Пример #1
0
 def testNdtriDynamicShape(self):
     """Verifies that ndtri computation is correct."""
     p_ = np.linspace(0., 1., 50).astype(np.float32)
     p = tf1.placeholder_with_default(p_, shape=None)
     self.assertAllClose(sp_special.ndtri(p_),
                         self.evaluate(special_math.ndtri(p)),
                         atol=0.)
Пример #2
0
 def testParamTensorFromProbs(self):
   x = tf.constant([0.1, 0.5, 0.4])
   d = tfd.ProbitBernoulli(probs=x, validate_args=True)
   self.assertAllClose(
       *self.evaluate([special_math.ndtri(d.prob(1.)),
                       d.probits_parameter()]),
       atol=0,
       rtol=1e-4)
   self.assertAllClose(
       *self.evaluate([d.prob(1.), d.probs_parameter()]), atol=0, rtol=1e-4)
Пример #3
0
    def testNdtri(self):
        """Verifies that ndtri computation is correct."""

        p = np.linspace(0., 1., 50).astype(np.float64)
        # Quantile performs piecewise rational approximation so adding some
        # sp_special input values to make sure we hit all the pieces.
        p = np.hstack(
            (p, np.exp(-32), 1. - np.exp(-32), np.exp(-2), 1. - np.exp(-2)))
        expected_x = sp_special.ndtri(p)
        x = special_math.ndtri(p)
        self.assertAllClose(expected_x, self.evaluate(x), atol=0.)
Пример #4
0
  def testNdtri(self):
    """Verifies that ndtri computation is correct."""
    if not special:
      return

    p = np.linspace(0., 1.0, 50).astype(np.float64)
    # Quantile performs piecewise rational approximation so adding some
    # special input values to make sure we hit all the pieces.
    p = np.hstack((p, np.exp(-32), 1. - np.exp(-32), np.exp(-2),
                   1. - np.exp(-2)))
    expected_x = special.ndtri(p)
    x = special_math.ndtri(p)
    self.assertAllClose(expected_x, self.evaluate(x), atol=0.)
Пример #5
0
    def testNdtriDynamicShape(self):
        """Verifies that ndtri computation is correct."""
        with self.cached_session() as sess:
            if not special:
                return

            p = tf.placeholder(np.float32)
            p_ = np.linspace(0., 1.0, 50).astype(np.float32)

            x = special_math.ndtri(p)
            x_ = sess.run(x, feed_dict={p: p_})

            expected_x_ = special.ndtri(p_)
            self.assertAllClose(expected_x_, x_, atol=0.)
Пример #6
0
  def testNdtriDynamicShape(self):
    """Verifies that ndtri computation is correct."""
    with self.cached_session() as sess:
      if not special:
        return

      p = tf.placeholder(np.float32)
      p_ = np.linspace(0., 1.0, 50).astype(np.float32)

      x = special_math.ndtri(p)
      x_ = sess.run(x, feed_dict={p: p_})

      expected_x_ = special.ndtri(p_)
      self.assertAllClose(expected_x_, x_, atol=0.)
Пример #7
0
 def _baseNdtriFiniteGradientTest(self, dtype):
     """Verifies that ndtri has finite gradients at interesting points."""
     # Tests gradients at 0, 1, and piece-wise boundaries.
     p = tf.constant(
         np.array([
             0.,
             np.exp(-32.),
             np.exp(-2.),
             1. - np.exp(-2.),
             1. - np.exp(-32.),
             1.,
         ]).astype(dtype))
     # Not having the lambda sanitzer means we'd get an `IndexError` whenever
     # the user supplied function has default args.
     _, grads = _value_and_gradient(lambda x: special_math.ndtri(x), p)  # pylint: disable=unnecessary-lambda
     self.assertAllFinite(self.evaluate(grads[0]))
Пример #8
0
 def _baseNdtriFiniteGradientTest(self, dtype):
   """Verifies that ndtri has finite gradients at interesting points."""
   # Tests gradients at 0, 1, and piece-wise boundaries.
   p = tf.constant(
       np.array([
           0.,
           np.exp(-32.),
           np.exp(-2.),
           1. - np.exp(-2.),
           1. - np.exp(-32.),
           1.,
       ]).astype(dtype))
   # Not having the lambda sanitzer means we'd get an `IndexError` whenever
   # the user supplied function has default args.
   _, grads = _value_and_gradient(
       lambda x: special_math.ndtri(x), p)  # pylint: disable=unnecessary-lambda
   self.assertAllFinite(self.evaluate(grads[0]))
Пример #9
0
 def _inverse(self, y):
   with tf.control_dependencies(self._assertions(y)):
     return special_math.ndtri(y)
Пример #10
0
 def _quantile(self, p):
     return self._inv_z(special_math.ndtri(p))
Пример #11
0
 def _quantile(self, p):
     return special_math.ndtri(p) * self.scale + self.loc
Пример #12
0
 def _probits_parameter_no_checks(self):
     if self._probits is None:
         probs = tf.convert_to_tensor(self._probs)
         return special_math.ndtri(probs)
     return tf.identity(self._probits)
Пример #13
0
 def _inverse(self, y):
     y = self._maybe_assert_valid_y(y)
     return special_math.ndtri(y)
Пример #14
0
 def _quantile(self, p):
   return self._inv_z(special_math.ndtri(p))
Пример #15
0
def norm_qdf(x):
    return special_math.ndtri(x)