Пример #1
0
def ModelShare():
    tweet_a = Input(shape=(280, 256))
    tweet_b = Input(shape=(280, 256))

    # This layer can take as input a matrix
    # and will return a vector of size 64
    shared_lstm = LSTM(64, return_sequences=True, name='lstm')

    # When we reuse the same layer instance
    # multiple times, the weights of the layer
    # are also being reused
    # (it is effectively *the same* layer)
    encoded_a = shared_lstm(tweet_a)
    encoded_b = shared_lstm(tweet_b)

    # We can then concatenate the two vectors:
    merged_vector = concatenate([encoded_a, encoded_b], axis=-1)

    # And add a logistic regression on top
    predictions = Dense(1, activation='sigmoid')(merged_vector)

    # We define a trainable model linking the
    # tweet inputs to the predictions
    model = Model(inputs=[tweet_a, tweet_b], outputs=predictions)

    model.compile(optimizer='rmsprop',
                  loss='binary_crossentropy',
                  metrics=['accuracy'])
    return model
Пример #2
0
    def build(self):
        inputs = Input(shape=self.input_shape, name='encoder_input')
        x = Dense(self.intermediate_dim,
                  activation=self.activation_fct)(inputs)
        z_mean = Dense(self.latent_dim, name='z_mean')(x)
        z_log_var = Dense(self.latent_dim, name='z_log_var')(x)

        # use reparameterization trick to push the sampling out as input
        # note that "output_shape" isn't necessary with the TensorFlow backend
        z = Lambda(sampling, output_shape=(self.latent_dim, ),
                   name='z')([z_mean, z_log_var])

        # instantiate encoder model
        encoder = Model(inputs, [z_mean, z_log_var, z], name='encoder')

        # build decoder model
        latent_inputs = Input(shape=(self.latent_dim, ), name='z_sampling')
        x = Dense(self.intermediate_dim,
                  activation=self.activation_fct)(latent_inputs)
        outputs = Dense(self.original_dim, activation='sigmoid')(x)

        # instantiate decoder model
        decoder = Model(latent_inputs, outputs, name='decoder')

        # instantiate VAE model
        outputs = decoder(encoder(inputs)[2])
        vae = Model(inputs, outputs, name='vae_mlp')

        # VAE Loss = mse_loss or xent_loss + kl_loss
        reconstruction_loss = mse(inputs, outputs)

        reconstruction_loss *= self.original_dim
        kl_loss = 1 + z_log_var - K.square(z_mean) - K.exp(z_log_var)
        kl_loss = K.sum(kl_loss, axis=-1)
        kl_loss *= -0.5
        vae_loss = K.mean(reconstruction_loss + kl_loss)
        vae.add_loss(vae_loss)

        vae.compile(optimizer=self.optimizer,
                    loss=self.loss,
                    metrics=['accuracy'])

        x_train_split, x_valid_split = train_test_split(
            self.x_train,
            test_size=self.train_test_split,
            random_state=self.seed)

        vae.fit(x_train_split,
                x_train_split,
                batch_size=self.batch_size,
                epochs=self.epochs,
                verbose=self.verbosity,
                shuffle=True,
                validation_data=(x_valid_split, x_valid_split))

        x_train_pred = vae.predict(self.x_train)
        train_mse = np.mean(np.power(self.x_train - x_train_pred, 2), axis=1)
        self.threshold = np.quantile(train_mse, 0.9)
        self.vae = vae
Пример #3
0
def modelDemoStandardConvLSTMInception(input_shape, parameter=None):
    # define LSTM
    input = Input(shape=input_shape, name='main_input')

    I_1 = TimeDistributed(Conv2D(16, (1, 1),
                                 activation='relu',
                                 padding='same',
                                 name='C_1'),
                          name='I_11')(input)
    I_1 = TimeDistributed(Conv2D(16, (5, 5),
                                 activation='relu',
                                 padding='same',
                                 name='C_2'),
                          name='I_12')(I_1)

    I_2 = TimeDistributed(MaxPooling2D((3, 3),
                                       strides=(1, 1),
                                       padding='same',
                                       name='C_3'),
                          name='I_21')(input)
    I_2 = TimeDistributed(Conv2D(16, (1, 1),
                                 activation='relu',
                                 padding='same',
                                 name='C_4'),
                          name='I_22')(I_2)

    concatenate_output = concatenate([I_1, I_2], axis=-1)

    # x = TimeDistributed(Flatten())(x)
    x = ConvLSTM2D(filters=32,
                   kernel_size=(3, 3),
                   padding='same',
                   return_sequences=False)(concatenate_output)
    #x = MaxPooling2D((3, 3), strides=(1, 1), padding='same', name='M_1')(x)

    x = (Flatten())(x)

    x = RepeatVector(8)(x)
    x = LSTM(50, return_sequences=True)(x)

    output = TimeDistributed(Dense(8, activation='softmax'),
                             name='main_output')(x)
    #with tensorflow.device('/cpu'):
    model = Model(inputs=[input], outputs=[output])
    # compile the model with gpu

