def test_parafac2_normalize_factors(): rng = check_random_state(1234) rank = 2 # Rank 2 so we only need to test rank of minimum and maximum random_parafac2_tensor = random_parafac2( shapes=[(15 + rng.randint(5), 30) for _ in range(25)], rank=rank, random_state=rng, ) random_parafac2_tensor.factors[0] = random_parafac2_tensor.factors[0] + 0.1 norms = tl.ones(rank) for factor in random_parafac2_tensor.factors: norms = norms * tl.norm(factor, axis=0) slices = parafac2_to_tensor(random_parafac2_tensor) unnormalized_rec = parafac2(slices, rank, random_state=rng, normalize_factors=False) assert unnormalized_rec.weights[0] == 1 normalized_rec = parafac2(slices, rank, random_state=rng, normalize_factors=True, n_iter_max=1000) assert tl.max(tl.abs(T.norm(normalized_rec.factors[0], axis=0) - 1)) < 1e-5 assert abs(tl.max(norms) - tl.max(normalized_rec.weights)) / tl.max(norms) < 1e-2 assert abs(tl.min(norms) - tl.min(normalized_rec.weights)) / tl.min(norms) < 1e-2
def test_clip(): # Test that clip can work with single arguments X = T.tensor([0.0, -1.0, 1.0]) X_low = T.tensor([0.0, 0.0, 1.0]) X_high = T.tensor([0.0, -1.0, 0.0]) assert_array_equal(tl.clip(X, a_min=0.0), X_low) assert_array_equal(tl.clip(X, a_max=0.0), X_high) # More extensive test with a larger random tensor rng = tl.check_random_state(0) tensor = tl.tensor(rng.random_sample((10, 10, 10)).astype('float32')) val1 = np.float32(rng.random_sample()) val2 = np.float32(rng.random_sample()) limits = [(min(val1, val2), max(val1, val2)), (-1, 2), (tl.max(tensor) + 1, None), (None, tl.min(tensor) - 1), (tl.max(tensor), None), (tl.min(tensor), None), (None, tl.max(tensor)), (None, tl.min(tensor))] for min_val, max_val in limits: message = f"Tensor clipped incorrectly with min_val={min_val} and max_val={max_val}. Tensor bounds are ({tl.to_numpy(tl.min(tensor))}, {tl.to_numpy(tl.max(tensor))}" if min_val is not None: assert tl.all(tl.clip(tensor, min_val, None) >= min_val), message assert tl.all( tl.clip(tensor, min_val, max_val) >= min_val), message if max_val is not None: assert tl.all(tl.clip(tensor, None, max_val) <= max_val), message assert tl.all( tl.clip(tensor, min_val, max_val) <= max_val), message
def print_weight(model_path): model = load_model(model_path) conv_norm = list() conv_max = list() conv_min = list() depconv_norm = list() depconv_max = list() depconv_min = list() for layer in model.layers: print(layer.name) if layer.get_weights() and type(layer).__name__ != 'DepthwiseConv2D': conv, _ = layer.get_weights() conv_norm.append(tt.norm(conv)) conv_max.append(tt.max(conv)) conv_min.append(tt.min(conv)) # plt.figure(figsize=(10,10)) # plt.imshow(my_unfold(conv, -1)) # plt.colorbar() # plt.show() # plt.clf() elif layer.get_weights() and type(layer).__name__ == 'DepthwiseConv2D': w = layer.get_weights() depconv_norm.append(tt.norm(w[0])) depconv_max.append(tt.max(w[0])) depconv_min.append(tt.min(w[0])) # plt.figure(figsize=(20,20)) # plt.imshow(my_unfold(w[0], -1)) # plt.colorbar() # plt.show() # plt.clf() conv_info = [conv_norm, conv_max, conv_min] depconv_info = [depconv_norm, depconv_max, depconv_min] return conv_info, depconv_info
def test_R2X(self): """Test to ensure R2X for higher components is larger.""" tensor = tl.tensor(np.random.rand(12, 10, 15)) arr = [find_R2X(tensor, perform_decomposition(tensor, i)) for i in range(1, 8)] for j in range(len(arr) - 1): self.assertTrue(arr[j] < arr[j + 1]) # confirm R2X is >= 0 and <=1 self.assertGreaterEqual(tl.min(arr), 0) self.assertLessEqual(tl.max(arr), 1)
