Пример #1
0
 def testGammaGammaSampleConcentrationCausesBroadcast(self):
     gg = tfd.GammaGamma(concentration=[1., 2.],
                         mixing_concentration=1.,
                         mixing_rate=1.)
     n = 3
     samples = self.evaluate(gg.sample(n, seed=tfp_test_util.test_seed()))
     self.assertAllEqual((n, 2), samples.shape)
Пример #2
0
    def testGammaGammaLogPDF(self):
        batch_size = 5
        alpha = tf.constant([2.] * batch_size, dtype=np.float32)
        alpha0 = tf.constant([3.] * batch_size, dtype=np.float32)
        beta0 = tf.constant([4.] * batch_size, dtype=np.float32)
        x = np.array([6.] * batch_size, dtype=np.float32)

        # Let
        #   alpha = concentration = 2.
        #   alpha0 = mixing_concentration = 3.,
        #   beta0 = mixing_rate = 4.
        #
        # See the PDF derivation in formula (1) of
        # http://www.brucehardie.com/notes/025/gamma_gamma.pdf.
        #
        #               x**(alpha - 1) * beta0**alpha0
        # prob(x=6) = ------------------------------------------------
        #             B(alpha, alpha0) * (x + beta0)**(alpha + alpha0)
        #
        #                6 * 4**3
        #           = --------------- = 0.04608
        #             B(2, 3) * 10**5
        #
        # log_prob(x=6) = -3.077376
        expected_log_pdf = [-3.077376] * batch_size

        gg = tfd.GammaGamma(concentration=alpha,
                            mixing_concentration=alpha0,
                            mixing_rate=beta0)
        log_pdf = gg.log_prob(x)
        self.assertEqual(log_pdf.shape, (5, ))
        self.assertAllClose(self.evaluate(log_pdf), expected_log_pdf)
 def testAssertValidSample(self):
     gg = tfd.GammaGamma(concentration=2.,
                         mixing_concentration=.1,
                         mixing_rate=3.,
                         validate_args=True)
     with self.assertRaisesOpError('Sample must be non-negative.'):
         self.evaluate(gg.log_prob(-.1))
Пример #4
0
 def testGammaGammaLogPDFAtZero(self):
     # When concentration = 1., the log pdf should be finite.
     gg = tfd.GammaGamma(concentration=1.,
                         mixing_concentration=[0.01, 0.1, 2, 3],
                         mixing_rate=[0.01, 0.1, 2, 3])
     log_pdf = self.evaluate(gg.log_prob(0.))
     self.assertAllEqual(np.ones_like(log_pdf, dtype=np.bool),
                         np.isfinite(log_pdf))
 def testSupportBijectorOutsideRange(self):
     dist = tfd.GammaGamma(concentration=[3., 2., 5.4],
                           mixing_concentration=2.,
                           mixing_rate=1.,
                           validate_args=True)
     with self.assertRaisesOpError('must be greater than or equal to 0'):
         dist.experimental_default_event_space_bijector().inverse(
             [-4.2, -0.3, -1e-6])
Пример #6
0
    def testGammaGammaShape(self):
        gg = tfd.GammaGamma(concentration=[[2.], [4.]],
                            mixing_concentration=[1., 2., 3.],
                            mixing_rate=0.5)

        self.assertAllEqual(self.evaluate(gg.batch_shape_tensor()), [2, 3])
        self.assertEqual(gg.batch_shape, tf.TensorShape([2, 3]))
        self.assertAllEqual(self.evaluate(gg.event_shape_tensor()), [])
        self.assertEqual(gg.event_shape, tf.TensorShape([]))
Пример #7
0
    def testGammaGammaLogPDFAtZero(self):
        # When concentration = 1., the log pdf should be finite.
        gg = tfd.GammaGamma(concentration=1.,
                            mixing_concentration=[0.01, 0.1, 2, 3],
                            mixing_rate=[0.01, 0.1, 2, 3],
                            validate_args=True)
        log_pdf = self.evaluate(gg.log_prob(0.))
        self.assertAllEqual(np.ones_like(log_pdf, dtype=np.bool_),
                            np.isfinite(log_pdf))

        gg = tfd.GammaGamma(concentration=2.,
                            mixing_concentration=[0.01, 0.1, 2, 3],
                            mixing_rate=[0.01, 0.1, 2, 3],
                            validate_args=True)
        log_pdf = self.evaluate(gg.log_prob(0.))
        self.assertAllNegativeInf(log_pdf)

        pdf = self.evaluate(gg.prob(0.))
        self.assertAllEqual(pdf, np.zeros_like(pdf))
Пример #8
0
    def testGammaGammaMeanAllDefined(self):
        alpha_v = np.array([2., 4.])
        alpha0_v = np.array([3., 6.])
        beta0_v = np.array([4., 8.])
        expected_mean = alpha_v * beta0_v / (alpha0_v - 1.)