    #parallel_model = multi_gpu_model(model, gpus=2)
    #parallel_model.compile(loss={'main_output': 'categorical_crossentropy'},
    #              loss_weights={'main_output': 1.}, optimizer='adam', metrics=['accuracy'])
    #model = multi_gpu(model, gpus=[1, 2])
    model.compile(loss={'main_output': 'categorical_crossentropy'},
                  loss_weights={'main_output': 1.},
                  optimizer='adam',
                  metrics=['accuracy'])
    return model
Пример #4
0
def modelB(row, col, parameter=None):
    # define LSTM
    input = Input(shape=(None, row, col, 1), name='main_input')
    '''    x = TimeDistributed(Conv2D(16, (2, 2)))(input)
    x = BatchNormalization()(x)
    x = Activation('relu')(x)
    x = Dropout(0.25)(x)
    '''
    # tower_1 = TimeDistributed(Conv2D(16, (1, 1), padding='same', activation='relu'))(input)
    # tower_1 = TimeDistributed(Conv2D(16, (3, 3), padding='same', activation='relu'))(tower_1)

    tower_2 = TimeDistributed(Conv2D(16, (1, 1), padding='same'))(input)
    x = BatchNormalization()(tower_2)
    x = Activation('relu')(x)
    x = Dropout(0.25)(x)
    tower_2 = TimeDistributed(Conv2D(16, (5, 5), padding='same'))(x)
    x = BatchNormalization()(tower_2)
    x = Activation('relu')(x)
    tower_2 = Dropout(0.25)(x)

    tower_3 = TimeDistributed(
        MaxPooling2D((3, 3), strides=(1, 1), padding='same'))(input)
    tower_3 = TimeDistributed(Conv2D(16, (1, 1), padding='same'))(tower_3)
    x = BatchNormalization()(tower_3)
    x = Activation('relu')(x)
    tower_3 = Dropout(0.25)(x)
    concatenate_output = concatenate([tower_2, tower_3], axis=-1)

    x = TimeDistributed(MaxPooling2D(pool_size=(2, 2),
                                     strides=2))(concatenate_output)
    x = Dropout(0.25)(x)
    x = TimeDistributed(Flatten())(x)
    # convLstm = ConvLSTM2D(filters=40, kernel_size=(3, 3),padding='same', return_sequences=False)(x)
    lstm_output = LSTM(75)(x)
    lstm_output = BatchNormalization()(lstm_output)
    # lstm_output = BatchNormalization()(convLstm)
    # auxiliary_output = Dense(1, activation='sigmoid', name='aux_output')(lstm_output)
    # auxiliary_input = Input(shape=(4,), name='aux_input')
    # x = concatenate([lstm_output, auxiliary_input])

    x = RepeatVector(4)(lstm_output)
    x = LSTM(50, return_sequences=True)(x)
    # model.add(Dropout(0.25))
    x = BatchNormalization()(x)
    output = TimeDistributed(Dense(4, activation='softmax'),
                             name='main_output')(x)

    model = Model(inputs=[input], outputs=[output])
    model.compile(loss={'main_output': 'categorical_crossentropy'},
                  loss_weights={'main_output': 1.},
                  optimizer='adam',
                  metrics=['accuracy'])
    return model
Пример #5
0
def ModelResidual():
    # input tensor for a 3-channel 256x256 image
    x = Input(shape=(256, 256, 3))
    # 3x3 conv with 3 output channels (same as input channels)
    y = Conv2D(3, (3, 3), padding='same')(x)
    # this returns x + y.
    z = add([x, y])

    model = Model(inputs=[x], outputs=z)

    model.compile(optimizer='rmsprop',
                  loss='binary_crossentropy',
                  metrics=['accuracy'])
    return model
Пример #6
0
    def create_firing_model(self):
        if LOAD_FIRING_MODEL != "":
            print(f"loading {LOAD_FIRING_MODEL}")
            model = load_model(LOAD_FIRING_MODEL)
            print(f"Model {LOAD_FIRING_MODEL} is now loaded!")
        else:
            inputs = Input(shape=envs[0].OBSERVATION_SPACE_VALUES,
                           batch_size=MINIBATCH_SIZE)
            fire_weapon_branch = self.build_fire_weapon_branch(inputs)
            target_branch = self.build_target_branch(inputs)

            model = Model(inputs=inputs,
                          outputs=[fire_weapon_branch, target_branch],
                          name="projectilenet")
            model.compile(loss="mse",
                          optimizer=AdamKeras(lr=0.001),
                          metrics=['accuracy'])
        return model
Пример #7
0
def ModelInception():
    input_img = Input(shape=(256, 256, 3))

    tower_1 = Conv2D(64, (1, 1), padding='same', activation='relu')(input_img)
    tower_1 = Conv2D(64, (3, 3), padding='same', activation='relu')(tower_1)

