Пример #1
0
def synthetic_pattern_variable_program(include_types=True):
    """A program that tests product types.

  Args:
    include_types: If False, we omit types on the variables, requiring a type
        inference pass.

  Returns:
    program: `instructions.Program`.
  """
    block = instructions.Block([
        instructions.PrimOp(["inp"], "many", lambda x: (x + 1,
                                                        (x + 2, x + 3))),
        instructions.PrimOp(["many"], ["one", "two"], lambda x: x),
    ], instructions.halt_op())

    leaf = instructions.TensorType(np.int64, ())
    the_vars = {
        "inp": instructions.Type(leaf),
        "many": instructions.Type((leaf, (leaf, leaf))),
        "one": instructions.Type(leaf),
        "two": instructions.Type((leaf, leaf)),
    }

    if not include_types:
        _strip_types(the_vars)
    return instructions.Program(instructions.ControlFlowGraph([block]), [],
                                the_vars, ["inp"], "two")
Пример #2
0
def single_if_program():
    """Single if program: 'if (input > 1) ans = 2; else ans = 0; return ans;'.

  Returns:
    program: `instructions.Program` with a simple conditional.
  """
    entry = instructions.Block()
    then_ = instructions.Block()
    else_ = instructions.Block()
    entry.assign_instructions([
        instructions.PrimOp(["input"], "cond", lambda n: n > 1),
        instructions.BranchOp("cond", then_, else_),
    ])
    then_.assign_instructions([
        instructions.PrimOp([], "answer", lambda: 2),
        instructions.halt_op(),
    ])
    else_.assign_instructions([
        instructions.PrimOp([], "answer", lambda: 0),
        instructions.halt_op(),
    ])

    single_if_blocks = [entry, then_, else_]
    # pylint: disable=bad-whitespace
    single_if_vars = {
        "input": instructions.single_type(np.int64, ()),
        "cond": instructions.single_type(np.bool, ()),
        "answer": instructions.single_type(np.int64, ()),
    }

    return instructions.Program(
        instructions.ControlFlowGraph(single_if_blocks), [], single_if_vars,
        ["input"], "answer")
def shape_sequence_program(shape_sequence):
    """Program that writes into `answer` zeros having a sequence of shapes.

  This enables us to test that the final inferred shape is the broadcast of all
  intermediate shapes.

  Args:
    shape_sequence: The sequence of intermediate shapes.

  Returns:
    program: `instructions.Program` which returns an arbitrary value.
  """
    block_ops = []

    def op(shape, ans):
        return np.zeros(shape, dtype=np.array(ans).dtype),

    for shape in shape_sequence:
        # We use a partial instead of a lambda in order to capture a copy of shape.
        block_ops.append(
            instructions.PrimOp(['ans'], ['ans'], functools.partial(op,
                                                                    shape)))
    shape_seq_block = instructions.Block(block_ops, instructions.halt_op())
    shape_seq_vars = {
        'ans': instructions.Type(None),
        instructions.pc_var: instructions.single_type(np.int64, ()),
    }
    return instructions.Program(
        instructions.ControlFlowGraph([shape_seq_block]), [], shape_seq_vars,
        ['ans'], ['ans'])
Пример #4
0
def constant_program():
    """Constant program: 'ans=1; ans=2; return ans;'.

  Returns:
    program: `instructions.Program` which returns a constant value.
  """
    constant_block = instructions.Block([
        instructions.PrimOp([], "answer", lambda: 1),
        instructions.PrimOp([], "answer", lambda: 2),
    ], instructions.halt_op())

    constant_vars = {
        "answer": instructions.single_type(np.int64, ()),
    }

    return instructions.Program(
        instructions.ControlFlowGraph([constant_block]), [], constant_vars,
        ["answer"], "answer")
Пример #5
0
def synthetic_pattern_program():
    """A program that tests pattern matching of `PrimOp` outputs.

