fscore_keras, "accuracy"])

# ################## fit 메서드로 트레이닝 #################################
Пример #24
0
def ModelVideoQuestionAnswering():
    # First, let's define a vision model using a Sequential model.
    # This model will encode an image into a vector.
    vision_model = Sequential()
    vision_model.add(
        Conv2D(64, (3, 3),
               activation='relu',
               padding='same',
               input_shape=(224, 224, 3)))
    vision_model.add(Conv2D(64, (3, 3), activation='relu'))
    vision_model.add(MaxPooling2D((2, 2)))
    vision_model.add(Conv2D(128, (3, 3), activation='relu', padding='same'))
    vision_model.add(Conv2D(128, (3, 3), activation='relu'))
    vision_model.add(MaxPooling2D((2, 2)))
    vision_model.add(Conv2D(256, (3, 3), activation='relu', padding='same'))
    vision_model.add(Conv2D(256, (3, 3), activation='relu'))
    vision_model.add(Conv2D(256, (3, 3), activation='relu'))
    vision_model.add(MaxPooling2D((2, 2)))
    vision_model.add(Flatten())

    # Now let's get a tensor with the output of our vision model:
    image_input = Input(shape=(224, 224, 3))
    encoded_image = vision_model(image_input)

    # Next, let's define a language model to encode the question into a vector.
    # Each question will be at most 100 words long,
    # and we will index words as integers from 1 to 9999.
    question_input = Input(shape=(100, ), dtype='int32')
    embedded_question = Embedding(input_dim=10000,
                                  output_dim=256,
                                  input_length=100)(question_input)
    encoded_question = LSTM(256)(embedded_question)

    # Let's concatenate the question vector and the image vector:
    merged = concatenate([encoded_question, encoded_image])

    # And let's train a logistic regression over 1000 words on top:
    output = Dense(1000, activation='softmax')(merged)

    # This is our final model:
    # vqa_model = Model(inputs=[image_input, question_input], outputs=output)

    video_input = Input(shape=(100, 224, 224, 3))
    # This is our video encoded via the previously trained vision_model (weights are reused)
    encoded_frame_sequence = TimeDistributed(vision_model)(
        video_input)  # the output will be a sequence of vectors
    encoded_video = LSTM(256)(
        encoded_frame_sequence)  # the output will be a vector

    # This is a model-level representation of the question encoder, reusing the same weights as before:
    question_encoder = Model(inputs=question_input, outputs=encoded_question)

    # Let's use it to encode the question:
    video_question_input = Input(shape=(100, ), dtype='int32')
    encoded_video_question = question_encoder(video_question_input)

    # And this is our video question answering model:
    merged = concatenate([encoded_video, encoded_video_question])
    output = Dense(1000, activation='softmax')(merged)
    video_qa_model = Model(inputs=[video_input, video_question_input],
                           outputs=output)

    return video_qa_model
    def init_model(self, mode="resnet50"):
        """
        初始化模型
        :param mode: 模型类型
        :return: 模型名称和基础模型
        """
        if mode == "resnet50v2":
            from tensorflow.keras.applications.resnet_v2 import ResNet50V2
            model_name = 'rotnet_v3_resnet50v2_{epoch:02d}_{val_acc:.4f}.hdf5'
            base_model = ResNet50V2(weights='imagenet',
                                    include_top=False,
                                    input_shape=self.input_shape)
        elif mode == "resnet50":
            from tensorflow.keras.applications.resnet import ResNet50
            model_name = 'rotnet_v3_resnet50_{epoch:02d}_{val_acc:.4f}.hdf5'
            base_model = ResNet50(weights='imagenet',
                                  include_top=False,
                                  input_shape=self.input_shape)
        elif mode == "mobilenetv2":
            from tensorflow.keras.applications.mobilenet_v2 import MobileNetV2
            model_name = 'rotnet_v3_mobilenetv2_{epoch:02d}_{val_acc:.4f}.hdf5'
            base_model = MobileNetV2(weights='imagenet',
                                     include_top=False,
                                     input_shape=self.input_shape)
        elif mode == "densenet121":
            from tensorflow.python.keras.applications.densenet import DenseNet121
            model_name = 'rotnet_v3_densenet121_{epoch:02d}_{val_acc:.4f}.hdf5'
            base_model = DenseNet121(weights='imagenet',
                                     include_top=False,
                                     input_shape=self.input_shape)
        else:
            raise Exception("[Exception] mode {} 不支持!!".format(mode))