    tower_2 = Conv2D(64, (1, 1), padding='same', activation='relu')(input_img)
    tower_2 = Conv2D(64, (5, 5), padding='same', activation='relu')(tower_2)

    tower_3 = MaxPooling2D((3, 3), strides=(1, 1), padding='same')(input_img)
    tower_3 = Conv2D(64, (1, 1), padding='same', activation='relu')(tower_3)

    output = concatenate([tower_1, tower_2, tower_3], axis=1)

    model = Model(inputs=[input_img], outputs=output)

    model.compile(optimizer='rmsprop',
                  loss='binary_crossentropy',
                  metrics=['accuracy'])
    return model
Пример #8
0
def modelDemoStandard(row, col):
    # define LSTM
    input = Input(shape=(None, row, col, 1), name='main_input')
    x = TimeDistributed(Conv2D(16, (2, 2), activation='relu'))(input)

    x = TimeDistributed(Flatten())(x)
    lstm_output = LSTM(75)(x)

    x = RepeatVector(4)(lstm_output)
    x = LSTM(50, return_sequences=True)(x)

    output = TimeDistributed(Dense(4, activation='softmax'),
                             name='main_output')(x)

    model = Model(inputs=[input], outputs=[output])
    model.compile(loss={'main_output': 'categorical_crossentropy'},
                  loss_weights={'main_output': 1.},
                  optimizer='adam',
                  metrics=['accuracy'])
    return model
Пример #9
0
 def create_movement_model(self):
     if LOAD_MOVEMENT_MODEL != "":
         print(f"loading {LOAD_MOVEMENT_MODEL}")
         model = load_model(LOAD_MOVEMENT_MODEL)
         print(f"Model {LOAD_MOVEMENT_MODEL} is now loaded!")
     else:
         if not USE_CONV_NET:
             inputs = Input(shape=envs[0].OBSERVATION_SPACE_VALUES)
             movement_branch = self.build_movement_branch(inputs)
             model = Model(inputs=inputs,
                           outputs=[movement_branch],
                           name="movementnet")
             model.compile(loss="mse",
                           optimizer=AdamKeras(lr=0.001),
                           metrics=['accuracy'])
         else:
             print(
                 "using a convolutional neural network to see if loss improves"
             )
             model = self.build_conv_branch()
     return model
Пример #10
0
def modelDemoStandardConvLSTM(row, col):
    # define LSTM
    input = Input(shape=(None, row, col, 1), name='main_input')
    # x = TimeDistributed(Flatten())(x)
    x = ConvLSTM2D(filters=75,
                   kernel_size=(3, 3),
                   padding='same',
                   return_sequences=False)(input)
    x = (Flatten())(x)

    x = RepeatVector(4)(x)
    x = LSTM(50, return_sequences=True)(x)

    output = TimeDistributed(Dense(4, activation='softmax'),
                             name='main_output')(x)

    model = Model(inputs=[input], outputs=[output])
    model.compile(loss={'main_output': 'categorical_crossentropy'},
                  loss_weights={'main_output': 1.},
                  optimizer='adam',
                  metrics=['accuracy'])
    return model
Пример #11
0
def get_model(X, N_class, total_words=86627, EMBEDDING_DIM=100, maxlen=53):

    embeddings_index = {}

    f = open('glove.6B/glove.6B.100d.txt')
    for line in f:
        values = line.split()
        word = values[0]
        coefs = np.asarray(values[1:], dtype='float32')
        embeddings_index[word] = coefs
    f.close()

    embedding_matrix = np.zeros((total_words, EMBEDDING_DIM))
    for word, i in X.items():
        embedding_vector = embeddings_index.get(word)
        if embedding_vector is not None:
            embedding_matrix[i] = embedding_vector

    inp = Input(shape=(maxlen, ), dtype='int32')
    embedding = Embedding(total_words,
                          EMBEDDING_DIM,
                          embeddings_initializer=Constant(embedding_matrix),
                          input_length=maxlen,
                          trainable=False)(inp)
    x = LSTM(300, dropout=0.25, recurrent_dropout=0.25,
             return_sequences=True)(embedding)
    x = Dropout(0.25)(x)
    merged = Attention_COSTUM(maxlen)(x)
    merged = Dense(256, activation='relu')(merged)
    merged = Dropout(0.25)(merged)
    merged = BatchNormalization()(merged)
    outp = Dense(N_class, activation='softmax')(merged)