  Returns:
    program: `instructions.Program`.
  """
    block = instructions.Block([
        instructions.PrimOp([], ("one", ("five", "three")), lambda: (1,
                                                                     (2, 3))),
        instructions.PrimOp([], (("four", "five"), "six"), lambda:
                            ((4, 5), 6)),
    ], instructions.halt_op())

    the_vars = {
        "one": instructions.single_type(np.int64, ()),
        "three": instructions.single_type(np.int64, ()),
        "four": instructions.single_type(np.int64, ()),
        "five": instructions.single_type(np.int64, ()),
        "six": instructions.single_type(np.int64, ()),
    }

    return instructions.Program(instructions.ControlFlowGraph([block]), [],
                                the_vars, [],
                                (("one", "three"), "four", ("five", "six")))
Пример #6
0
def pea_nuts_program(latent_shape, choose_depth, step_state):
    """Synthetic program usable for benchmarking VM performance.

  This program is intended to resemble the control flow and scaling
  parameters of the NUTS algorithm, without any of the complexity.
  Hence the name.

  Each batch member looks like:

    state = ... # shape latent_shape

    def recur(depth, state):
      if depth > 1:
        state1 = recur(depth - 1, state)
        state2 = state1 + 1
        state3 = recur(depth - 1, state2)
        ans = state3 + 1
      else:
        ans = step_state(state)  # To simulate NUTS, something heavy
      return ans

    while count > 0:
      count = count - 1
      depth = choose_depth(count)
      state = recur(depth, state)

  Args:
    latent_shape: Python `tuple` of `int` giving the event shape of the
      latent state.
    choose_depth: Python `Tensor -> Tensor` callable.  The input
      `Tensor` will have shape `[batch_size]` (i.e., scalar event
      shape), and give the iteration of the outer while loop the
      thread is in.  The `choose_depth` function must return a `Tensor`
      of shape `[batch_size]` giving the depth, for each thread,
      to which to call `recur` in this iteration.
    step_state: Python `Tensor -> Tensor` callable.  The input and
      output `Tensor`s will have shape `[batch_size] + latent_shape`.
      This function is expected to update the state, and represents
      the "real work" versus which the VM overhead is being measured.

  Returns:
    program: `instructions.Program` that runs the above benchmark.
  """
    entry = instructions.Block()
    top_body = instructions.Block()
    finish_body = instructions.Block()
    enter_recur = instructions.Block()
    recur_body_1 = instructions.Block()
    recur_body_2 = instructions.Block()
    recur_body_3 = instructions.Block()
    recur_base_case = instructions.Block()
    # pylint: disable=bad-whitespace
    entry.assign_instructions([
        instructions.PrimOp(["count"], "cond",
                            lambda count: count > 0),  # cond = count > 0
        instructions.BranchOp("cond", top_body,
                              instructions.halt()),  # if cond
    ])
    top_body.assign_instructions([
        instructions.PopOp(["cond"]),  #   done with cond now
        instructions.PrimOp(["count"], "ctm1",
                            lambda count: count - 1),  #   ctm1 = count - 1
        instructions.PopOp(["count"]),  #   done with count now
        instructions.push_op(["ctm1"], ["count"]),  #   count = ctm1
        instructions.PopOp(["ctm1"]),  #   done with ctm1
        instructions.PrimOp(["count"], "depth",
                            choose_depth),  #   depth = choose_depth(count)
        instructions.push_op(
            ["depth", "state"],
            ["depth", "state"]),  #   state = recur(depth, state)
        instructions.PopOp(["depth", "state"]),  #     done with depth, state
        instructions.PushGotoOp(finish_body, enter_recur),
    ])
    finish_body.assign_instructions([
        instructions.push_op(["ans"], ["state"]),  #     ...
        instructions.PopOp(["ans"]),  #     pop callee's "ans"
        instructions.GotoOp(entry),  # end of while body
    ])
    # Definition of recur begins here
    enter_recur.assign_instructions([
        instructions.PrimOp(["depth"], "cond1",
                            lambda depth: depth > 0),  # cond1 = depth > 0
        instructions.BranchOp("cond1", recur_body_1,
                              recur_base_case),  # if cond1
    ])
    recur_body_1.assign_instructions([
        instructions.PopOp(["cond1"]),  #   done with cond1 now
        instructions.PrimOp(["depth"], "dm1",
                            lambda depth: depth - 1),  #   dm1 = depth - 1
        instructions.PopOp(["depth"]),  #   done with depth
        instructions.push_op(
            ["dm1", "state"],
            ["depth", "state"]),  #   state1 = recur(dm1, state)
        instructions.PopOp(["state"]),  #     done with state
        instructions.PushGotoOp(recur_body_2, enter_recur),
    ])
    recur_body_2.assign_instructions([
        instructions.push_op(["ans"], ["state1"]),  #     ...
        instructions.PopOp(["ans"]),  #     pop callee's "ans"
        instructions.PrimOp(["state1"], "state2",
                            lambda state: state + 1),  #   state2 = state1 + 1
        instructions.PopOp(["state1"]),  #   done with state1
        instructions.push_op(
            ["dm1", "state2"],
            ["depth", "state"]),  #   state3 = recur(dm1, state2)
        instructions.PopOp(["dm1", "state2"]),  #     done with dm1, state2
        instructions.PushGotoOp(recur_body_3, enter_recur),
    ])
    recur_body_3.assign_instructions([
        instructions.push_op(["ans"], ["state3"]),  #     ...
        instructions.PopOp(["ans"]),  #     pop callee's "ans"
        instructions.PrimOp(["state3"], "ans",
                            lambda state: state + 1),  #   ans = state3 + 1
        instructions.PopOp(["state3"]),  #   done with state3
        instructions.IndirectGotoOp(),  #   return ans
    ])
    recur_base_case.assign_instructions([
        instructions.PopOp(["cond1", "depth"]),  #   done with cond1, depth
        instructions.PrimOp(["state"], "ans",
                            step_state),  #   ans = step_state(state)
        instructions.PopOp(["state"]),  #   done with state
        instructions.IndirectGotoOp(),  #   return ans
    ])

