Пример #1
0
def add_signature(key, inputs, outputs):
    """Adds a signature to current graph.

  Args:
    key: Signature key as a string.
    inputs: Signature inputs as a map from string to Tensor or SparseTensor.
    outputs: Signature outputs as a map from string to Tensor or SparseTensor.
      (Recall that a Variable is not a Tensor, but Variable.value() is.)

  Raises:
    TypeError: if the arguments have the wrong types.
  """
    _check_dict_maps_to_tensors_or_sparse_tensors(inputs)
    _check_dict_maps_to_tensors_or_sparse_tensors(outputs)
    input_info = {
        input_name: tf_v1.saved_model.utils.build_tensor_info(tensor)
        for input_name, tensor in inputs.items()
    }
    output_info = {
        output_name: tf_v1.saved_model.utils.build_tensor_info(tensor)
        for output_name, tensor in outputs.items()
    }
    signature = tf_v1.saved_model.signature_def_utils.build_signature_def(
        input_info, output_info)
    tf_v1.add_to_collection(_SIGNATURE_COLLECTION, (key, signature))
Пример #2
0
def register_module_for_export(module, export_name):
    """Register a Module to be exported under `export_name`.

  DEPRECATION NOTE: This belongs to the hub.Module API and file format for TF1.

  This function registers `module` to be exported by `LatestModuleExporter`
  under a subdirectory named `export_name`.

  Note that `export_name` must be unique for each module exported from the
  current graph. It only controls the export subdirectory name and it has
  no scope effects such as the `name` parameter during Module instantiation.

  Args:
    module: Module instance to be exported.
    export_name: subdirectory name to use when performing the export.

  Raises:
    ValueError: if `export_name` is already taken in the current graph.
  """
    for used_name, _ in tf_v1.get_collection(_EXPORT_MODULES_COLLECTION):
        if used_name == export_name:
            raise ValueError(
                "There is already a module registered to be exported as %r" %
                export_name)
    tf_v1.add_to_collection(_EXPORT_MODULES_COLLECTION, (export_name, module))
Пример #3
0
def attach_bytes(key, the_bytes):
    """Adds a ModuleAttachment to the current graph.

  Args:
    key: A string with the unique key of the attachment.
    the_bytes: A bytes object with the serialized attachment.
  """
    tf_v1.add_to_collection(
        _ATTACHMENT_COLLECTION_INTERNAL,
        module_attachment_pb2.ModuleAttachment(key=key, value=the_bytes))
    def createSavedModel(self):
        model_dir = os.path.join(self.get_temp_dir(), "saved_model")
        with tf.Graph().as_default():
            x = tf_v1.placeholder(dtype=tf.float32, shape=[None, 3])
            w = tf_v1.get_variable("weights", shape=[])
            y = x * w
            tf_v1.add_to_collection(_EXTRA_COLLECTION, y)

            init_op = tf_v1.assign(w, 2)

            with tf_v1.Session() as session:
                session.run(init_op)
                tf_v1.saved_model.simple_save(
                    session,
                    model_dir,
                    inputs={"x": x},
                    outputs={"y": y},
                )
        return model_dir