Пример #1
0
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""Experimental Numpy backend."""

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

# Dependency imports
import numpy as np

import tensorflow as tf

from tensorflow_probability.python.internal.backend.numpy.internal import utils

__all__ = [
    'constant',
]

constant = utils.copy_docstring(
    tf.compat.v1.initializers.constant,
    lambda value=0, dtype=tf.dtypes.float32, verify_shape=False: (  # pylint: disable=g-long-lambda
        lambda shape, dtype=None, partition_info=None, verify_shape=None: (  # pylint: disable=g-long-lambda
            np.ones(shape, dtype=dtype) * value)))
Пример #2
0
def _vlog(*_, **__):  # pylint: disable=unused-argument
    pass


def _warn(*_, **__):  # pylint: disable=unused-argument
    pass


def _warning(*_, **__):  # pylint: disable=unused-argument
    pass


# --- Begin Public Functions --------------------------------------------------

TaskLevelStatusMessage = utils.copy_docstring(  # pylint: disable=invalid-name
    tf.compat.v1.logging.TaskLevelStatusMessage, _TaskLevelStatusMessage)

debug = utils.copy_docstring(tf.compat.v1.logging.debug, _debug)

error = utils.copy_docstring(tf.compat.v1.logging.error, _error)

fatal = utils.copy_docstring(tf.compat.v1.logging.fatal, _fatal)

flush = utils.copy_docstring(tf.compat.v1.logging.flush, _flush)

get_verbosity = utils.copy_docstring(tf.compat.v1.logging.get_verbosity,
                                     _get_verbosity)

info = utils.copy_docstring(tf.compat.v1.logging.info, _info)

log = utils.copy_docstring(tf.compat.v1.logging.log, _log)
Пример #3
0
def _argsort(values, axis=-1, direction='ASCENDING', stable=False, name=None):  # pylint: disable=unused-argument
    """Numpy implementation of `tf.argsort`."""
    if direction == 'ASCENDING':
        pass
    elif direction == 'DESCENDING':
        values = np.negative(values)
    else:
        raise ValueError('Unrecognized direction: {}.'.format(direction))
    return np.argsort(values, axis, kind='stable' if stable else 'quicksort')


def _sort(values, axis=-1, direction='ASCENDING', stable=False, name=None):  # pylint: disable=unused-argument
    """Numpy implementation of `tf.sort`."""
    if direction == 'ASCENDING':
        pass
    elif direction == 'DESCENDING':
        values = np.negative(values)
    else:
        raise ValueError('Unrecognized direction: {}.'.format(direction))
    result = np.sort(values, axis, kind='stable' if stable else 'quicksort')
    if direction == 'DESCENDING':
        return np.negative(result)
    return result


# --- Begin Public Functions --------------------------------------------------

argsort = utils.copy_docstring(tf.argsort, _argsort)

sort = utils.copy_docstring(tf.sort, _sort)
Пример #4
0
            name=None):  # pylint: disable=unused-argument
    """Numpy matmul wrapper."""
    if a_is_sparse or b_is_sparse:
        raise NotImplementedError(
            'Numpy backend does not support sparse matmul.')
    if transpose_a or adjoint_a:
        a = _matrix_transpose(a, conjugate=adjoint_a)
    if transpose_b or adjoint_b:
        b = _matrix_transpose(b, conjugate=adjoint_b)
    return np.matmul(a, b)


# --- Begin Public Functions --------------------------------------------------

band_part = utils.copy_docstring(
    tf.linalg.band_part,
    lambda input, num_lower, num_upper, name=None: (  # pylint: disable=g-long-lambda
        np.tril(np.triu(input, -num_lower), num_upper)))

cholesky = utils.copy_docstring(
    tf.linalg.cholesky, lambda input, name=None: np.linalg.cholesky(input))

cholesky_solve = utils.copy_docstring(
    tf.linalg.cholesky_solve,
    lambda chol, rhs, name=None: scipy_linalg.cho_solve((chol, True), rhs))

diag = utils.copy_docstring(tf.linalg.diag,
                            lambda diagonal, name=None: np.diag(diagonal))

diag_part = utils.copy_docstring(tf.linalg.diag_part,
                                 lambda input, name=None: np.diagonal(input))
Пример #5
0
            name=None):  # pylint: disable=unused-argument
    """Numpy matmul wrapper."""
    if a_is_sparse or b_is_sparse:
        raise NotImplementedError(
            'Numpy backend does not support sparse matmul.')
    if transpose_a or adjoint_a:
        a = _matrix_transpose(a, conjugate=adjoint_a)
    if transpose_b or adjoint_b:
        b = _matrix_transpose(b, conjugate=adjoint_b)
    return np.matmul(a, b)