    pea_nuts_graph = instructions.ControlFlowGraph([
        entry,
        top_body,
        finish_body,
        enter_recur,
        recur_body_1,
        recur_body_2,
        recur_body_3,
        recur_base_case,
    ])

    # pylint: disable=bad-whitespace
    pea_nuts_vars = {
        "count": instructions.single_type(np.int64, ()),
        "cond": instructions.single_type(np.bool, ()),
        "cond1": instructions.single_type(np.bool, ()),
        "ctm1": instructions.single_type(np.int64, ()),
        "depth": instructions.single_type(np.int64, ()),
        "dm1": instructions.single_type(np.int64, ()),
        "state": instructions.single_type(np.float32, latent_shape),
        "state1": instructions.single_type(np.float32, latent_shape),
        "state2": instructions.single_type(np.float32, latent_shape),
        "state3": instructions.single_type(np.float32, latent_shape),
        "ans": instructions.single_type(np.float32, latent_shape),
    }

    return instructions.Program(pea_nuts_graph, [], pea_nuts_vars,
                                ["count", "state"], "state")
Пример #7
0
def fibonacci_function_calls(include_types=True, dtype=np.int64):
    """The Fibonacci program again, but with `instructions.FunctionCallOp`.

  Computes fib(n): fib(0) = fib(1) = 1.

  Args:
    include_types: If False, we omit types on the variables, requiring a type
        inference pass.
    dtype: The dtype to use for `n`-like internal state variables.

  Returns:
    program: Full-powered `instructions.Program` that computes fib(n).
  """
    enter_fib = instructions.Block(name="enter_fib")
    recur = instructions.Block(name="recur")
    finish = instructions.Block(name="finish")