    AttentionLSTM = Model(inputs=inp, outputs=outp)
    AttentionLSTM.compile(loss='sparse_categorical_crossentropy',
                          optimizer='adam',
                          metrics=['acc'])

    return AttentionLSTM
Пример #12
0
    def build(self):
        input_img = Input(shape=(28, 28, 1))

        cnn = Conv2D(32, (3, 3), activation='relu', padding='same')(input_img)
        cnn = MaxPooling2D((2, 2), padding='same')(cnn)
        cnn = Conv2D(32, (3, 3), activation='relu', padding='same')(cnn)
        cnn = MaxPooling2D((2, 2), padding='same')(cnn)
        cnn = Conv2D(32, (3, 3), activation='relu', padding='same')(cnn)
        encoded = MaxPooling2D((2, 2), padding='same')(cnn)

        cnn = Conv2D(32, (3, 3), activation='relu', padding='same')(encoded)
        cnn = UpSampling2D((2, 2))(cnn)
        cnn = Conv2D(32, (3, 3), activation='relu', padding='same')(cnn)
        cnn = UpSampling2D((2, 2))(cnn)
        cnn = Conv2D(32, (3, 3), activation='relu')(cnn)
        cnn = UpSampling2D((2, 2))(cnn)
        decoded = Conv2D(1, (3, 3), activation='sigmoid', padding='same')(cnn)

        cnn_autoencoder = Model(input_img, decoded)
        cnn_autoencoder.compile(optimizer='adam', loss='binary_crossentropy')

        x_train = self.x_train.reshape(-1, 28, 28, 1)

        x_train_split, x_valid_split = train_test_split(x_train, test_size=self.train_test_split,
                                                        random_state=self.seed)

        cnn_autoencoder.fit(x_train_split, x_train_split,
                            epochs=self.epochs,
                            batch_size=self.batch_size,
                            validation_data=(x_valid_split, x_valid_split),
                            verbose=self.verbosity)

        x_train_pred = cnn_autoencoder.predict(x_train)
        mse = np.mean(np.power(x_train - x_train_pred, 2), axis=1)

        # Semi-supervised due to given threshold
        self.threshold = np.quantile(mse, 0.9)
        self.cnn_autoencoder = cnn_autoencoder
Пример #13
0
def modelA(row, col):
    # define LSTM
    input = Input(shape=(None, row, col, 1), name='main_input')
    x = TimeDistributed(Conv2D(16, (2, 2), activation='relu'))(input)
    x = Dropout(0.25)(x)
    x = BatchNormalization()(x)
    x = TimeDistributed(MaxPooling2D(pool_size=(2, 2), strides=2))(x)
    x = Dropout(0.25)(x)
    x = TimeDistributed(Flatten())(x)
    lstm_output = LSTM(75)(x)
    lstm_output = BatchNormalization()(lstm_output)

    auxiliary_output = Dense(1, activation='sigmoid',
                             name='aux_output')(lstm_output)
    auxiliary_input = Input(shape=(4, ), name='aux_input')
    x = concatenate([lstm_output, auxiliary_input])

    x = RepeatVector(8)(x)
    x = LSTM(50, return_sequences=True)(x)
    # model.add(Dropout(0.25))
    x = BatchNormalization()(x)
    output = TimeDistributed(Dense(5, activation='softmax'),
                             name='main_output')(x)

    model = Model(inputs=[input, auxiliary_input],
                  outputs=[output, auxiliary_output])
    model.compile(loss={
        'main_output': 'categorical_crossentropy',
        'aux_output': 'binary_crossentropy'
    },
                  loss_weights={
                      'main_output': 1.,
                      'aux_output': 0.2
                  },
                  optimizer='adam',
                  metrics=['accuracy'])
    return model
Пример #14
0
def modelStandardB(row, col):
    # define LSTM
    input_img = Input(shape=(None, row, col, 1), name='input')
    x = TimeDistributed(Conv2D(16, (2, 2), activation='relu'))(input_img)
    x = Dropout(0.25)(x)
    x = BatchNormalization()(x)
    x = TimeDistributed(MaxPooling2D(pool_size=(2, 2), strides=2))(x)
    x = Dropout(0.25)(x)
    x = TimeDistributed(Flatten())(x)
    x = LSTM(75)(x)
    # model.add(Dropout(0.25))
    x = BatchNormalization()(x)

    x = RepeatVector(4)(x)
    x = LSTM(50, return_sequences=True)(x)
    # model.add(Dropout(0.25))
    x = BatchNormalization()(x)
    output = TimeDistributed(Dense(4, activation='softmax'))(x)

    model = Model(input_img, output)
    model.compile(loss='categorical_crossentropy',
                  optimizer='adam',
                  metrics=['accuracy'])
    return model
class QueryReformulation:
    def __init__(self, model_path=None, output_path=''):
        self.model = None
        self.model_name = None
        self.model_output = output_path + '/qr_{name}_model_[e{epoch}]_[p{precision}]_' \
                            + str(datetime.now().date()) + '.h5'
        if model_path:
            self.model = load_model(model_path)
            self.model.summary()

    def build_model(self, model_name, query_dim, terms_dim, output_dim,
                    word_embedding):

        self.model_name = model_name

        query_input = Input(shape=(query_dim, ), name='query_input')
        terms_input = Input(shape=(terms_dim, ), name='terms_input')