# --- Begin Public Functions --------------------------------------------------

band_part = utils.copy_docstring(
    tf.linalg.band_part,
    lambda input, num_lower, num_upper, name=None: (  # pylint: disable=g-long-lambda
        np.tril(np.triu(input, -num_lower), num_upper)))

cholesky = utils.copy_docstring(
    tf.linalg.cholesky, lambda input, name=None: np.linalg.cholesky(input))

cholesky_solve = utils.copy_docstring(
    tf.linalg.cholesky_solve,
    lambda chol, rhs, name=None: scipy_linalg.cho_solve((chol, True), rhs))

det = utils.copy_docstring(tf.linalg.det,
                           lambda input, name=None: np.linalg.det(input))

diag = utils.copy_docstring(tf.linalg.diag,
                            lambda diagonal, name=None: np.diag(diagonal))
Пример #6
0
def _scan(  # pylint: disable=unused-argument
        fn,
        elems,
        initializer=None,
        parallel_iterations=10,
        back_prop=True,
        swap_memory=False,
        infer_shape=True,
        reverse=False,
        name=None):
    """Scan implementation."""
    out = []
    if initializer is None:
        arg = elems[0]
        elems = elems[1:]
    else:
        arg = initializer

    for x in elems:
        arg = fn(arg, x)
        out.append(arg)
    return np.array(out)


# --- Begin Public Functions --------------------------------------------------

map_fn = utils.copy_docstring(tf.map_fn, _map_fn)

scan = utils.copy_docstring(tf.scan, _scan)
Пример #7
0
                    variable_def=None,
                    dtype=dtype,
                    import_scope=None,
                    constraint=None)


def _placeholder_with_default(input, shape, name=None):  # pylint: disable=redefined-builtin,unused-argument
    x = np.array(input)
    if shape is None or any(s is None for s in shape):
        return x
    return np.reshape(x, shape)


# --- Begin Public Functions --------------------------------------------------

assert_equal = utils.copy_docstring(tf.compat.v1.assert_equal, _assert_equal)

assert_greater = utils.copy_docstring(tf.compat.v1.assert_greater,
                                      _assert_greater)

assert_less = utils.copy_docstring(tf.compat.v1.assert_less, _assert_less)

assert_rank = utils.copy_docstring(tf.compat.v1.assert_rank, _assert_rank)

assert_scalar = utils.copy_docstring(tf.compat.v1.assert_scalar,
                                     _assert_scalar)

assert_greater_equal = utils.copy_docstring(tf.compat.v1.assert_greater_equal,
                                            _assert_greater_equal)

assert_integer = utils.copy_docstring(tf.compat.v1.assert_integer,
Пример #8
0
# limitations under the License.
# ============================================================================
"""Numpy implementations of TensorFlow functions."""

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

# Dependency imports
import numpy as np

import tensorflow as tf

from tensorflow_probability.python.internal.backend.numpy.internal import utils
from tensorflow_probability.python.internal.backend.numpy.math import log_softmax
from tensorflow_probability.python.internal.backend.numpy.math import softmax
from tensorflow_probability.python.internal.backend.numpy.math import softplus

__all__ = [
    'log_softmax',
    'relu',
    'softmax',
    'softplus',
    # 'sigmoid_cross_entropy_with_logits',
]

# --- Begin Public Functions --------------------------------------------------

relu = utils.copy_docstring(tf.nn.relu,
                            lambda features, name=None: np.max(features, 0))
Пример #9
0
def _function(
        func=None,
        input_signature=None,
        autograph=True,  # pylint: disable=unused-argument
        experimental_autograph_options=None,  # pylint: disable=unused-argument
        experimental_relax_shapes=False,
        experimental_compile=None):  # pylint: disable=unused-argument
    """Dummy version of `tf.function`."""
    # This code path is for the `foo = tf.function(foo, ...)` use case.
    if func is not None:
        return func
    # This code path is for the following use case:
    #   @tf.function(...)
    #   def foo(...):
    #      ...
    # This case is equivalent to `foo = tf.function(...)(foo)`.
    return lambda inner_function: inner_function