    fibonacci_type = lambda types: types[0]
    fibonacci_func = instructions.Function(None, ["n"],
                                           "ans",
                                           fibonacci_type,
                                           name="fibonacci")
    # pylint: disable=bad-whitespace
    # Definition of fibonacci function
    enter_fib.assign_instructions([
        instructions.PrimOp(["n"], "cond", lambda n: n > 1),  # cond = n > 1
        instructions.BranchOp("cond", recur, finish),  # if cond
    ])
    recur.assign_instructions([
        instructions.PrimOp(["n"], "nm1", lambda n: n - 1),  #   nm1 = n - 1
        instructions.FunctionCallOp(fibonacci_func, ["nm1"],
                                    "fibm1"),  #   fibm1 = fibonacci(nm1)
        instructions.PrimOp(["n"], "nm2", lambda n: n - 2),  #   nm2 = n - 2
        instructions.FunctionCallOp(fibonacci_func, ["nm2"],
                                    "fibm2"),  #   fibm2 = fibonacci(nm2)
        instructions.PrimOp(["fibm1", "fibm2"], "ans",
                            lambda x, y: x + y),  #   ans = fibm1 + fibm2
        instructions.halt_op(),  #   return ans
    ])
    finish.assign_instructions([  # else:
        instructions.PrimOp([], "ans", lambda: 1),  #   ans = 1
        instructions.halt_op(),  #   return ans
    ])
    fibonacci_blocks = [enter_fib, recur, finish]
    fibonacci_func.graph = instructions.ControlFlowGraph(fibonacci_blocks)

    fibonacci_main_blocks = [
        instructions.Block([
            instructions.FunctionCallOp(fibonacci_func, ["n1"], "ans"),
        ],
                           instructions.halt_op(),
                           name="main_entry"),
    ]

    # pylint: disable=bad-whitespace
    fibonacci_vars = {
        "n": instructions.single_type(dtype, ()),
        "n1": instructions.single_type(dtype, ()),
        "cond": instructions.single_type(np.bool, ()),
        "nm1": instructions.single_type(dtype, ()),
        "fibm1": instructions.single_type(dtype, ()),
        "nm2": instructions.single_type(dtype, ()),
        "fibm2": instructions.single_type(dtype, ()),
        "ans": instructions.single_type(dtype, ()),
    }
    if not include_types:
        _strip_types(fibonacci_vars)

    return instructions.Program(
        instructions.ControlFlowGraph(fibonacci_main_blocks), [fibonacci_func],
        fibonacci_vars, ["n1"], "ans")
Пример #8
0
def is_even_function_calls(include_types=True, dtype=np.int64):
    """The is-even program, via "even-odd" recursion.

  Computes True if the input is even, False if the input is odd, by a pair of
  mutually recursive functions is_even and is_odd, which return True and False
  respectively for <1-valued inputs.

  Tests out mutual recursion.

  Args:
    include_types: If False, we omit types on the variables, requiring a type
        inference pass.
    dtype: The dtype to use for `n`-like internal state variables.

  Returns:
    program: Full-powered `instructions.Program` that computes is_even(n).
  """
    def pred_type(t):
        return instructions.TensorType(np.bool, t[0].shape)

    # Forward declaration of is_odd.
    is_odd_func = instructions.Function(None, ["n"], "ans", pred_type)

    enter_is_even = instructions.Block()
    finish_is_even = instructions.Block()
    recur_is_even = instructions.Block()
    is_even_func = instructions.Function(None, ["n"], "ans", pred_type)
    # pylint: disable=bad-whitespace
    # Definition of is_even function
    enter_is_even.assign_instructions([
        instructions.PrimOp(["n"], "cond", lambda n: n < 1),  # cond = n < 1
        instructions.BranchOp("cond", finish_is_even,
                              recur_is_even),  # if cond
    ])
    finish_is_even.assign_instructions([
        instructions.PopOp(["n", "cond"]),  #   done with n, cond
        instructions.PrimOp([], "ans", lambda: True),  #   ans = True
        instructions.halt_op(),  #   return ans
    ])
    recur_is_even.assign_instructions([  # else
        instructions.PopOp(["cond"]),  #   done with cond now
        instructions.PrimOp(["n"], "nm1", lambda n: n - 1),  #   nm1 = n - 1
        instructions.PopOp(["n"]),  #   done with n
        instructions.FunctionCallOp(is_odd_func, ["nm1"],
                                    "ans"),  #   ans = is_odd(nm1)
        instructions.PopOp(["nm1"]),  #   done with nm1
        instructions.halt_op(),  #   return ans
    ])
    is_even_blocks = [enter_is_even, finish_is_even, recur_is_even]
    is_even_func.graph = instructions.ControlFlowGraph(is_even_blocks)