        # freeze
        for layer in base_model.layers:
            layer.trainable = True

        x = base_model.output
        # if mode == "mobilenetv2":
        #     x = Dense(128, activation="relu")(x)
        x = Flatten()(x)

        if self.is_hw_ratio:  # 是否使用宽高比
            x1 = base_model.output
            x1 = Flatten()(x1)
            input_ratio = Input(shape=(1, ), name='ratio')
            x2 = Dense(1, activation='relu')(input_ratio)
            x = concatenate([x1, x2])

        final_output = Dense(self.nb_classes,
                             activation='softmax',
                             name='fc360')(x)
        model = Model(inputs=base_model.input, outputs=final_output)

        # model.summary()

        # 优化器
        if self.nb_classes == 360:
            metrics = ["acc", angle_error]
        else:
            metrics = ["acc"]

        model.compile(loss='categorical_crossentropy',
                      optimizer=SGD(lr=0.0004, momentum=0.9),
                      metrics=metrics)
        if self.model_path:
            model.load_weights(self.model_path)
            print('[Info] 加载模型的路径: {}'.format(self.model_path))

        return model_name, model
Пример #26
0
from tensorflow.keras.optimizers import SGD
from tensorflow.keras.callbacks import TensorBoard
from tensorflow.keras.models import load_model
import datetime
from sklearn.model_selection import train_test_split
import numpy as np

input_data = np.load('dog_breed_og_flp_trans_data_test.npy')
print(input_data.shape)
input_labels = np.load('dog_breed_og_flp_trans_labels_test.npy')

# X_train, X_val, y_train, y_val = train_test_split(data_in, labels_in, test_size=0.2, random_state=42)
# print("done splitting")


new_input = Input(shape=(224,224,3)) # should be 224,224

# graph changes over epochs
# logdir = "logs/scalars/" + datetime.time().strftime("%Y%m%d-%H%M%S")
# tensorboard_callback = TensorBoard(log_dir=logdir)

model = Sequential()
model.add(ResNet50(weights='imagenet', include_top=False, input_tensor=new_input, pooling='avg'))
model.trainable = False
model.add(Flatten())
model.add(Dense(120, activation='softmax'))
print(model.summary())


model.compile(loss='categorical_crossentropy',
                  optimizer=SGD(lr=0.001, momentum=0.0, decay=0.0, nesterov=False),
def construct_keras_api_model(embedding_weights):
    # input_no_time_no_repeat = Input(shape=max_len, dtype='int32')
    # embedded_no_time_no_repeat = Embedding(
    #     creative_id_window,embedding_size,weights=[embedding_weights],trainable=False
    # )(input_no_time_no_repeat)
    # ==================================================================================
    Input_fix_creative_id = Input(shape=(math.ceil(time_id_max / period_days) *
                                         period_length),
                                  dtype='int32',
                                  name='input_fix_creative_id')
    Embedded_fix_creative_id = Embedding(
        creative_id_window,
        embedding_size,
        weights=[embedding_weights],
        trainable=False)(Input_fix_creative_id)
    # ==================================================================================
    # input_no_time_with_repeat = Input(shape=max_len, dtype='int32')
    # embedded_no_time_with_repeat = Embedding(creative_id_window,embedding_size,weights=[embedding_weights],trainable=False)(input_no_time_with_repeat)

    # ----------------------------------------------------------------------
    GM_x = keras.layers.GlobalMaxPooling1D()(Embedded_fix_creative_id)
    GM_x = Dropout(0.5)(GM_x)
    GM_x = Dense(embedding_size // 2, kernel_regularizer=l2(0.001))(GM_x)
    GM_x = BatchNormalization()(GM_x)
    GM_x = Activation('relu')(GM_x)
    GM_x = Dropout(0.5)(GM_x)
    GM_x = Dense(embedding_size // 4, kernel_regularizer=l2(0.001))(GM_x)
    GM_x = BatchNormalization()(GM_x)
    GM_x = Activation('relu')(GM_x)
    GM_x = Dense(1, 'sigmoid')(GM_x)

