def main(): """Entry point function""" adder = tf.Variable(10.) life = tfh.Life( tfh.NeuralNetwork( name="Inner_NN", layers=[ # Even though for ValidationLayer's name isn't required to not include space # but it is good to stay consistance since other might require it tfh.ValidationLayer(name="Input_Validation", shape=[None], dtype=tf.float32), tfh.OpLayer(lambda input: input + adder, [adder]), tfh.ValidationLayer(shape=[None], dtype=tf.float32)]), optimizer=tf.train.AdamOptimizer(0.3)) input_x = np.array([ 1, 2, 3, 4 ], dtype=np.float32) expect_y = np.array([ 3, 4, 5, 6 ], dtype=np.float32) life.connect_neural_network(sample_input=input_x, sample_output=expect_y, will_train=True) life.init_var() hypo = life.feed(input_x) print(hypo) for counter in range(200): cost = life.train(input_x, expect_y, process_list=[adder]) if counter%10 == 0: print(cost)
def main(): """Entry point function""" sess = tf.Session() x_input = tf.placeholder(tf.float32, shape=[None]) my_nn = tfh.NeuralNetwork( name="Main_Layer", layers=[ tfh.ValidationLayer(shape=[None], dtype=tf.float32), tfh.ReshapeLayer(shape=[-1, 1]), tfh.FeedForwardLayer(features_out=2, name="FFLayer"), #features_out is the number of neuron in the layer tfh.FeedForwardLayer(features_in=2, features_out=5, name="FFLayer"), #features_in can also be set to verify tfh.ValidationLayer(shape=[None, 5], dtype=tf.float32), ] ) y_hypothesis = my_nn.connect(x_input) sess.run(tf.initialize_all_variables()) batch = [1, 2, 3, 4] print(sess.run(y_hypothesis, feed_dict={x_input: batch}))
def main(): """Entry point function""" life = tfh.Life(tfh.NeuralNetwork( name="Inner_NN", layers=[ tfh.ValidationLayer(name="Input_Validation", shape=[None, 10, 10], dtype=tf.float32), tfh.ReshapeLayer(shape=[None, 10, 10, 1]), tfh.ConvLayer(depth_out=2, kernel_width=2), tfh.ConvLayer(depth_out=1, kernel_width=3, padding=False), tfh.ValidationLayer(shape=[None, 8, 8, 1], dtype=tf.float32), tfh.ReshapeLayer(shape=[None, 8, 8]) ]), optimizer=tf.train.AdamOptimizer(0.3)) input_x = np.random.randn(1, 10, 10).astype(np.float32) expect_y = np.random.randn(1, 8, 8).astype(np.float32) life.connect_neural_network(sample_input=input_x, sample_output=expect_y, will_train=True) life.init_var() hypo = life.feed(input_x) print(hypo) for counter in range(200): cost = life.train(input_x, expect_y, process_list=[]) if counter % 10 == 0: print(cost)
def main(): """Entry point function""" model_name = "model2-d" life = tfh.Life(tfh.NeuralNetwork(layers=[ tfh.ValidationLayer(shape=[None, 96 + 8, 120 + 8, 3], dtype=tf.uint8), tfh.OpLayer(tf.to_float), tfh.OpLayer(lambda x: x / 255.), tfh.ConvLayer(kernel_width=3, depth_out=30, depth_in=3, padding=False), tfh.ConvLayer(kernel_width=3, depth_out=50, padding=False), tfh.ConvLayer(kernel_width=3, depth_out=40, padding=False), tfh.ConvLayer(kernel_width=3, depth_out=9, padding=False), tfh.OpLayer(tf.sigmoid), tfh.ValidationLayer(shape=[None, 96, 120, 9], dtype=tf.float32), ]), cost_function=conv_cross_entropy, optimizer=tf.train.AdamOptimizer(0.001)) data = Data.DataFeeder("data/", dynamic_load=False, filename="TrainCache", data_padding=4, label_height=96, label_width=120) batch = data.get_batch(60) print(batch[0].dtype, batch[0].shape) print(batch[1].dtype, batch[1].shape) life.connect_neural_network(sample_input=batch[0], sample_output=batch[1], will_train=True) # life.load_saved_model("auto-save/"+model_name+"-save-data3.0") # life.load_saved_model(model_name+"-save-data") life.init_var() for counter in range(100): batch = data.get_batch(60, shuffle=True) result = life.train(input_layer_value=batch[0], output_layer_value=batch[1]) if counter % 27 == 0: print("{} iteration".format(counter), result) data_in = batch[0] feed_result = life.feed(input_layer_value=data_in) hypo = feed_result[0] # print("HYPO SHAPE", hypo.shape) expect = batch[1][0] cv2.imshow("image-in", data_in[0]) cv2.imshow("hypo", ObjClass.combine_label(hypo)) cv2.imshow("expect", ObjClass.combine_label(expect)) cv2.waitKey(20) if counter % 100 == 0: life.save_current_model("auto-save/" + model_name + "-save-data" + str(counter / 100)) life.save_current_model(model_name + "-save-data")
def main(): """Entry point function""" model_name = "model4-a" padding_size = 0 train_data_height = 512 train_data_width = 640 batch_size = 5 life = tfh.Life( tfh.NeuralNetwork( layers=[ tfh.ValidationLayer(shape=[None, train_data_height + padding_size*2, train_data_width + padding_size*2, 3], dtype=tf.uint8), tfh.OpLayer(tf.to_float), tfh.OpLayer(lambda x: x/255. - 0.5), tfh.ConvLayer(kernel_width=3, depth_out=10, depth_in=3, padding=True), tfh.ConvLayer(kernel_width=3, depth_out=10, padding=True), tfh.ConvLayer(kernel_width=3, depth_out=20, padding=True), tfh.ConvLayer(kernel_width=3, depth_out=10, padding=True), tfh.ConvLayer(kernel_width=3, depth_out=2, padding=True), tfh.ValidationLayer(shape=[None, train_data_height, train_data_width, 2], dtype=tf.float32), # tfh.ReshapeLayer(shape=[None, 2]), ] ) ) data = Data.DataFeeder("data/", dynamic_load=True, filename=model_name+"-FeedCache", data_padding=0, label_height=512, label_width=640) batch = data.get_batch(5) life.connect_neural_network(sample_input=batch[0], will_train=False) # life.load_saved_model(model_name+"-save-data") # life.load_saved_model("auto-save/"+model_name+"-save-data1.0") life.load_saved_model("auto-save/model4-a-sava-data20.0") # life.init_var() print(batch[0].dtype, batch[0].shape) print(batch[1].dtype, batch[1].shape) ## # data.get_batch(500) for _ in range(100): batch = data.get_batch(5, shuffle=True) data_in = batch[0] feed_result = life.feed(input_layer_value=data_in) hypo = feed_result[0] print("HYPO SHAPE", hypo.shape) for index, (img, expect_label) in enumerate(zip(batch[0], batch[1])): cv2.imshow("image-in", img) cv2.imshow("hypo", ObjClass.combine_label(feed_result[index])) # print(feed_result[index]) cv2.imshow("expect", ObjClass.combine_label(expect_label)) cv2.waitKey(0)
