Пример #1
0
  def test_minibatch_mean_stddev_4d_images_returns_scalar(self):
    x = tf.constant([[[[1, 2, 3], [4, 5, 6]], [[7, 8, 9], [10, 11, 12]]],
                     [[[0, 0, 0], [-1, -2, -3]], [[1, -2, 2], [2, 5, 3]]]],
                    dtype=tf.float32)
    with self.cached_session() as sess:
      output_np = sess.run(layers.minibatch_mean_stddev(x))

    self.assertAlmostEqual(output_np, 3.0416667, 5)
Пример #2
0
def discriminator(x,
                  progress,
                  num_filters_fn,
                  resolution_schedule,
                  num_blocks=None,
                  kernel_size=3,
                  scope='progressive_gan_discriminator',
                  reuse=None):
    """Discriminator network for the progressive GAN model.

  Args:
    x: A `Tensor`of NHWC format representing images of size `resolution`.
    progress: A scalar float `Tensor` of training progress.
    num_filters_fn: A function that maps `block_id` to # of filters for the
      block.
    resolution_schedule: An object of `ResolutionSchedule`.
    num_blocks: An integer of number of blocks. None means maximum number of
      blocks, i.e. `resolution.schedule.num_resolutions`. Defaults to None.
    kernel_size: An integer of convolution kernel size.
    scope: A string or variable scope.
    reuse: Whether to reuse `scope`. Defaults to None which means to inherit the
      reuse option of the parent scope.

  Returns:
    A `Tensor` of model output and a dictionary of model end points.
  """
    if num_blocks is None:
        num_blocks = resolution_schedule.num_resolutions

    def _conv2d(scope, x, kernel_size, filters, padding='SAME'):
        return layers.custom_conv2d(x=x,
                                    filters=filters,
                                    kernel_size=kernel_size,
                                    padding=padding,
                                    activation=tf.nn.leaky_relu,
                                    he_initializer_slope=0.0,
                                    scope=scope)

    def _from_rgb(x, block_id):
        return _conv2d('from_rgb', x, 1, num_filters_fn(block_id))

    end_points = {}

    with tf.compat.v1.variable_scope(scope, reuse=reuse):
        x0 = x
        end_points['rgb'] = x0

        lods = []
        for block_id in range(num_blocks, 0, -1):
            with tf.compat.v1.variable_scope(block_name(block_id)):
                scale = resolution_schedule.scale_factor(block_id)
                lod = layers.downscale(x0, scale)
                end_points['downscaled_rgb_{}'.format(block_id)] = lod
                lod = _from_rgb(lod, block_id)
                # alpha_i is used to replace lod_select.
                alpha = _discriminator_alpha(block_id, progress)
                end_points['alpha_{}'.format(block_id)] = alpha
            lods.append((lod, alpha))

        lods_iter = iter(lods)
        x, _ = next(lods_iter)
        for block_id in range(num_blocks, 1, -1):
            with tf.compat.v1.variable_scope(block_name(block_id)):
                x = _conv2d('conv0', x, kernel_size, num_filters_fn(block_id))
                x = _conv2d('conv1', x, kernel_size,
                            num_filters_fn(block_id - 1))
                x = layers.downscale(x, resolution_schedule.scale_base)
                lod, alpha = next(lods_iter)
                x = alpha * lod + (1.0 - alpha) * x

        with tf.compat.v1.variable_scope(block_name(1)):
            x = layers.scalar_concat(x, layers.minibatch_mean_stddev(x))
            x = _conv2d('conv0', x, kernel_size, num_filters_fn(1))
            x = _conv2d('conv1', x, resolution_schedule.start_resolutions,
                        num_filters_fn(0), 'VALID')
            end_points['last_conv'] = x
            logits = layers.custom_dense(x=x, units=1, scope='logits')
            end_points['logits'] = logits

    return logits, end_points