    enter_is_odd = instructions.Block()
    finish_is_odd = instructions.Block()
    recur_is_odd = instructions.Block()
    # pylint: disable=bad-whitespace
    # Definition of is_odd function
    enter_is_odd.assign_instructions([
        instructions.PrimOp(["n"], "cond", lambda n: n < 1),  # cond = n < 1
        instructions.BranchOp("cond", finish_is_odd, recur_is_odd),  # if cond
    ])
    finish_is_odd.assign_instructions([
        instructions.PopOp(["n", "cond"]),  #   done with n, cond
        instructions.PrimOp([], "ans", lambda: False),  #   ans = False
        instructions.halt_op(),  #   return ans
    ])
    recur_is_odd.assign_instructions([  # else
        instructions.PopOp(["cond"]),  #   done with cond now
        instructions.PrimOp(["n"], "nm1", lambda n: n - 1),  #   nm1 = n - 1
        instructions.PopOp(["n"]),  #   done with n
        instructions.FunctionCallOp(is_even_func, ["nm1"],
                                    "ans"),  #   ans = is_even(nm1)
        instructions.PopOp(["nm1"]),  #   done with nm1
        instructions.halt_op(),  #   return ans
    ])
    is_odd_blocks = [enter_is_odd, finish_is_odd, recur_is_odd]
    is_odd_func.graph = instructions.ControlFlowGraph(is_odd_blocks)

    is_even_main_blocks = [
        instructions.Block([
            instructions.FunctionCallOp(is_even_func, ["n1"], "ans"),
        ], instructions.halt_op()),
    ]
    # pylint: disable=bad-whitespace
    is_even_vars = {
        "n": instructions.single_type(dtype, ()),
        "n1": instructions.single_type(dtype, ()),
        "cond": instructions.single_type(np.bool, ()),
        "nm1": instructions.single_type(dtype, ()),
        "ans": instructions.single_type(np.bool, ()),
    }
    if not include_types:
        _strip_types(is_even_vars)

    return instructions.Program(
        instructions.ControlFlowGraph(is_even_main_blocks),
        [is_even_func, is_odd_func], is_even_vars, ["n1"], "ans")
Пример #9
0
def fibonacci_program():
    """More complicated, fibonacci program: computes fib(n): fib(0) = fib(1) = 1.

  Returns:
    program: Full-powered `instructions.Program` that computes fib(n).
  """
    entry = instructions.Block(name="entry")
    enter_fib = instructions.Block(name="enter_fib")
    recur1 = instructions.Block(name="recur1")
    recur2 = instructions.Block(name="recur2")
    recur3 = instructions.Block(name="recur3")
    finish = instructions.Block(name="finish")
    # pylint: disable=bad-whitespace
    entry.assign_instructions([
        instructions.PushGotoOp(instructions.halt(), enter_fib),
    ])
    # Definition of fibonacci function starts here
    enter_fib.assign_instructions([
        instructions.PrimOp(["n"], "cond", lambda n: n > 1),  # cond = n > 1
        instructions.BranchOp("cond", recur1, finish),  # if cond
    ])
    recur1.assign_instructions([
        instructions.PopOp(["cond"]),  #   done with cond now
        instructions.PrimOp(["n"], "nm1", lambda n: n - 1),  #   nm1 = n - 1
        instructions.push_op(["nm1"], ["n"]),  #   fibm1 = fibonacci(nm1)
        instructions.PopOp(["nm1"]),  #     done with nm1
        instructions.PushGotoOp(recur2, enter_fib),
    ])
    recur2.assign_instructions([
        instructions.push_op(["ans"], ["fibm1"]),  #     ...
        instructions.PopOp(["ans"]),  #     pop callee's "ans"
        instructions.PrimOp(["n"], "nm2", lambda n: n - 2),  #   nm2 = n - 2
        instructions.PopOp(["n"]),  #   done with n
        instructions.push_op(["nm2"], ["n"]),  #   fibm2 = fibonacci(nm2)
        instructions.PopOp(["nm2"]),  #     done with nm2
        instructions.PushGotoOp(recur3, enter_fib),
    ])
    recur3.assign_instructions([
        instructions.push_op(["ans"], ["fibm2"]),  #     ...
        instructions.PopOp(["ans"]),  #     pop callee's "ans"
        instructions.PrimOp(["fibm1", "fibm2"], "ans",
                            lambda x, y: x + y),  #   ans = fibm1 + fibm2
        instructions.PopOp(["fibm1", "fibm2"]),  #   done with fibm1, fibm2
        instructions.IndirectGotoOp(),  #   return ans
    ])
    finish.assign_instructions([  # else:
        instructions.PopOp(["n", "cond"]),  #   done with n, cond
        instructions.PrimOp([], "ans", lambda: 1),  #   ans = 1
        instructions.IndirectGotoOp(),  #   return ans
    ])