def tl_sample_uniform(tensor, nsamp): """Uniformly sample 'nsamp' indices from a tensor 'tensor' along with corresponding values and the weight of the sample. Parameters ---------- X : ndarray Dense tensor nsamp : integer number of samples Returns ------- subs : ndarray Subscripts (indices) vals : ndarray Values wgts : ndarray Weights """ d = tl.ndim(tensor) shp = tl.shape(tensor) tsz = 1 for i in shp: tsz *= i # generate subscripts subSamp = lambda x, y: np.ceil(x * y) subs = subSamp(np.random.rand(nsamp, d), shp) subs = subs.astype(int) - 1 # adjust for zero-indexing # quick check that indices are in bounds if tl.min(subs) < 0: print("Bad subscripts generated for sampling.") sys.exit(1) # capture corresponding values for subscripts vals = [] for i in subs: index = tuple(i.tolist()) vals.append(tensor[index]) vals = tl.reshape(tl.tensor(vals), (len(vals), 1)) # calculate weights for sample wgts = tsz / nsamp * tl.ones((nsamp, 1)) return subs, vals, wgts
def active_set_nnls(Utm, UtU, x=None, n_iter_max=100, tol=10e-8): """ Active set algorithm for non-negative least square solution. Computes an approximate non-negative solution for Ux=m linear system. Parameters ---------- Utm : vectorized ndarray Pre-computed product of the transposed of U and m UtU : ndarray Pre-computed Kronecker product of the transposed of U and U x : init Default: None n_iter_max : int Maximum number of iteration Default: 100 tol : float Early stopping criterion Returns ------- x : ndarray Notes ----- This function solves following problem: .. math:: \\begin{equation} \\min_{x} ||Ux - m||^2 \\end{equation} According to [1], non-negativity-constrained least square estimation problem becomes: .. math:: \\begin{equation} x' = (Utm) - (UTU)\\times x \\end{equation} Reference ---------- [1] : Bro, R., & De Jong, S. (1997). A fast non‐negativity‐constrained least squares algorithm. Journal of Chemometrics: A Journal of the Chemometrics Society, 11(5), 393-401. """ if tl.get_backend() == 'tensorflow': raise ValueError( "Active set is not supported with the tensorflow backend. Consider using fista method with tensorflow." ) if x is None: x_vec = tl.zeros(tl.shape(UtU)[1], **tl.context(UtU)) else: x_vec = tl.base.tensor_to_vec(x) x_gradient = Utm - tl.dot(UtU, x_vec) passive_set = x_vec > 0 active_set = x_vec <= 0 support_vec = tl.zeros(tl.shape(x_vec), **tl.context(x_vec)) for iteration in range(n_iter_max): if iteration > 0 or tl.all(x_vec == 0): indice = tl.argmax(x_gradient) passive_set = tl.index_update(passive_set, tl.index[indice], True) active_set = tl.index_update(active_set, tl.index[indice], False) # To avoid singularity error when initial x exists try: passive_solution = tl.solve(UtU[passive_set, :][:, passive_set], Utm[passive_set]) indice_list = [] for i in range(tl.shape(support_vec)[0]): if passive_set[i]: indice_list.append(i) support_vec = tl.index_update( support_vec, tl.index[int(i)], passive_solution[len(indice_list) - 1]) else: support_vec = tl.index_update(support_vec, tl.index[int(i)], 0) # Start from zeros if solve is not achieved except: x_vec = tl.zeros(tl.shape(UtU)[1]) support_vec = tl.zeros(tl.shape(x_vec), **tl.context(x_vec)) passive_set = x_vec > 0 active_set = x_vec <= 0 if tl.any(active_set): indice = tl.argmax(x_gradient) passive_set = tl.index_update(passive_set, tl.index[indice], True) active_set = tl.index_update(active_set, tl.index[indice], False) passive_solution = tl.solve(UtU[passive_set, :][:, passive_set], Utm[passive_set]) indice_list = [] for i in range(tl.shape(support_vec)[0]): if passive_set[i]: indice_list.append(i) support_vec = tl.index_update( support_vec, tl.index[int(i)], passive_solution[len(indice_list) - 1]) else: support_vec = tl.index_update(support_vec, tl.index[int(i)], 0) # update support vector if it is necessary if tl.min(support_vec[passive_set]) <= 0: for i in range(len(passive_set)): alpha = tl.min( x_vec[passive_set][support_vec[passive_set] <= 0] / (x_vec[passive_set][support_vec[passive_set] <= 0] - support_vec[passive_set][support_vec[passive_set] <= 0])) update = alpha * (support_vec - x_vec) x_vec = x_vec + update passive_set = x_vec > 0 active_set = x_vec <= 0 passive_solution = tl.solve( UtU[passive_set, :][:, passive_set], Utm[passive_set]) indice_list = [] for i in range(tl.shape(support_vec)[0]): if passive_set[i]: indice_list.append(i) support_vec = tl.index_update( support_vec, tl.index[int(i)], passive_solution[len(indice_list) - 1]) else: support_vec = tl.index_update(support_vec, tl.index[int(i)], 0) if tl.any(passive_set) != True or tl.min( support_vec[passive_set]) > 0: break # set x to s x_vec = tl.clip(support_vec, 0, tl.max(support_vec)) # gradient update x_gradient = Utm - tl.dot(UtU, x_vec) if tl.any(active_set) != True or tl.max(x_gradient[active_set]) <= tol: break return x_vec
