Пример #1
0
    def layering(self, activator=tfe.Activator.ReLU.value):
        self.activator = activator
        self.affine0 = tfl.Affine(self.params['W0'],
                                  self.input_node,
                                  self.params['b0'],
                                  name="A0",
                                  graph=self)
        self.activation0 = activator(self.affine0, name="O0", graph=self)
        self.affine1 = tfl.Affine(self.params['W1'],
                                  self.activation0,
                                  self.params['b1'],
                                  name="A1",
                                  graph=self)
        self.output = activator(self.affine1, name="O1", graph=self)
        self.error = tfl.SquaredError(self.output,
                                      self.target_node,
                                      name="SE",
                                      graph=self)

        self.affine0 = tfl.Affine(self.params['W0'],
                                  self.input_node,
                                  self.params['b0'],
                                  name="A0",
                                  graph=self)
        self.activation0 = activator(self.affine0, name="O0", graph=self)
        self.affine1 = tfl.Affine(self.params['W1'],
                                  self.activation0,
                                  self.params['b1'],
                                  name="A1",
                                  graph=self)
        self.output = activator(self.affine1, name="O1", graph=self)
        self.error = tfl.SquaredError(self.output,
                                      self.target_node,
                                      name="SE",
                                      graph=self)
Пример #2
0
 def layering(self, activator=tfe.Activator.ReLU.value):
     self.activator = activator
     self.affine = tfl.Affine(self.params['W0'],
                              self.input_node,
                              self.params['b0'],
                              name="A",
                              graph=self)
     self.output = activator(self.affine, name="O", graph=self)
     self.error = tfl.SquaredError(self.output,
                                   self.target_node,
                                   name="SE",
                                   graph=self)
Пример #3
0
 def layering(self, activator=tfe.Activator.ReLU.value):
     self.activator = activator
     u = tfl.Affine(self.params['W0'],
                    self.input_node,
                    self.params['b0'],
                    name="A")
     self.output = activator(u, name="O")
     self.error = tfl.SquaredError(self.output, self.target_node, name="SE")
     if isinstance(self, nx.Graph):
         self.add_edge(self.params['W0'], u)
         self.add_edge(self.input_node, u)
         self.add_edge(self.params['b0'], u)
         self.add_edge(u, self.output)
         self.add_edge(self.output, self.error)
         self.add_edge(self.error, self.target_node)
Пример #4
0
    def layering(self, activator=tfe.Activator.ReLU.value):
        self.activator = activator

        for idx in range(self.hidden_layer_num):
            self.layers['affine' + str(idx)] = tfl.Affine(
                self.params['W' + str(idx)], self.input_node, self.params['b' + str(idx)], name='affine' + str(idx), graph=self
            )
            self.layers['activation' + str(idx)] = activator(self.layers['affine' + str(idx)], name='activation' + str(idx), graph=self)

        idx = self.hidden_layer_num
        self.layers['affine' + str(idx)] = tfl.Affine(
            self.params['W' + str(idx)], self.input_node, self.params['b' + str(idx)], name='affine' + str(idx), graph=self
        )
        self.output = activator(self.layers['affine' + str(idx)], name='output', graph=self)

        #self.last_layer = SoftmaxWithCrossEntropyLoss()


        self.error = tfl.SquaredError(self.output, self.target_node, name="SE", graph=self)
Пример #5
0
 def layering(self, activator=tfe.Activator.ReLU.value):
     self.activator = activator
     u0 = tfl.Affine(self.params['W0'],
                     self.input_node,
                     self.params['b0'],
                     name="A0")
     o0 = activator(u0, name="O0")
     u1 = tfl.Affine(self.params['W1'], o0, self.params['b1'], name="A1")
     self.output = activator(u1, name="O1")
     self.error = tfl.SquaredError(self.output, self.target_node, name="SE")
     if isinstance(self, nx.Graph):
         self.add_edge(self.params['W0'], u0)
         self.add_edge(self.input_node, u0)
         self.add_edge(self.params['b0'], u0)
         self.add_edge(u0, o0)
         self.add_edge(self.params['W1'], u1)
         self.add_edge(o0, u1)
         self.add_edge(self.params['b1'], u1)
         self.add_edge(u1, self.output)
         self.add_edge(self.output, self.error)
         self.add_edge(self.error, self.target_node)