# --- Begin Public Functions --------------------------------------------------

compat = collections.namedtuple(
    'compat', 'dimension_value')(lambda dim: None if dim is None else int(dim))

function = utils.copy_docstring(tf.function, _function)

eye = linalg.eye
matmul = linalg.matmul

del collections, tf, utils
Пример #10
0
# Dependency imports
import numpy as np

import tensorflow as tf

from tensorflow_probability.python.internal.backend.numpy.internal import utils


__all__ = [
    'difference',
]


def _difference(a, b, aminusb=True, validate_indices=True):
  if not aminusb:
    raise NotImplementedError(
        'Argument `aminusb != True` is currently unimplemented.')
  if not validate_indices:
    raise NotImplementedError(
        'Argument `validate_indices != True` is currently unimplemented.')
  return np.setdiff1d(a, b)


# --- Begin Public Functions --------------------------------------------------


# TODO(b/136555907): Add unit test.
difference = utils.copy_docstring(
    tf.sets.difference,
    _difference)
Пример #11
0
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""Experimental Numpy backend."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

# Dependency imports

import tensorflow as tf

from tensorflow_probability.python.internal.backend.numpy.internal import utils


__all__ = [
    'Assert',
    'check_numerics',
]


Assert = utils.copy_docstring(  # pylint: disable=invalid-name
    tf.debugging.Assert,
    lambda condition, data, summarize=None, name=None: None)


check_numerics = utils.copy_docstring(
    tf.debugging.check_numerics,
    lambda x, *_, **__: x
)
Пример #12
0
import tensorflow as tf

from tensorflow_probability.python.internal.backend.numpy import v1
from tensorflow_probability.python.internal.backend.numpy import v2
from tensorflow_probability.python.internal.backend.numpy.internal import utils


__all__ = [
    'dimension_value',
    'v1',
    'v2',
]


def _dimension_value(dimension):
  if dimension is None:
    return None
  return int(dimension)


# --- Begin Public Functions --------------------------------------------------


dimension_value = utils.copy_docstring(
    tf.compat.dimension_value,
    _dimension_value)


del tf, utils
Пример #13
0
    'placeholder_with_default',
    'set_random_seed',
]

# --- Begin Public Functions --------------------------------------------------

assert_equal = tf.compat.v1.assert_equal
assert_greater = tf.compat.v1.assert_greater
assert_less = tf.compat.v1.assert_less
assert_rank = tf.compat.v1.assert_rank

assert_greater_equal = tf.compat.v1.assert_greater_equal
assert_integer = tf.compat.v1.assert_integer
assert_less_equal = tf.compat.v1.assert_less_equal
assert_near = tf.compat.v1.assert_near
assert_non_negative = tf.compat.v1.assert_non_negative
assert_non_positive = tf.compat.v1.assert_non_positive
assert_none_equal = tf.compat.v1.assert_none_equal
assert_positive = tf.compat.v1.assert_positive
assert_positive = tf.compat.v1.assert_positive
assert_rank_at_least = tf.compat.v1.assert_rank_at_least

placeholder_with_default = utils.copy_docstring(
    tf.compat.v1.placeholder_with_default,
    lambda input, shape, name=None: np.array(input).reshape(shape))  # pylint: disable=redefined-builtin,unused-argument

set_random_seed = utils.copy_docstring(tf.compat.v1.set_random_seed,
                                       np.random.seed)

del tf
Пример #14
0
    'uint64',
    'uint8',
    # 'as_string',
    # 'bfloat16',
    # 'dtypes',
    # 'qint16',
    # 'qint32',
    # 'qint8',
    # 'quint16',
    # 'quint8',
]

