Пример #1
0
def test_mnist_tutorial_uncompressed():
  """test_mnist_tutorial_uncompressed"""
  image_filename = os.path.join(
      os.path.dirname(os.path.abspath(__file__)),
      "test_mnist",
      "t10k-images-idx3-ubyte")
  label_filename = os.path.join(
      os.path.dirname(os.path.abspath(__file__)),
      "test_mnist",
      "t10k-labels-idx1-ubyte")
  d_train = mnist_io.MNISTDataset(
      image_filename,
      label_filename,
      batch=1)

  d_train = d_train.map(lambda x, y: (tf.image.convert_image_dtype(x, tf.float32), y))

  model = tf.keras.models.Sequential([
      tf.keras.layers.Flatten(input_shape=(28, 28)),
      tf.keras.layers.Dense(512, activation=tf.nn.relu),
      tf.keras.layers.Dropout(0.2),
      tf.keras.layers.Dense(10, activation=tf.nn.softmax)
  ])
  model.compile(optimizer='adam',
                loss='sparse_categorical_crossentropy',
                metrics=['accuracy'])

  model.fit(d_train, epochs=5)
Пример #2
0
    def test_mnist_dataset(self):
        """Test case for MNIST Dataset.
    """
        mnist_filename = os.path.join(
            os.path.dirname(os.path.abspath(__file__)), "test_mnist",
            "mnist.npz")
        with np.load(mnist_filename) as f:
            (x_test, y_test) = f['x_test'], f['y_test']

        image_filename = os.path.join(
            os.path.dirname(os.path.abspath(__file__)), "test_mnist",
            "t10k-images-idx3-ubyte.gz")
        label_filename = os.path.join(
            os.path.dirname(os.path.abspath(__file__)), "test_mnist",
            "t10k-labels-idx1-ubyte.gz")

        image_dataset = mnist_io.MNISTImageDataset(image_filename, batch=3)
        label_dataset = mnist_io.MNISTLabelDataset(label_filename, batch=3)

        dataset = mnist_io.MNISTDataset(image_filename, label_filename)

        iterator = data.Dataset.zip(
            (image_dataset, label_dataset)).make_initializable_iterator()
        init_op = iterator.initializer
        get_next = iterator.get_next()

        with self.cached_session() as sess:
            sess.run(init_op)
            l = len(y_test)
            for i in range(0, l - 1, 3):
                v_x = x_test[i:i + 3]
                v_y = y_test[i:i + 3]
                m_x, m_y = sess.run(get_next)
                self.assertAllEqual(v_y, m_y)
                self.assertAllEqual(v_x, m_x)
            v_x = x_test[l - 1:l]
            v_y = y_test[l - 1:l]
            m_x, m_y = sess.run(get_next)
            self.assertAllEqual(v_y, m_y)
            self.assertAllEqual(v_x, m_x)
            with self.assertRaises(errors.OutOfRangeError):
                sess.run(get_next)

        iterator = dataset.make_initializable_iterator()
        init_op = iterator.initializer
        get_next = iterator.get_next()

        with self.cached_session() as sess:
            sess.run(init_op)
            l = len(y_test)
            for i in range(l):
                v_x = x_test[i]
                v_y = y_test[i]
                m_x, m_y = sess.run(get_next)
                self.assertAllEqual(v_y, m_y)
                self.assertAllEqual(v_x, m_x)
            with self.assertRaises(errors.OutOfRangeError):
                sess.run(get_next)
Пример #3
0
def test_mnist_dataset():
    """Test case for MNIST Dataset.
  """
    mnist_filename = os.path.join(os.path.dirname(os.path.abspath(__file__)),
                                  "test_mnist", "mnist.npz")
    with np.load(mnist_filename) as f:
        (x_test, y_test) = f['x_test'], f['y_test']

    image_filename = os.path.join(os.path.dirname(os.path.abspath(__file__)),
                                  "test_mnist", "t10k-images-idx3-ubyte.gz")
    label_filename = os.path.join(os.path.dirname(os.path.abspath(__file__)),
                                  "test_mnist", "t10k-labels-idx1-ubyte.gz")

    image_dataset = mnist_io.MNISTImageDataset(image_filename)
    label_dataset = mnist_io.MNISTLabelDataset(label_filename)

    i = 0
    for m_x in image_dataset:
        v_x = x_test[i]
        assert np.alltrue(v_x == m_x.numpy())
        i += 1
    assert i == len(y_test)

    i = 0
    for m_y in label_dataset:
        v_y = y_test[i]
        assert np.alltrue(v_y == m_y.numpy())
        i += 1
    assert i == len(y_test)

    dataset = mnist_io.MNISTDataset(image_filename, label_filename)

    i = 0
    for (m_x, m_y) in dataset:
        v_x = x_test[i]
        v_y = y_test[i]
        assert np.alltrue(v_y == m_y.numpy())
        assert np.alltrue(v_x == m_x.numpy())
        i += 1
    assert i == len(y_test)