def main(): """Entry point function""" adder = tf.Variable(10.) adder2 = tf.Variable(7.) nn1 = tfh.NeuralNetwork( name="Inner_NN", layers=[ tfh.ValidationLayer(name="Input_Validation", shape=[None], dtype=tf.float32), tfh.OpLayer(lambda input: input + adder, [adder]), tfh.OpLayer(tf.nn.relu), tfh.ValidationLayer(shape=[None], dtype=tf.float32)]) nn2 = tfh.NeuralNetwork( name="Inner2_NN", layers=[ tfh.ValidationLayer(name="Input_Validation", shape=[None], dtype=tf.float32), tfh.OpLayer(lambda input: input + adder2, [adder2]), tfh.ValidationLayer(shape=[None], dtype=tf.float32)]) life = tfh.Life( tfh.NeuralNetwork( name="Main_NN", layers=[nn1, nn2]), optimizer=tf.train.AdamOptimizer(0.3)) input_x = np.array([ 0, 1, 2, 3, 4 ], dtype=np.float32) expect_y = np.array([ 2, 3, 4, 5, 6 ], dtype=np.float32) life.connect_neural_network(sample_input=input_x, sample_output=expect_y, will_train=True) life.init_var() # life.init_network([nn1, nn2]) # life.load_saved_model("test.ckpt", nn2) hypo = life.feed(input_x) print(hypo) life.save_current_model("test.ckpt", nn1)
def main(): """Entry point function""" life = tfh.Life( tfh.NeuralNetwork( layers=[ tfh.ValidationLayer(shape=[None, 64 + 4, 80 + 4, 3], dtype=tf.uint8), tfh.OpLayer(tf.to_float), tfh.OpLayer(lambda x: x/255.), tfh.ConvLayer(kernel_width=3, depth_out=30, depth_in=3, padding=False), tfh.ConvLayer(kernel_width=3, depth_out=9, padding=False), tfh.ValidationLayer(shape=[None, 64, 80, 9], dtype=tf.float32), ] ) ) data = Data.DataFeeder("data/", filename="TrainCache", data_padding=2, label_height=64, label_width=80) batch = data.get_batch(100) print(batch[0].dtype, batch[0].shape) print(batch[1].dtype, batch[1].shape) life.connect_neural_network(sample_input=batch[0], sample_output=batch[1], will_train=True) life.load_saved_model("model1") # life.init_var() for counter in range(500): batch = data.get_batch(100) result = life.train(input_layer_value=batch[0], output_layer_value=batch[1]) if counter%27 == 0: print("{} iteration".format(counter), result) data_in = batch[0] feed_result = life.feed(input_layer_value=data_in) hypo = feed_result[0] # print("HYPO SHAPE", hypo.shape) expect = batch[1][0] cv2.imshow("image-in", data_in[0]) cv2.imshow("hypo", ObjClass.combine_label(hypo)) cv2.imshow("expect", ObjClass.combine_label(expect)) cv2.waitKey(20) life.save_current_model("model1")
def main(): """Entry point function""" life = tfh.Life( tfh.NeuralNetwork( layers=[ tfh.ValidationLayer(shape=[None, 512, 640, 3], dtype=tf.uint8), tfh.OpLayer(tf.to_float), tfh.OpLayer(lambda x: x/255.), tfh.ConvLayer(kernel_width=3, depth_out=30, depth_in=3), tfh.ConvLayer(kernel_width=3, depth_out=9, ), tfh.ValidationLayer(shape=[None, 512, 640, 9], dtype=tf.float32), ] ) ) data = Data.DataFeeder("data/", filename="FeedCache", data_padding=0, label_height=512, label_width=640) batch = data.get_batch(5) life.connect_neural_network(sample_input=batch[0], will_train=False) life.load_saved_model("model1") # life.init_var() print(batch[0].dtype, batch[0].shape) print(batch[1].dtype, batch[1].shape) ## data_in = batch[0] feed_result = life.feed(input_layer_value=data_in) hypo = feed_result[0] print("HYPO SHAPE", hypo.shape) for _ in range(2): for index, (img, expect_label) in enumerate(zip(batch[0], batch[1])): cv2.imshow("image-in", img) cv2.imshow("hypo", ObjClass.combine_label(feed_result[index])) cv2.imshow("expect", ObjClass.combine_label(expect_label)) cv2.waitKey(0)