# --- Begin Public Functions --------------------------------------------------

as_dtype = utils.copy_docstring(
    tf.as_dtype,
    lambda type_value: np.dtype(  # pylint: disable=g-long-lambda
        type_value.name if hasattr(type_value, 'name') else type_value).type)

bool = np.bool  # pylint: disable=redefined-builtin

complex = np.complex  # pylint: disable=redefined-builtin

complex128 = np.complex128

complex64 = np.complex64

double = np.double

float16 = np.float16

float32 = np.float32
Пример #15
0
    # 'gamma',
    # 'learned_unigram_candidate_sampler',
    # 'log_uniform_candidate_sampler',
    # 'normal',
    # 'poisson',
    # 'set_seed',
    # 'shuffle',
    # 'stateless_categorical',
    # 'stateless_normal',
    # 'stateless_truncated_normal',
    # 'stateless_uniform',
    # 'truncated_normal',
    # 'uniform',
    # 'uniform_candidate_sampler',
]


def _normal(shape, mean=0.0, stddev=1.0, dtype=tf.float32, seed=None,
            name=None):  # pylint: disable=unused-argument
  rng = np.random if seed is None else np.random.RandomState(seed)
  dtype = utils.common_dtype([mean, stddev], preferred_dtype=np.float32)
  return rng.normal(loc=mean, scale=stddev, size=shape).astype(dtype)


# --- Begin Public Functions --------------------------------------------------


normal = utils.copy_docstring(
    tf.random.normal,
    _normal)
Пример #16
0
assert_equal = tf.compat.v1.assert_equal
assert_greater = tf.compat.v1.assert_greater
assert_less = tf.compat.v1.assert_less
assert_rank = tf.compat.v1.assert_rank

assert_greater_equal = tf.compat.v1.assert_greater_equal
assert_integer = tf.compat.v1.assert_integer
assert_less_equal = tf.compat.v1.assert_less_equal
assert_near = tf.compat.v1.assert_near
assert_non_negative = tf.compat.v1.assert_non_negative
assert_non_positive = tf.compat.v1.assert_non_positive
assert_none_equal = tf.compat.v1.assert_none_equal
assert_positive = tf.compat.v1.assert_positive
assert_positive = tf.compat.v1.assert_positive
assert_rank_at_least = tf.compat.v1.assert_rank_at_least

placeholder_with_default = utils.copy_docstring(
    tf.compat.v1.placeholder_with_default,
    _placeholder_with_default)

global_variables_initializer = utils.copy_docstring(
    tf.compat.v1.global_variables_initializer,
    lambda: None)

set_random_seed = utils.copy_docstring(
    tf.compat.v1.set_random_seed,
    np.random.seed)

del tf
Пример #17
0
    def __exit__(self, typ, value, traceback):  # pylint: disable=unused-argument
        pass

    def watch(self, tensor):  # pylint: disable=unused-argument
        pass

    def gradient(
        self,
        target,
        sources,
        output_gradients=None,  # pylint: disable=unused-argument
        unconnected_gradients=UnconnectedGradients.NONE):  # pylint: disable=unused-argument
        return sources


broadcast_dynamic_shape = utils.copy_docstring(tf.broadcast_dynamic_shape,
                                               _broadcast_static_shape)

broadcast_static_shape = utils.copy_docstring(tf.broadcast_static_shape,
                                              _broadcast_static_shape)

broadcast_to = utils.copy_docstring(
    tf.broadcast_to,
    lambda input, shape, name=None: np.broadcast_to(input, shape))

cast = utils.copy_docstring(
    tf.cast,
    lambda x, dtype, name=None: np.array(x).astype(utils.numpy_dtype(dtype)))

clip_by_value = utils.copy_docstring(
    tf.clip_by_value,
    lambda t, clip_value_min, clip_value_max, name=None:  # pylint: disable=g-long-lambda
Пример #18
0
  logits = np.reshape(logits, [-1, num_classes])
  labels = np.reshape(labels, [-1])

  labels = numpy_array.one_hot(labels, num_classes)

  cost = -np.sum(
      labels * (logits - reduce_logsumexp(logits, axis=-1, keepdims=True)),
      axis=-1)
  cost = np.reshape(cost, labels_shape)
  return cost