def gcp(X, R, type='normal', func=None, grad=None, lower=None,\ opt='lbfgsb', mask=None, maxiters=1000, \ init='random', printitn=10, state=None, factr=1e7, pgtol=1e-4, \ fsamp=None, gsamp=None, oversample=1.1, sampler='uniform', \ fsampler=None, rate=1e-3, decay=0.1, maxfails=1, epciters=1000, \ festtol=-math.inf, beta1=0.9, beta2=0.999, epsilon=1e-8): """Generalized CANDECOMP/PARAFAC (GCP) decomposition via all-at-once optimization (OPT) [1] Computes a rank-'R' decomposition of 'tensor' such that:: tensor = [|weights; factors[0], ..., factors[-1] |]. GCP-OPT allows the use of a variety of statistically motivated loss functions suited to the data held in a tensor (i.e. continuous, discrete, binary, etc) Parameters ---------- X : ndarray Tensor to factorize **COMING SOON** Sparse tensor support R : int Rank of decomposition (Number of components). type : str, Type of objective function used Options include: 'normal' or 'gaussian' - Gaussian for real-valued data (DEFAULT) 'binary' or 'bernoulli-odds' - Bernoulli w/ odds link for binary data 'bernoulli-logit' - Bernoulli w/ logit link for binary data 'count' or 'poisson' - Poisson for count data 'poisson-log' - Poisson w/ log link for count data 'rayleigh' - Rayleigh distribution for real-valued data 'gamma' - Gamma distribution for non-negative real-valued data **COMING SOON**: 'huber (DELTA) - Similar to Gaussian, for real-valued data 'negative-binomial (r)' - Negative binomial for count data 'beta (BETA)' - Beta divergence for non-negative real-valued data 'user-specified' - Customized objective function provided by user func: lambda function User specified custom objective function, eg. lambda x, m: (m-x)**2 grad: lambda function User specified custom gradient function, eg. lambda x, m: 2*(m-x) lower: 0 or -inf Lower bound for custom objective/gradient opt : str Optimization method Options include: 'lbfgsb' - Bound-constrained limited-memory BFGS 'sgd' - Stochastic gradient descent (SGD) **COMING SOON** 'adam' - Momentum-based SGD method 'adagrad' - Adaptive gradient algorithm, well suited for sparse data If 'tensor' is dense, all 4 options can be used, 'lbfgsb' by default. **COMING SOON** - Sparse format support If 'tensor' is sparse, only 'sgd', 'adam' and 'adagrad' can be used, 'adam' by default. Each method has specific parameters, see documentation mask : ndarray Specifies a mask, 0's for missing/incomplete entries, 1's elsewhere, with the same shape as 'tensor'. **COMING SOON** - Missing/incomplete data simulation. maxiters : int Maximum number of outer iterations, 1000 by default. init : {'random', 'svd', cptensor} Initialization for factor matrices, 'random' by default. Options include: 'random' - random initialization from a uniform distribution on [0,1) 'svd' - initialize the `m`th factor matrix using the `rank` left singular vectors of the `m`th unfolding of the input tensor. cptensor - initialization provided by user. NOTE: weights are pulled in the last factor and then the weights are set to "1" for the output tensor. Initializations all result in a cptensor where the weights are one. printitn : int Print every n iterations; 0 for no printing, 10 by default. state : {None, int, np.random.RandomState} Seed for reproducable random number generation factr : float (L-BFGS-B parameter) Tolerance on the change of objective values. Defaults to 1e7. pgtol : float (L-BFGS-B parameter) Projected gradient tolerance. Defaults to 1e-5 sampler : {uniform, stratified, semi-stratified} Type of sampling to use for stochastic gradient (SGD/ADAM/ADAGRAD). Defaults to 'uniform' for dense tensors. Defaults to 'stratified' for sparse tensors. Options include: 'uniform' - Uniform random sampling **COMING SOON** 'stratified' - Stratified sampling, targets sparse data. Zero and nonzero values sampled separately. 