def main(): """Entry point function""" model_name = "model6-a" padding_size = 5 train_data_height = 160 train_data_width = 160 batch_size = 15 total_number_of_iteration = 3000 life = tfh.Life( tfh.NeuralNetwork(layers=[ tfh.ValidationLayer(shape=[ None, train_data_height + padding_size * 2, train_data_width + padding_size * 2, 3 ], dtype=tf.uint8), tfh.OpLayer(tf.to_float), tfh.OpLayer(lambda x: x / 255. - 0.5), tfh.ConvLayer( kernel_width=3, depth_out=10, depth_in=3, padding=False), tfh.OpLayer(half_sigmoid), tfh.ConvLayer(kernel_width=3, depth_out=10, padding=False), tfh.OpLayer(half_sigmoid), tfh.ConvLayer(kernel_width=3, depth_out=20, padding=False), tfh.OpLayer(half_sigmoid), tfh.ConvLayer(kernel_width=3, depth_out=10, padding=False), tfh.OpLayer(half_sigmoid), tfh.ConvLayer(kernel_width=3, depth_out=2, padding=False), tfh.ValidationLayer( shape=[None, train_data_height, train_data_width, 2], dtype=tf.float32), # tfh.ReshapeLayer(shape=[None, 2]), ])) data = Data.DataFeeder("data/", dynamic_load=True, raw_preprocess=raw_preprocess, cache_name=model_name + "-TrainCache", data_padding=padding_size, label_height=train_data_height, label_width=train_data_width) batch = data.get_batch(batch_size, shuffle=True, slient=False) print(batch[0].dtype, batch[0].shape) print(batch[1].dtype, batch[1].shape) print(np.amax(batch[0], axis=(0, 1, 2)), np.amax(batch[1], axis=(0, 1, 2))) life.connect_neural_network(sample_input=batch[0]) tf_flatten_label = tf.placeholder(dtype=tf.float32, shape=[None, 2]) tf_flatten_result = tf.reshape(life.tfvResult_pipe, shape=[-1, 2]) cross_entropy = tf.reduce_mean( tf.nn.softmax_cross_entropy_with_logits(tf_flatten_result, tf_flatten_label)) trainer = tf.train.AdamOptimizer(0.001).minimize(cross_entropy) # life.load_saved_model("auto-save/"+model_name+"-save-data3.0") life.session.run(tf.initialize_all_variables()) # life.load_saved_model(model_name+"-save-data") # life.init_var() for counter in range(total_number_of_iteration): batch = data.get_batch(batch_size, shuffle=True) preview = counter % 20 == 0 process_list = [cross_entropy, trainer, life.tfvResult_pipe ] if preview else [cross_entropy, trainer] result = life.feed( batch[0], process_list=process_list, feed_dict={tf_flatten_label: batch[1].reshape((-1, 2))}) print(counter, "loss", result[0]) if preview: # print(result[2][0].sum()) # print(result[2][0]) # for index in range(batch_size): for index in range(2): cv2.imshow("image-in", batch[0][index]) cv2.imshow("hypo", ObjClass.combine_label(result[2][index])) cv2.imshow("expecr", ObjClass.combine_label(batch[1][index])) cv2.waitKey(30) if counter % 100 == 0: life.save_current_model("auto-save/" + model_name + "-save-data" + str(counter / 100)) #for counter in range(100): # batch = data.get_batch(60, shuffle=True) # result = life.train(input_layer_value=batch[0], output_layer_value=batch[1]) # if counter%27 == 0: # print("{} iteration".format(counter), result) # data_in = batch[0] # feed_result = life.feed(input_layer_value=data_in) # hypo = feed_result[0] # # print("HYPO SHAPE", hypo.shape) # expect = batch[1][0] # if counter%100 == 0: # life.save_current_model("auto-save/"+model_name+"-save-data"+str(counter/100)) life.save_current_model(model_name + "-save-data")