# --- Begin Public Functions --------------------------------------------------

l2_normalize = utils.copy_docstring(
    tf.nn.l2_normalize,
    l2_normalize)


relu = utils.copy_docstring(
    tf.nn.relu,
    lambda features, name=None: np.max(features, 0))


softplus = utils.copy_docstring(
    tf.nn.softplus,
    lambda features, name=None: np.log(1 + np.exp(features)))


sigmoid_cross_entropy_with_logits = utils.copy_docstring(
    tf.nn.sigmoid_cross_entropy_with_logits,
Пример #19
0
        # We offer a non SP version just in case SP isn't installed and this
        # because logsumexp is often used.
        m = _max_mask_non_finite(input_tensor, axis=axis, keepdims=True)
        y = input_tensor - m
        y = np.exp(y, out=y)
        return m + np.log(np.sum(y, axis=_astuple(axis), keepdims=keepdims))


def _top_k(input, k=1, sorted=True, name=None):  # pylint: disable=unused-argument,redefined-builtin
    raise NotImplementedError


# --- Begin Public Functions --------------------------------------------------

abs = utils.copy_docstring(  # pylint: disable=redefined-builtin
    tf.math.abs,
    lambda x, name=None: np.abs(x))

accumulate_n = utils.copy_docstring(
    tf.math.accumulate_n,
    lambda inputs, shape=None, tensor_dtype=None, name=None: (  # pylint: disable=g-long-lambda
        sum(map(np.array, inputs)).astype(utils.numpy_dtype(tensor_dtype))))

acos = utils.copy_docstring(tf.math.acos, lambda x, name=None: np.arccos(x))

acosh = utils.copy_docstring(tf.math.acosh, lambda x, name=None: np.arccosh(x))

add = utils.copy_docstring(tf.math.add, lambda x, y, name=None: np.add(x, y))

add_n = utils.copy_docstring(
    tf.math.add_n, lambda inputs, name=None: sum(map(np.array, inputs)))
Пример #20
0
def _transpose(a, perm=None, conjugate=False, name='transpose'):  # pylint: disable=unused-argument
    x = np.transpose(a, perm)
    return np.conjugate(x) if conjugate else x


def _zeros_like(input, dtype=None, name=None):  # pylint: disable=redefined-builtin
    s = _shape(input)
    if isinstance(s, (np.ndarray, np.generic)):
        return np.zeros(s, utils.numpy_dtype(dtype or input.dtype))
    return tf.zeros(s, dtype or s.dtype, name)


# --- Begin Public Functions --------------------------------------------------

concat = utils.copy_docstring(
    tf.concat, lambda values, axis, name=None: np.concatenate(values, axis))

eye = utils.copy_docstring(tf.eye, _eye)

expand_dims = utils.copy_docstring(
    tf.expand_dims, lambda input, axis, name=None: np.expand_dims(input, axis))

fill = utils.copy_docstring(
    tf.fill,
    lambda dims, value, name=None: value * np.ones(dims,
                                                   np.array(value).dtype))

reverse = utils.copy_docstring(
    tf.reverse, lambda tensor, axis, name=None: np.flip(tensor, axis))

linspace = utils.copy_docstring(
Пример #21
0
from tensorflow_probability.python.internal.backend.numpy import v1
from tensorflow_probability.python.internal.backend.numpy import v2
from tensorflow_probability.python.internal.backend.numpy.internal import utils

__all__ = [
    'dimension_value',
    'function',
    'v1',
    'v2',
]


def _dimension_value(dimension):
    if dimension is None:
        return None
    return int(dimension)


# --- Begin Public Functions --------------------------------------------------

dimension_value = utils.copy_docstring(tf.compat.dimension_value,
                                       _dimension_value)

function = utils.copy_docstring(
    tf.function,
    lambda func=None, input_signature=None, autograph=True,  # pylint: disable=g-long-lambda
    experimental_autograph_options=None, experimental_relax_shapes=False: func)

del tf, utils
Пример #22
0

def _normal(shape,
            mean=0.0,
            stddev=1.0,
            dtype=tf.float32,
            seed=None,
            name=None):  # pylint: disable=unused-argument
    rng = np.random if seed is None else np.random.RandomState(seed)
    dtype = utils.common_dtype([mean, stddev], preferred_dtype=dtype)
    return rng.normal(loc=mean, scale=stddev, size=shape).astype(dtype)


def _uniform(shape,
             minval=0,
             maxval=None,
             dtype=tf.float32,
             seed=None,
             name=None):  # pylint: disable=unused-argument
    rng = np.random if seed is None else np.random.RandomState(seed)
    dtype = utils.common_dtype([minval, maxval], preferred_dtype=dtype)
    maxval = 1 if maxval is None else maxval
    return rng.uniform(low=minval, high=maxval, size=shape).astype(dtype)