    # ----------------------------------------------------------------------
    GA_x = GlobalAveragePooling1D()(Embedded_fix_creative_id)
    GA_x = Dropout(0.5)(GA_x)
    GA_x = Dense(embedding_size // 2, kernel_regularizer=l2(0.001))(GA_x)
    GA_x = BatchNormalization()(GA_x)
    GA_x = Activation('relu')(GA_x)
    GA_x = Dropout(0.5)(GA_x)
    GA_x = Dense(embedding_size // 4, kernel_regularizer=l2(0.001))(GA_x)
    GA_x = BatchNormalization()(GA_x)
    GA_x = Activation('relu')(GA_x)
    GA_x = Dense(1, 'sigmoid')(GA_x)

    # ==================================================================================
    Conv_creative_id = Conv1D(embedding_size, 15, 5,
                              activation='relu')(Embedded_fix_creative_id)
    # ----------------------------------------------------------------------
    Conv_GM_x = MaxPooling1D(7)(Conv_creative_id)
    Conv_GM_x = Conv1D(embedding_size, 2, 1, activation='relu')(Conv_GM_x)
    Conv_GM_x = GlobalMaxPooling1D()(Conv_GM_x)
    Conv_GM_x = Dropout(0.5)(Conv_GM_x)
    Conv_GM_x = Dense(embedding_size // 2,
                      kernel_regularizer=l2(0.001))(Conv_GM_x)
    Conv_GM_x = BatchNormalization()(Conv_GM_x)
    Conv_GM_x = Activation('relu')(Conv_GM_x)
    Conv_GM_x = Dropout(0.5)(Conv_GM_x)
    Conv_GM_x = Dense(embedding_size // 4,
                      kernel_regularizer=l2(0.001))(Conv_GM_x)
    Conv_GM_x = BatchNormalization()(Conv_GM_x)
    Conv_GM_x = Activation('relu')(Conv_GM_x)
    Conv_GM_x = Dense(1, 'sigmoid')(Conv_GM_x)

    # ----------------------------------------------------------------------
    Conv_GA_x = AveragePooling1D(7)(Conv_creative_id)
    Conv_GA_x = Conv1D(embedding_size, 2, 1, activation='relu')(Conv_GA_x)
    Conv_GA_x = GlobalAveragePooling1D()(Conv_GA_x)
    Conv_GA_x = Dropout(0.5)(Conv_GA_x)
    Conv_GA_x = Dense(embedding_size // 2,
                      kernel_regularizer=l2(0.001))(Conv_GA_x)
    Conv_GA_x = BatchNormalization()(Conv_GA_x)
    Conv_GA_x = Activation('relu')(Conv_GA_x)
    Conv_GA_x = Dropout(0.5)(Conv_GA_x)
    Conv_GA_x = Dense(embedding_size // 4,
                      kernel_regularizer=l2(0.001))(Conv_GA_x)
    Conv_GA_x = BatchNormalization()(Conv_GA_x)
    Conv_GA_x = Activation('relu')(Conv_GA_x)
    Conv_GA_x = Dense(1, 'sigmoid')(Conv_GA_x)

    # ----------------------------------------------------------------------
    LSTM_x = Conv1D(embedding_size, 14, 7, activation='relu')(Conv_creative_id)
    LSTM_x = LSTM(embedding_size, return_sequences=True)(LSTM_x)
    LSTM_x = LSTM(embedding_size, return_sequences=True)(LSTM_x)
    LSTM_x = LSTM(embedding_size)(LSTM_x)
    LSTM_x = Dropout(0.5)(LSTM_x)
    LSTM_x = Dense(embedding_size // 2, kernel_regularizer=l2(0.001))(LSTM_x)
    LSTM_x = BatchNormalization()(LSTM_x)
    LSTM_x = Activation('relu')(LSTM_x)
    LSTM_x = Dropout(0.5)(LSTM_x)
    LSTM_x = Dense(embedding_size // 4, kernel_regularizer=l2(0.001))(LSTM_x)
    LSTM_x = BatchNormalization()(LSTM_x)
    LSTM_x = Activation('relu')(LSTM_x)
    LSTM_x = Dense(1, 'sigmoid')(LSTM_x)