'semi-stratified' - Similar to stratified sampling, but is more computationally efficient (See papers referenced). gsamp : int Number of samples for stochastic gradient (SGD/ADAM/ADAGRAD parameter). Generally set to be O(sum(shape)*R). **COMING SOON** For stratified or semi-stratified, this may be two numbers: - the number of nnz samples - the number of zero samples. If only one number is specified, then this value is used for both nnzs and zeros (total number of samples is 2x specified value in this case). fsampler : {'uniform', 'stratified', custom} Type of sampling for estimating objective function (SGD/ADAM/ADAGRAD parameter). Options include: 'uniform' - Uniform random sampling **COMING SOON** 'stratified' - Stratified sampling, targets sparse data. Zero and nonzero values sampled separately. custom - User-defined sampler (lambda function). Custom option is primarily useful in reusing sampled elements across multiple tests. fsamp : int (SGD/ADAM/ADAGRAD parameter) Number of samples to estimate objective function. This should generally be somewhat large since we want this sample to generate a reliable estimate of the true function value. oversample : float (Stratified sampling parameter) Factor to oversample when implicitly sampling zeros in the sparse case. Defaults to 1.1. Only adjust for very small tensors. rate : float (SGD/ADAM parameter) Initial learning rate. Defaults to 1e-3. decay : float (SGD/ADAM parameter) Amount to decrease learning rate when progress stagnates, i.e. no change in objective function between epochs. Defaults to 0.1. maxfails : int (SGD/ADAM parameter) Number of times to decrease the learning rate. Defaults to 1, may be set to zero. epciters : int (SGD/ADAM parameter) Iterations per epoch. Defaults to 1000. festtol : float (SGD/ADAM parameter) Quit estimation of function if it goes below this level. Defaults to -inf. beta1 : float (ADAM parameter) - generally doesn't need to be changed Defaults to 0.9 beta2 : float (ADAM parameter) - generally doesn't need to be changed Defaults to 0.999 epsilon : float (ADAM parameter) - generally doesn't need to be changed Defaults to 1e-8 Returns ------- Mfin : CPTensor Canonical polyadic decomposition of input tensor X Reference --------- [1] D. Hong, T. G. Kolda, J. A. Duersch, Generalized Canonical Polyadic Tensor Decomposition, SIAM Review, 62:133-163, 2020, https://doi.org/10.1137/18M1203626 [2] T. G. Kolda, D. Hong, Stochastic Gradients for Large-Scale Tensor Decomposition. SIAM J. Mathematics of Data Science, 2:1066-1095, 2020, https://doi.org/10.1137/19m1266265 """ # Timer - Setup (outside optimization) start_setup0 = time.perf_counter() # Initial setup nd = tl.ndim(X) sz = tl.shape(X) tsz = X.size X_context = tl.context(X) vecsz = 0 for i in range(nd): # tsz *= sz[i] vecsz += sz[i] vecsz *= R W = mask # Random set-up if state is not None: state = tl.check_random_state(state) # capture stats(nnzs, zeros, missing) nnonnzeros = 0 X = tl.tensor_to_vec(X) for i in X: if i > 0: nnonnzeros += 1 X = tl.reshape(X, sz) nzeros = tsz - nnonnzeros nmissing = 0 if W is not None: W = tl.tensor_to_vec(W) for i in range(tl.shape(W)[0]): if W[i] > 0: nmissing += 1 # TODO: is this right?? W = tl.reshape(W, sz) # Dictionary for storing important information regarding the decomposition problem info = {} info['tsz'] = tsz info[ 'nmissing'] = 0 # TODO: revisit once missing value functionality incorporated info['nnonnzeros'] = nnonnzeros info[ 'nzeros'] = nzeros # TODO: revisit once missing value functionality incorporated # Set up function, gradient, and bounds fh, gh, lb = validate_type(type, X) info['type'] = type info['fh'] = fh info['gh'] = gh info['lb'] = lb # initialize CP-tensor and make a copy to work with so as to have