# --- Begin Public Functions --------------------------------------------------

normal = utils.copy_docstring(tf.random.normal, _normal)

uniform = utils.copy_docstring(tf.random.uniform, _uniform)
Пример #23
0
def _transpose(a, perm=None, conjugate=False, name='transpose'):  # pylint: disable=unused-argument
    x = np.transpose(a, perm)
    return np.conjugate(x) if conjugate else x


def _zeros_like(input, dtype=None, name=None):  # pylint: disable=redefined-builtin
    s = _shape(input)
    if isinstance(s, (np.ndarray, np.generic)):
        return np.zeros(s, utils.numpy_dtype(dtype or input.dtype))
    return tf.zeros(s, dtype or s.dtype, name)


# --- Begin Public Functions --------------------------------------------------

batch_gather = utils.copy_docstring(tf.compat.v1.batch_gather, _gather)

concat = utils.copy_docstring(
    tf.concat,
    lambda values, axis, name='concat': np.concatenate(values, axis))

expand_dims = utils.copy_docstring(
    tf.expand_dims, lambda input, axis, name=None: np.expand_dims(input, axis))

fill = utils.copy_docstring(
    tf.fill,
    lambda dims, value, name=None: value * np.ones(dims,
                                                   np.array(value).dtype))

gather = utils.copy_docstring(tf.gather, _gather)
Пример #24
0
    dtype = utils.common_dtype([lam], preferred_dtype=dtype)
    shape = _shape([lam], shape)
    return rng.poisson(lam=lam, size=shape).astype(dtype)


def _uniform(shape,
             minval=0,
             maxval=None,
             dtype=tf.float32,
             seed=None,
             name=None):  # pylint: disable=unused-argument
    rng = np.random if seed is None else np.random.RandomState(seed
                                                               & 0xffffffff)
    dtype = utils.common_dtype([minval, maxval], preferred_dtype=dtype)
    maxval = 1 if maxval is None else maxval
    shape = _shape([minval, maxval], shape)
    return rng.uniform(low=minval, high=maxval, size=shape).astype(dtype)


# --- Begin Public Functions --------------------------------------------------

categorical = utils.copy_docstring(tf.random.categorical, _categorical)

gamma = utils.copy_docstring(tf.random.gamma, _gamma)

normal = utils.copy_docstring(tf.random.normal, _normal)

poisson = utils.copy_docstring(tf.random.poisson, _poisson)

uniform = utils.copy_docstring(tf.random.uniform, _uniform)
Пример #25
0
from tensorflow_probability.python.internal.backend.numpy.internal import utils


__all__ = [
    'while_loop',
    # 'case',
    # 'cond',
    # 'dynamic_partition',
    # 'dynamic_stitch',
    # 'map_fn',
    # 'scan',
]


def _while_loop(cond, body, loop_vars,
                shape_invariants=None, parallel_iterations=10,  # pylint: disable=unused-argument
                back_prop=True, swap_memory=False,  # pylint: disable=unused-argument
                maximum_iterations=None, name=None):  # pylint: disable=unused-argument
  i = 0
  while (cond(*loop_vars) and
         (maximum_iterations is None or i < maximum_iterations)):
    loop_vars = body(*loop_vars)
    i += 1
  return loop_vars

# --- Begin Public Functions --------------------------------------------------

while_loop = utils.copy_docstring(
    tf.while_loop,
    _while_loop)
Пример #26
0
    'uint32',
    'uint64',
    'uint8',
    # 'as_string',
    # 'bfloat16',
    # 'dtypes',
    # 'qint16',
    # 'qint32',
    # 'qint8',
    # 'quint16',
    # 'quint8',
]

# --- Begin Public Functions --------------------------------------------------

as_dtype = utils.copy_docstring(tf.as_dtype,
                                lambda type_value: np.dtype(type_value).type)

bool = np.bool  # pylint: disable=redefined-builtin

complex = np.complex  # pylint: disable=redefined-builtin

complex128 = np.complex128

complex64 = np.complex64

double = np.double

float16 = np.float16

float32 = np.float32