    fibonacci_blocks = [entry, enter_fib, recur1, recur2, recur3, finish]

    # pylint: disable=bad-whitespace
    fibonacci_vars = {
        "n": instructions.single_type(np.int64, ()),
        "cond": instructions.single_type(np.bool, ()),
        "nm1": instructions.single_type(np.int64, ()),
        "fibm1": instructions.single_type(np.int64, ()),
        "nm2": instructions.single_type(np.int64, ()),
        "fibm2": instructions.single_type(np.int64, ()),
        "ans": instructions.single_type(np.int64, ()),
    }

    return instructions.Program(
        instructions.ControlFlowGraph(fibonacci_blocks), [], fibonacci_vars,
        ["n"], "ans")
Пример #10
0
    def primop(self, f, vars_in=None, vars_out=None):
        """Records a primitive operation.

    Example:

    ```
    ab = dsl.ProgramBuilder()

    ab.var.five = ab.const(5)
    # Implicit output binding
    ab.var.ten = ab.primop(lambda five: five + five)
    # Explicit output binding
    ab.primop(lambda: (5, 10), vars_out=[ab.var.five, ab.var.ten])
    ```

    Args:
      f: A Python callable, the primitive operation to perform.  Can be
        an inline lambda expression in simple cases.  Must return a list or
        tuple of results, one for each intended output variable.
      vars_in: A list of Python strings, giving the auto-batched variables
        to pass into the callable when invoking it.  If absent, `primop`
        will try to infer it by inspecting the argument list of the callable
        and matching against variables bound in the local scope.
      vars_out: A pattern of Python strings, giving the auto-batched variable(s)
        to which to write the result of the callable.  Defaults to the empty
        list.

    Raises:
      ValueError: If the definition is invalid, if the primop references
        undefined auto-batched variables, or if auto-detection of input
        variables fails.

    Returns:
      op: An `instructions.PrimOp` instance representing this operation.  If one
        subsequently assigns this to a local, via `ProgramBuilder.var.foo = op`,
        that local becomes the output pattern.
    """
        self._prepare_for_instruction()
        if vars_out is None:
            vars_out = []
        if vars_in is None:
            # Deduce the intended variable names from the argument list of the callee.
            # Expected use case: the callee is an inline lambda expression.
            args, varargs, keywords, _ = inspect.getargspec(f)
            vars_in = []
            for arg in args:
                if arg in self._locals:
                    vars_in.append(self._locals[arg])
                else:
                    raise ValueError(
                        'Auto-referencing unbound variable {}.'.format(arg))
            if varargs is not None:
                raise ValueError('Varargs are not supported for primops')
            if keywords is not None:
                raise ValueError('kwargs are not supported for primops')
        for var in vars_in:
            if var not in self._var_defs:
                raise ValueError(
                    'Referencing undefined variable {}.'.format(var))
        prim = inst.PrimOp(_str_list(vars_in), inst.pattern_map(str, vars_out),
                           f)
        self._blocks[-1].instructions.append(prim)
        for var in inst.pattern_traverse(vars_out):
            self._mark_defined(var)
        return prim