        if model_name == 'lstm':
            embedding_feature_block = Sequential(layers=[
                Embedding(word_embedding.vocabulary_size,
                          word_embedding.dimensions,
                          weights=[word_embedding.embedding_matrix],
                          trainable=True,
                          mask_zero=False),
                BatchNormalization(),
                LSTM(64, return_sequences=True)
            ])

        elif model_name == 'bilstm':
            embedding_feature_block = Sequential(layers=[
                Embedding(word_embedding.vocabulary_size,
                          word_embedding.dimensions,
                          weights=[word_embedding.embedding_matrix],
                          trainable=True,
                          mask_zero=False),
                BatchNormalization(),
                Bidirectional(LSTM(64, return_sequences=True))
            ])

        else:  # default cnn
            embedding_feature_block = Sequential(layers=[
                Embedding(word_embedding.vocabulary_size,
                          word_embedding.dimensions,
                          weights=[word_embedding.embedding_matrix],
                          trainable=True,
                          mask_zero=False),
                BatchNormalization(),
                Conv1D(filters=64, kernel_size=3, strides=1),
                MaxPooling1D(pool_size=3)
            ])

        # Features
        query_feature = embedding_feature_block(query_input)
        terms_feature = embedding_feature_block(terms_input)

        # Query-Terms alignment
        attention = Dot(axes=-1)([query_feature, terms_feature])
        softmax_attention = Lambda(lambda x: softmax(x, axis=1),
                                   output_shape=unchanged_shape)(attention)
        terms_aligned = Dot(axes=1)([softmax_attention, terms_feature])

        # Aligned features
        if model_name == 'lstm':
            flatten_layer = LSTM(128, return_sequences=False)(terms_aligned)

        elif model_name == 'bilstm':
            flatten_layer = Bidirectional(LSTM(
                128, return_sequences=False))(terms_aligned)

        else:  # default cnn
            merged_cnn = Conv1D(filters=128, kernel_size=3,
                                strides=1)(terms_aligned)
            merged_cnn = MaxPooling1D(pool_size=3)(merged_cnn)
            flatten_layer = Flatten()(merged_cnn)

        # Output
        dense = BatchNormalization()(flatten_layer)
        dense = Dense(64, activation='sigmoid')(dense)
        out = Dense(output_dim, activation='linear')(dense)

        self.model = Model(inputs=[query_input, terms_input], outputs=out)
        self.model.compile(optimizer='adam', loss=losses.mean_squared_error)
        self.model.summary()

    def train_model(self,
                    query_objs,
                    query_sequence,
                    terms_sequence,
                    candidate_terms,
                    epochs=20,
                    batch_size=4):
        best_precision = 0
        pool = Pool(batch_size)
        for e in range(epochs):
            print('Epochs: %3d/%d' % (e + 1, epochs))

            reward = np.zeros(shape=(len(query_objs)))
            precision = np.zeros(shape=(len(query_objs)))
            for i, query, q_seq, t_seq, terms in get_batch_data(
                    query_objs, query_sequence, terms_sequence,
                    candidate_terms, batch_size):
                print('  [%4d-%-4d/%d]' % (i, i + batch_size, len(query_objs)))

                weights = self.model.predict(x=[q_seq, t_seq])

                batch_reward_precision = pool.map(evaluate_reward_precision,
                                                  zip(weights, terms, query))
                batch_reward_precision = np.array(batch_reward_precision)

                batch_reward = 0.8 * np.asarray(
                    batch_reward_precision[:,
                                           0]) + 0.2 * reward[i:i + batch_size]

                self.model.train_on_batch(x=[q_seq, t_seq],
                                          y=weights,
                                          sample_weight=batch_reward)

                reward[i:i + batch_size] = batch_reward_precision[:, 0]
                precision[i:i + batch_size] = batch_reward_precision[:, 1]

            # Save model
            avg_precision = precision.mean()
            print('  Average precision %.5f on epoch %d, best precision %.5f' %
                  (avg_precision, e + 1, best_precision))
            if avg_precision > best_precision:
                best_precision = avg_precision
                self.model.save(filepath=self.model_output.format(
                    name=self.model_name,
                    epoch=e + 1,
                    precision=round(avg_precision, 4)))

        pool.close()
        pool.join()

    def test_model(self,
                   query_objs,
                   query_sequence,
                   terms_sequence,
                   candidate_terms,
                   batch_size=4):

        pool = Pool(batch_size)
        precision_recall = np.zeros(shape=(len(query_objs), 2))
        for i, query, q_seq, t_seq, terms in get_batch_data(
                query_objs, query_sequence, terms_sequence, candidate_terms,
                batch_size):
            print('[%4d-%-4d/%d]' % (i, i + batch_size, len(query_objs)))

            weights = self.model.predict(x=[q_seq, t_seq])

            batch_precision_recall = pool.map(evaluate_precision_recall,
                                              zip(weights, terms, query))