        gg = tfd.GammaGamma(concentration=alpha_v,
                            mixing_concentration=alpha0_v,
                            mixing_rate=beta0_v)
        self.assertEqual(gg.mean().shape, (2, ))
        self.assertAllClose(self.evaluate(gg.mean()), expected_mean)
Пример #9
0
  def testGammaGammaLogPDFMultidimensionalBroadcasting(self):
    batch_size = 6
    alpha = tf.constant([[2., 4.]] * batch_size)
    alpha0 = tf.constant(3.0)
    beta0 = tf.constant([4., 8.])
    x = np.array([[2.5, 2.5, 4.0, 0.1, 1.0, 2.0]], dtype=np.float32).T

    gg = tfd.GammaGamma(
        concentration=alpha, mixing_concentration=alpha0, mixing_rate=beta0)
    log_pdf = gg.log_prob(x)
    self.assertEqual(log_pdf.shape, (6, 2))
Пример #10
0
    def testGammaGammaMeanNanStats(self):
        # Mean will not be defined for the first entry.
        alpha_v = np.array([2., 4.])
        alpha0_v = np.array([1., 6.])
        beta0_v = np.array([4., 8.])
        expected_mean = np.array([np.nan, 6.4])

        gg = tfd.GammaGamma(concentration=alpha_v,
                            mixing_concentration=alpha0_v,
                            mixing_rate=beta0_v)
        self.assertEqual(gg.mean().shape, (2, ))
        self.assertAllClose(self.evaluate(gg.mean()), expected_mean)
Пример #11
0
    def testGammaGammaMeanAllowNanStats(self):
        # Mean will not be defined for the first entry.
        alpha_v = np.array([2., 4.])
        alpha0_v = np.array([1., 6.])
        beta0_v = np.array([4., 8.])

        gg = tfd.GammaGamma(concentration=alpha_v,
                            mixing_concentration=alpha0_v,
                            mixing_rate=beta0_v,
                            allow_nan_stats=False)
        with self.assertRaisesOpError('x < y'):
            self.evaluate(gg.mean())
Пример #12
0
    def testGammaGammaInvalidArgs(self):
        with self.assertRaisesOpError('`concentration` must be positive'):
            gg = tfd.GammaGamma(concentration=-1.,
                                mixing_concentration=2.,
                                mixing_rate=0.5,
                                validate_args=True)
            self.evaluate(gg.mean())

        with self.assertRaisesOpError(
                '`mixing_concentration` must be positive'):
            gg = tfd.GammaGamma(concentration=1.,
                                mixing_concentration=-2.,
                                mixing_rate=0.5,
                                validate_args=True)
            self.evaluate(gg.mean())

        with self.assertRaisesOpError('`mixing_rate` must be positive'):
            gg = tfd.GammaGamma(concentration=1.,
                                mixing_concentration=2.,
                                mixing_rate=-0.5,
                                validate_args=True)
            self.evaluate(gg.mean())
Пример #13
0
    def testGammaGammaSample(self):
        alpha_v = 2.0
        alpha0_v = 3.0
        beta0_v = 5.0
        n = 100000

        gg = tfd.GammaGamma(concentration=alpha_v,
                            mixing_concentration=alpha0_v,
                            mixing_rate=beta0_v)
        samples = gg.sample(n, seed=tfp_test_util.test_seed())
        sample_values = self.evaluate(samples)
        self.assertEqual(samples.shape, (n, ))
        self.assertEqual(sample_values.shape, (n, ))
        self.assertAllClose(sample_values.mean(),
                            self.evaluate(gg.mean()),
                            rtol=.02)
Пример #14
0
  def testGammaGammaSampleMultidimensional(self):
    alpha_v = np.array([np.arange(5, 25, 2, dtype=np.float32)])  # 1 x 10
    alpha0_v = 5.
    beta0_v = np.array([np.arange(5, 15, 2, dtype=np.float32)]).T  # 5 x 1
    n = 75000

    gg = tfd.GammaGamma(
        concentration=alpha_v,
        mixing_concentration=alpha0_v,
        mixing_rate=beta0_v)
    samples = gg.sample(n, seed=tfp_test_util.test_seed())
    sample_values = self.evaluate(samples)
    expected_shape = (n, beta0_v.shape[0], alpha_v.shape[-1])
    self.assertEqual(samples.shape, expected_shape)
    self.assertEqual(sample_values.shape, expected_shape)
    self.assertAllClose(
        self.evaluate(gg.variance()), sample_values.var(axis=0), rtol=.6)
    self.assertAllClose(
        self.evaluate(gg.mean()), sample_values.mean(axis=0), rtol=.02)