the starting guess M0 = initialize_cp(X, R, init=init, random_state=state) wghts0 = tl.copy(M0[0]) fcts0 = [] for i in range(nd): f = tl.copy(M0[1][i]) fcts0.append(f) M = CPTensor((wghts0, fcts0)) # Lambda weights are assumed to be all ones throughout, check initial guess satisfies assumption if not tl.all(M[0]): print("Initialization of CP tensor has failed (lambda weight(s) != 1.") sys.exit(1) # check optimization method if validate_opt(opt): print("Choose optimization method from: {lbfgsb, sgd}") sys.exit(1) use_stoc = False if opt != 'lbfgsb': use_stoc = True info['opt'] = opt # set up for stochastic optimization (e.g. sgd, adam, adagrad) if use_stoc: # set up fsampler, gsampler ---> uniform sampling only for now # TODO : add stratified, semi-stratified and user-specified sampling options if not sampler == "uniform": print( "Only uniform sampling currently supported for stochastic optimization." ) sys.exit(1) fsampler_type = sampler gsampler_type = sampler # setup fsampler f_samp = fsamp if f_samp == None: upper = np.maximum(math.ceil(tsz / 10), 10 ^ 6) f_samp = np.minimum(upper, tsz) # set up lambda function/function handle for uniform sampling fsampler = lambda: tl_sample_uniform(X, f_samp) fsampler_str = "{} with {} samples".format(fsampler_type, f_samp) # setup gsampler g_samp = gsamp if g_samp == None: upper = np.maximum(1000, math.ceil(10 * tsz / maxiters)) g_samp = np.minimum(upper, tsz) # setup lambda function/function handle for uniform sampling gsampler = lambda: tl_sample_uniform(X, g_samp) gsampler_str = "{} with {} samples".format(gsampler_type, g_samp) # capture the info info['fsampler'] = fsampler_str info['gsampler'] = gsampler_str info['fsamp'] = f_samp info['gsamp'] = g_samp time_setup0 = time.perf_counter() - start_setup0 # Welcome message if printitn > 0: print("GCP-OPT-{} (Generalized CP Tensor Decomposition)".format(opt)) print("------------------------------------------------") print("Tensor size:\t\t\t\t{} ({} total entries)".format(sz, tsz)) if nmissing > 0: print("Missing entries: {} ({})".format(nmissing, 100 * nmissing / tsz)) print("Generalized function type:\t{}".format(type)) print("Objective function:\t\t\t{}".format( inspect.getsource(fh).strip())) print("Gradient function:\t\t\t{}".format( inspect.getsource(gh).strip())) print("Lower bound of factors:\t\t{}".format(lb)) print("Optimization method:\t\t{}".format(opt)) if use_stoc: print("Max iterations (epochs): {}".format(maxiters)) print("Iterations per epoch: {}".format(epciters)) print("Learning rate / decay / maxfails: {} {} {}".format( rate, decay, maxfails)) print("Function Sampler: {}".format(fsampler_str)) print("Gradient Sampler: {}".format(gsampler_str)) else: print("Max iterations:\t\t\t\t{}".format(maxiters)) print("Projected gradient tol:\t\t{}\n".format(pgtol)) # Make like a zombie and start decomposing Mfin = None # L-BFGS-B optimization if opt == 'lbfgsb': # Timer - Setup (inside optimization) start_setup1 = time.perf_counter() # set up bounds for l-bfgs-b if lb = 0 bounds = None if lb == 0: lb = tl.zeros(tsz) ub = math.inf * tl.ones(tsz) fcn = lambda x: tl_gcp_fg(vec2factors(x, sz, R, X_context), X, fh, gh) m = factors2vec(M[1]) # capture params for l-bfgs-b lbfgsb_params = {} lbfgsb_params['x0'] = factors2vec(M0.factors) lbfgsb_params['printEvery'] = printitn lbfgsb_params['maxIts'] = maxiters lbfgsb_params['maxTotalIts'] = maxiters * 10 lbfgsb_params['factr'] = factr lbfgsb_params['pgtol'] = pgtol time_setup1 = time.perf_counter() - start_setup1 if printitn > 0: print("Begin main loop") # Timer - Main operation start_main = time.perf_counter() x, f, info_dict = fmin_l_bfgs_b(fcn, m, approx_grad=False, bounds=None, \ pgtol=pgtol, factr=factr, maxiter=maxiters) time_main = time.perf_counter() - start_main # capture info info['fcn'] = fcn info['lbfgsbopts'] = lbfgsb_params info['lbfgsbout'] = info_dict info['finalf'] = f if printitn > 0: print("\nFinal objective: {}".format(f)) print("Setup time: {}".format(time_setup0 + time_setup1)) print("Main loop time: {}".format(time_main)) print("Outer iterations:" ) # TODO: access this value (see manpage for fmin_l_bfgs_b) print("Total iterations: {}".format(info_dict['nit'])) print("L-BFGS-B exit message: {} ({})".format( info_dict['task'], info_dict['warnflag'])) Mfin = vec2factors(x, sz, R, X_context) # Stochastic optimization else: # Timer - Setup (inside optimization) start_setup1 = time.perf_counter() if opt == "adam" or opt == "adagrad": print("{} not currently supported".format(opt)) sys.exit(1) # prepare for sgd # initialize moments m = [] v = [] # Extract samples for estimating function value (i.e. call fsampler), these never change fsubs, fvals, fwgts = fsampler() # Compute initial estimated function value fest = tl_gcp_fg_est(M, fh, gh, fsubs, fvals, fwgts, True, False, False, False) # Set up loop variables nfails = 0 titers = 0 M_weights = tl.copy(M[0]) M_factors = [] for k in range(nd): M_factors.append(tl.copy(M[1][k])) Msave = CPTensor( (M_weights, M_factors)) # save a copy of the initial model msave = m vsave = v fest_prev = fest[0] # Tracing the progress in function value by epoch fest_trace = tl.zeros(maxiters + 1) step_trace = tl.zeros(maxiters + 1) time_trace = tl.zeros(maxiters + 1) fest_trace[0] = fest[0] # Print status if printitn > 0: print("Begin main loop") print("Initial f-est: {}".format(fest[0])) time_setup1 = time.perf_counter() - start_setup1 start_main = time.perf_counter() time_trace[0] = time.perf_counter() - start_setup0 # Main loop - outer iteration for nepoch in range(maxiters): step = (decay**nfails) * rate # Main loop - inner iteration for iter in range(epciters): # Tracking iterations titers = titers + 1 # Select subset for stochastic gradient (i.e. call gsampler) gsubs, gvals, gwts = gsampler() # Compute gradients for each mode Gest = tl_gcp_fg_est(M, fh, gh, gsubs, gvals, gwts, False, True, False, False) # Check for inf gradient for g in Gest[0]: g_max = tl.max(g) g_min = tl.min(g) if math.isinf(g_max) or math.isinf(g_min): print( "Infinite gradient encountered! (epoch = {}, iter = {})" .format(nepoch, iter)) # TODO : add functionality for ADAM and ADAGRAD optimization # Take gradient step for k in range(nd): M.factors[k] = M.factors[k] - step * Gest[0][k] # Estimate objective (i.e. call tl_gcp_fg_est) fest = tl_gcp_fg_est(M, fh, gh, fsubs, fvals, fwgts, True, False, False, False) # Save trace (fest & step) fest_trace[nepoch + 1] = fest[0] step_trace[nepoch + 1] = step # Check convergence condition failed_epoch = False if fest[0] > fest_prev: failed_epoch = True if failed_epoch: nfails += 1 festtol_test = False if fest[0] < festtol: festtol_test = True # Reporting if printitn > 0 and (nepoch % printitn == 0 or failed_epoch or festtol_test): print("Epoch {}: f-est = {}, step = {}".format( nepoch, fest[0], step), end='') if failed_epoch: print( ", nfails = {} (resetting to solution from last epoch)" .format(nfails)) print("") # Rectify failed epoch or save current solution if failed_epoch: M = Msave m = msave v = vsave fest[0] = fest_prev titers = titers - epciters else: Msave = CPTensor((tl.copy(M.weights), tl.copy(M.factors))) msave = m vsave = v fest_prev = fest[0] time_trace[nepoch] = time.perf_counter() - start_setup0 if (nfails > maxfails) or festtol_test: break Mfin = M time_main = time.perf_counter() - start_main # capture info info['fest_trace'] = fest_trace info['step_trace'] = step_trace info['time_trace'] = time_trace info['nepoch'] = nepoch # Report end of main loop if printitn > 0: print("End Main Loop") print("") print("Final f-east: {}".format(fest[0])) print("Setup time: {0:0.6f}".format(time_setup0 + time_setup1)) print("Main loop time: {0:0.6f}".format(time_main)) print("Total iterations: {}".format(nepoch * epciters)) # Wrap up / capture remaining info info['mainTime'] = time_main info['setupTime0'] = time_setup0 info['setupTime1'] = time_setup1 info['setupTime'] = time_setup0 + time_setup1 return Mfin