            precision_recall[i:i +
                             batch_size] = np.array(batch_precision_recall)

        pool.close()
        pool.join()

        return precision_recall.mean(axis=0)

    def reformulate_query(self,
                          query_sequence,
                          terms_sequence,
                          candidate_terms,
                          threshold=0.5):
        weights = self.model.predict(x=[[query_sequence], [terms_sequence]])
        reformulated_query = recreate_query(terms=candidate_terms,
                                            weights=weights[0],
                                            threshold=threshold)
        return reformulated_query
def construct_keras_api_model(embedding_weights):
    # input_no_time_no_repeat = Input(shape=max_len, dtype='int32')
    # embedded_no_time_no_repeat = Embedding(
    #     creative_id_window,embedding_size,weights=[embedding_weights],trainable=False
    # )(input_no_time_no_repeat)
    # ==================================================================================
    Input_fix_creative_id = Input(shape=(math.ceil(time_id_max / period_days) *
                                         period_length),
                                  dtype='int32',
                                  name='input_fix_creative_id')
    Embedded_fix_creative_id = Embedding(
        creative_id_window,
        embedding_size,
        weights=[embedding_weights],
        trainable=False)(Input_fix_creative_id)
    # ==================================================================================
    # input_no_time_with_repeat = Input(shape=max_len, dtype='int32')
    # embedded_no_time_with_repeat = Embedding(creative_id_window,embedding_size,weights=[embedding_weights],trainable=False)(input_no_time_with_repeat)

    # ----------------------------------------------------------------------
    GM_x = keras.layers.GlobalMaxPooling1D()(Embedded_fix_creative_id)
    GM_x = Dropout(0.5)(GM_x)
    GM_x = Dense(embedding_size // 2, kernel_regularizer=l2(0.001))(GM_x)
    GM_x = BatchNormalization()(GM_x)
    GM_x = Activation('relu')(GM_x)
    GM_x = Dropout(0.5)(GM_x)
    GM_x = Dense(embedding_size // 4, kernel_regularizer=l2(0.001))(GM_x)
    GM_x = BatchNormalization()(GM_x)
    GM_x = Activation('relu')(GM_x)
    GM_x = Dense(1, 'sigmoid')(GM_x)

    # ----------------------------------------------------------------------
    GA_x = GlobalAveragePooling1D()(Embedded_fix_creative_id)
    GA_x = Dropout(0.5)(GA_x)
    GA_x = Dense(embedding_size // 2, kernel_regularizer=l2(0.001))(GA_x)
    GA_x = BatchNormalization()(GA_x)
    GA_x = Activation('relu')(GA_x)
    GA_x = Dropout(0.5)(GA_x)
    GA_x = Dense(embedding_size // 4, kernel_regularizer=l2(0.001))(GA_x)
    GA_x = BatchNormalization()(GA_x)
    GA_x = Activation('relu')(GA_x)
    GA_x = Dense(1, 'sigmoid')(GA_x)

    # ==================================================================================
    Conv_creative_id = Conv1D(embedding_size, 15, 5,
                              activation='relu')(Embedded_fix_creative_id)
    # ----------------------------------------------------------------------
    Conv_GM_x = MaxPooling1D(7)(Conv_creative_id)
    Conv_GM_x = Conv1D(embedding_size, 2, 1, activation='relu')(Conv_GM_x)
    Conv_GM_x = GlobalMaxPooling1D()(Conv_GM_x)
    Conv_GM_x = Dropout(0.5)(Conv_GM_x)
    Conv_GM_x = Dense(embedding_size // 2,
                      kernel_regularizer=l2(0.001))(Conv_GM_x)
    Conv_GM_x = BatchNormalization()(Conv_GM_x)
    Conv_GM_x = Activation('relu')(Conv_GM_x)
    Conv_GM_x = Dropout(0.5)(Conv_GM_x)
    Conv_GM_x = Dense(embedding_size // 4,
                      kernel_regularizer=l2(0.001))(Conv_GM_x)
    Conv_GM_x = BatchNormalization()(Conv_GM_x)
    Conv_GM_x = Activation('relu')(Conv_GM_x)
    Conv_GM_x = Dense(1, 'sigmoid')(Conv_GM_x)

    # ----------------------------------------------------------------------
    Conv_GA_x = AveragePooling1D(7)(Conv_creative_id)
    Conv_GA_x = Conv1D(embedding_size, 2, 1, activation='relu')(Conv_GA_x)
    Conv_GA_x = GlobalAveragePooling1D()(Conv_GA_x)
    Conv_GA_x = Dropout(0.5)(Conv_GA_x)
    Conv_GA_x = Dense(embedding_size // 2,
                      kernel_regularizer=l2(0.001))(Conv_GA_x)
    Conv_GA_x = BatchNormalization()(Conv_GA_x)
    Conv_GA_x = Activation('relu')(Conv_GA_x)
    Conv_GA_x = Dropout(0.5)(Conv_GA_x)
    Conv_GA_x = Dense(embedding_size // 4,
                      kernel_regularizer=l2(0.001))(Conv_GA_x)
    Conv_GA_x = BatchNormalization()(Conv_GA_x)
    Conv_GA_x = Activation('relu')(Conv_GA_x)
    Conv_GA_x = Dense(1, 'sigmoid')(Conv_GA_x)

