def _matmul_linear_operator_circulant_circulant(linop_a, linop_b):
    return linear_operator_circulant.LinearOperatorCirculant(
        spectrum=linop_a.spectrum * linop_b.spectrum,
        is_non_singular=registrations_util.combined_non_singular_hint(
            linop_a, linop_b),
        is_self_adjoint=registrations_util.
        combined_commuting_self_adjoint_hint(linop_a, linop_b),
        is_positive_definite=(
            registrations_util.combined_commuting_positive_definite_hint(
                linop_a, linop_b)),
        is_square=True)
def _matmul_linear_operator_tril_diag(linop_triangular, linop_diag):
    return linear_operator_lower_triangular.LinearOperatorLowerTriangular(
        tril=linop_triangular.to_dense() * linop_diag.diag,
        is_non_singular=registrations_util.combined_non_singular_hint(
            linop_diag, linop_triangular),
        # This is safe to do since the Triangular matrix is only self-adjoint
        # when it is a diagonal matrix, and hence commutes.
        is_self_adjoint=registrations_util.
        combined_commuting_self_adjoint_hint(linop_diag, linop_triangular),
        is_positive_definite=None,
        is_square=True)
def _matmul_linear_operator_diag(linop_a, linop_b):
    return linear_operator_diag.LinearOperatorDiag(
        diag=linop_a.diag * linop_b.diag,
        is_non_singular=registrations_util.combined_non_singular_hint(
            linop_a, linop_b),
        is_self_adjoint=registrations_util.
        combined_commuting_self_adjoint_hint(linop_a, linop_b),
        is_positive_definite=(
            registrations_util.combined_commuting_positive_definite_hint(
                linop_a, linop_b)),
        is_square=True)
def _matmul_linear_operator_diag_scaled_identity_left(linop_scaled_identity,
                                                      linop_diag):
    return linear_operator_diag.LinearOperatorDiag(
        diag=linop_diag.diag * linop_scaled_identity.multiplier,
        is_non_singular=registrations_util.combined_non_singular_hint(
            linop_diag, linop_scaled_identity),
        is_self_adjoint=registrations_util.
        combined_commuting_self_adjoint_hint(linop_diag,
                                             linop_scaled_identity),
        is_positive_definite=(
            registrations_util.combined_commuting_positive_definite_hint(
                linop_diag, linop_scaled_identity)),
        is_square=True)
def _matmul_linear_operator(linop_a, linop_b):
    """Generic matmul of two `LinearOperator`s."""
    is_square = registrations_util.is_square(linop_a, linop_b)
    is_non_singular = None
    is_self_adjoint = None
    is_positive_definite = None

    if is_square:
        is_non_singular = registrations_util.combined_non_singular_hint(
            linop_a, linop_b)
    elif is_square is False:  # pylint:disable=g-bool-id-comparison
        is_non_singular = False
        is_self_adjoint = False
        is_positive_definite = False

    return linear_operator_composition.LinearOperatorComposition(
        operators=[linop_a, linop_b],
        is_non_singular=is_non_singular,
        is_self_adjoint=is_self_adjoint,
        is_positive_definite=is_positive_definite,
        is_square=is_square,
    )