    # ----------------------------------------------------------------------
    concatenated = concatenate([
        GM_x,
        GA_x,
        Conv_GM_x,
        Conv_GA_x,
        LSTM_x,
    ],
                               axis=-1)
    output_tensor = Dense(1, 'sigmoid')(concatenated)

    keras_api_model = Model(
        [
            # input_no_time_no_repeat,
            Input_fix_creative_id,
            # input_no_time_with_repeat,
        ],
        output_tensor)
    keras_api_model.summary()
    plot_model(keras_api_model, to_file='model/keras_api_word2vec_model.png')
    print('-' * 5 + ' ' * 3 + "编译模型" + ' ' * 3 + '-' * 5)
    keras_api_model.compile(optimizer=optimizers.RMSprop(lr=RMSProp_lr),
                            loss=losses.binary_crossentropy,
                            metrics=[metrics.binary_accuracy])
    return keras_api_model
    def build_model(self, model_name, query_dim, terms_dim, output_dim,
                    word_embedding):

        self.model_name = model_name

        query_input = Input(shape=(query_dim, ), name='query_input')
        terms_input = Input(shape=(terms_dim, ), name='terms_input')

        if model_name == 'lstm':
            embedding_feature_block = Sequential(layers=[
                Embedding(word_embedding.vocabulary_size,
                          word_embedding.dimensions,
                          weights=[word_embedding.embedding_matrix],
                          trainable=True,
                          mask_zero=False),
                BatchNormalization(),
                LSTM(64, return_sequences=True)
            ])

        elif model_name == 'bilstm':
            embedding_feature_block = Sequential(layers=[
                Embedding(word_embedding.vocabulary_size,
                          word_embedding.dimensions,
                          weights=[word_embedding.embedding_matrix],
                          trainable=True,
                          mask_zero=False),
                BatchNormalization(),
                Bidirectional(LSTM(64, return_sequences=True))
            ])

        else:  # default cnn
            embedding_feature_block = Sequential(layers=[
                Embedding(word_embedding.vocabulary_size,
                          word_embedding.dimensions,
                          weights=[word_embedding.embedding_matrix],
                          trainable=True,
                          mask_zero=False),
                BatchNormalization(),
                Conv1D(filters=64, kernel_size=3, strides=1),
                MaxPooling1D(pool_size=3)
            ])

        # Features
        query_feature = embedding_feature_block(query_input)
        terms_feature = embedding_feature_block(terms_input)

        # Query-Terms alignment
        attention = Dot(axes=-1)([query_feature, terms_feature])
        softmax_attention = Lambda(lambda x: softmax(x, axis=1),
                                   output_shape=unchanged_shape)(attention)
        terms_aligned = Dot(axes=1)([softmax_attention, terms_feature])

        # Aligned features
        if model_name == 'lstm':
            flatten_layer = LSTM(128, return_sequences=False)(terms_aligned)

        elif model_name == 'bilstm':
            flatten_layer = Bidirectional(LSTM(
                128, return_sequences=False))(terms_aligned)

        else:  # default cnn
            merged_cnn = Conv1D(filters=128, kernel_size=3,
                                strides=1)(terms_aligned)
            merged_cnn = MaxPooling1D(pool_size=3)(merged_cnn)
            flatten_layer = Flatten()(merged_cnn)

        # Output
        dense = BatchNormalization()(flatten_layer)
        dense = Dense(64, activation='sigmoid')(dense)
        out = Dense(output_dim, activation='linear')(dense)

        self.model = Model(inputs=[query_input, terms_input], outputs=out)
        self.model.compile(optimizer='adam', loss=losses.mean_squared_error)
        self.model.summary()
df = StandardScaler().fit_transform(X=df)

kfold = KFold(n_splits=5, shuffle=True)
rmseList = []
rrseList = []


def rmse(y_true, y_pred):
    return K.sqrt(K.mean(K.square(y_pred - y_true)))


opt = SGD(lr=0.001, momentum=0.6, nesterov=False)
print("begin training")
for i, (train, test) in enumerate(kfold.split(X)):
    model_in = Input(shape=(len(unique_user, )))
    x = Dense(10, activation='relu')(model_in)
    model_out1 = Dense(10, activation='relu')(model_in)
    model_out2 = Dense(10, activation='relu')(model_in)
    model_out = Dense(len(unique_movies), activation='sigmoid')(model_out2)
    model = Model(inputs=model_in, outputs=model_out)
    model.compile(loss='mae', optimizer=opt, metrics=['mae', 'acc'])
    history = model.fit(X[train],
                        Y[train],
                        validation_data=(X[test], Y[test]),
                        epochs=400,
                        batch_size=10,
                        verbose=0)

    scores = model.evaluate(X[test], Y[test])
    rmseList.append(scores[1])