    # ----------------------------------------------------------------------
    LSTM_x = Conv1D(embedding_size, 14, 7, activation='relu')(Conv_creative_id)
    LSTM_x = LSTM(embedding_size, return_sequences=True)(LSTM_x)
    LSTM_x = LSTM(embedding_size, return_sequences=True)(LSTM_x)
    LSTM_x = LSTM(embedding_size)(LSTM_x)
    LSTM_x = Dropout(0.5)(LSTM_x)
    LSTM_x = Dense(embedding_size // 2, kernel_regularizer=l2(0.001))(LSTM_x)
    LSTM_x = BatchNormalization()(LSTM_x)
    LSTM_x = Activation('relu')(LSTM_x)
    LSTM_x = Dropout(0.5)(LSTM_x)
    LSTM_x = Dense(embedding_size // 4, kernel_regularizer=l2(0.001))(LSTM_x)
    LSTM_x = BatchNormalization()(LSTM_x)
    LSTM_x = Activation('relu')(LSTM_x)
    LSTM_x = Dense(1, 'sigmoid')(LSTM_x)

    # ----------------------------------------------------------------------
    concatenated = concatenate([
        GM_x,
        GA_x,
        Conv_GM_x,
        Conv_GA_x,
        LSTM_x,
    ],
                               axis=-1)
    output_tensor = Dense(1, 'sigmoid')(concatenated)

    keras_api_model = Model(
        [
            # input_no_time_no_repeat,
            Input_fix_creative_id,
            # input_no_time_with_repeat,
        ],
        output_tensor)
    keras_api_model.summary()
    plot_model(keras_api_model, to_file='model/keras_api_word2vec_model.png')
    print('-' * 5 + ' ' * 3 + "编译模型" + ' ' * 3 + '-' * 5)
    keras_api_model.compile(optimizer=optimizers.RMSprop(lr=RMSProp_lr),
                            loss=losses.binary_crossentropy,
                            metrics=[metrics.binary_accuracy])
    return keras_api_model
Пример #17
0
class Autoencoder(object):
    """docstring for Autoencoder"""

    # def __init__(self, sample_weights, sample_weight_mode):
    def __init__(self, epochs, verbosity):
        self.epochs = epochs
        self.batch_size = 256
        self.shuffle = True
        self.validation_split = 0.05
        self.optimizer = 'adadelta'
        self.loss = 'mse'
        self.verbosity = verbosity

        self.code_layer_type = None
        self.model = None
        self.sample_weight_mode = None
        self.sample_weights = None
        self.y_true = None
        self.y_pred = None

    def model(self, code_layer_type, input_dim, code_dim):
        self.code_layer_type = code_layer_type
        assert len(code_dim) > 0

        if self.code_layer_type == 'lstm':
            assert len(input_dim) == 2
            input_data = Input(shape=(input_dim[0], input_dim[1]))

            if len(code_dim) == 1:
                encoded = LSTM(code_dim[0])(input_data)
                decoded = RepeatVector(input_dim[0])(encoded)
            elif len(code_dim) > 1:
                encoded = input_data
                for i, units in enumerate(code_dim):
                    if i == len(code_dim) - 1:
                        encoded = LSTM(units)(encoded)
                        continue
                    encoded = LSTM(units, return_sequences=True)(encoded)

                for i, units in enumerate(reversed(code_dim)):
                    if i == 1:
                        decoded = LSTM(units, return_sequences=True)(
                            RepeatVector(input_dim[0])(encoded))
                    elif i > 1:
                        decoded = LSTM(units, return_sequences=True)(decoded)
            else:
                raise ValueError("The codDim must be over 0.")

            decoded = LSTM(input_dim[-1], return_sequences=True)(decoded)
            self.model = Model(input_data, decoded)

        elif self.code_layer_type == 'dense':
            assert len(input_dim) == 1
            input_data = Input(shape=(input_dim[0], ))
            encoded = input_data
            for i, units in enumerate(code_dim):
                encoded = Dense(units, activation='relu')(encoded)
            decoded = Dense(input_dim[-1], activation='sigmoid')(encoded)
            self.model = Model(input_data, decoded)

        elif self.code_layer_type == 'cov':
            pass

    def modelMasking(self, code_layer_type, input_dim, code_dim):

        self.code_layer_type = code_layer_type
        assert len(code_dim) > 0

        if self.code_layer_type == 'lstm':
            assert len(input_dim) == 2
            input_data = Input(shape=(input_dim[0], input_dim[1]))
            mask = Masking(mask_value=0.)(input_data)
            if len(code_dim) == 1:
                encoded = LSTM(code_dim[0])(mask)
                decoded = RepeatVector(input_dim[0])(encoded)
            elif len(code_dim) > 1:
                encoded = mask
                for i, units in enumerate(code_dim):
                    if i == len(code_dim) - 1:
                        encoded = LSTM(units)(encoded)
                        continue
                    encoded = LSTM(units, return_sequences=True)(encoded)

                for i, units in enumerate(reversed(code_dim)):
                    if i == 1:
                        decoded = LSTM(units, return_sequences=True)(
                            RepeatVector(input_dim[0])(encoded))
                    elif i > 1:
                        decoded = LSTM(units, return_sequences=True)(decoded)
            else:
                raise ValueError("The codDim must be over 0.")

            decoded = LSTM(input_dim[-1], return_sequences=True)(decoded)
            self.model = Model(input_data, decoded)

        elif self.code_layer_type == 'cov':
            pass
        elif self.code_layer_type == 'dense':
            assert len(input_dim) == 1
            input_data = Input(shape=(input_dim[0], ))
            # encoded = input_data
            # for i, units in enumerate(codeDim):
            # 	encoded = Dense(units, activation='relu')(encoded)
            # decoded = Dense(inputDim[-1], activation='sigmoid')(encoded)
            # self.model = Model(input_data, decoded)
            encoder = Dense(
                code_dim[0],
                activation="tanh",
                activity_regularizer=regularizers.l1(10e-5))(input_data)
            encoder = Dense(int(code_dim[0] / 2), activation="relu")(encoder)
            decoder = Dense(int(code_dim[0] / 2), activation='tanh')(encoder)
            decoder = Dense(input_dim[0], activation='relu')(decoder)
            self.model = Model(input_data, decoder)

    def compile(self, *args):

        if len(args) == 0:
            self.model.compile(optimizer=self.optimizer, loss=self.loss)
        elif len(args) == 1:
            if args[0] == 'temporal':
                self.sample_weight_mode = args[0]
                self.model.compile(optimizer=self.optimizer,
                                   loss=self.loss,
                                   sample_weight_mode=self.sample_weight_mode)
            elif args[0] == 'customFunction':
                self.model.compile(optimizer=self.optimizer,
                                   loss=self.weighted_vector_mse)
            else:
                raise ValueError(
                    "Invalid maskType, please input 'sample_weights' or 'customFunction'"
                )
        else:
            raise ValueError("argument # must be 0 or 1.")

    def fit(self, *args):

        # early_stopping = EarlyStopping(monitor='val_loss', min_delta=0.01, patience=3, verbose=1, mode='auto')
        if len(args) == 2:
            if args[1] == 'nor':
                self.model.fit(args[0],
                               args[0],
                               epochs=self.epochs,
                               batch_size=self.batch_size,
                               shuffle=self.shuffle,
                               validation_split=self.validation_split,
                               verbose=self.verbosity)
            # callbacks = [early_stopping])
            elif args[1] == 'rev':
                self.model.fit(args[0],
                               np.flip(args[0], 1),
                               epochs=self.epochs,
                               batch_size=self.batch_size,
                               shuffle=self.shuffle,
                               validation_split=self.validation_split,
                               verbose=self.verbosity)
            # callbacks=[early_stopping])
            else:
                raise ValueError(
                    "decoding sequence type: 'normal' or 'reverse'.")

        elif len(args) == 3:
            self.sample_weights = args[2]
            if args[1] == 'nor':
                self.model.fit(args[0],
                               args[0],
                               epochs=self.epochs,
                               batch_size=self.batch_size,
                               shuffle=self.shuffle,
                               validation_split=self.validation_split,
                               sample_weight=self.sample_weights,
                               verbose=self.verbosity)
            # callbacks=[early_stopping])
            elif args[1] == 'rev':
                self.model.fit(args[0],
                               np.flip(args[0], 1),
                               epochs=self.epochs,
                               batch_size=self.batch_size,
                               shuffle=self.shuffle,
                               validation_split=self.validation_split,
                               sample_weight=self.sample_weights,
                               verbose=self.verbosity)
            # callbacks=[early_stopping])
            else:
                raise ValueError(
                    "Please input, 'data', 'nor' or 'rev', 'sample_weights'")

    def predict(self, data):
        return self.model.predict(data)

    def weighted_vector_mse(self, y_true, y_pred):

        self.y_true = y_true
        self.y_pred = y_pred

        weight = T.ceil(self.y_true)
        loss = T.square(weight * (self.y_true - self.y_pred))
        # use appropriate relations for other objectives. E.g, for binary_crossentropy:
        # loss = weights * (y_true * T.log(y_pred) + (1.0 - y_true) * T.log(1.0 - y_pred))
        return T.mean(T.sum(loss, axis=-1))