def transpose(node: AbstractNode, permutation: Sequence[Union[Text, int]], name: Optional[Text] = None, axis_names: Optional[List[Text]] = None) -> AbstractNode: """Transpose `node` Args: node: A `AbstractNode`. permutation: A list of int or str. The permutation of the axis. name: Optional name to give the new node. axis_names: Optional list of names for the axis. Returns: A new node. The transpose of `node`. Raises: AttributeError: If `node` has no `backend` attribute, or if `node` has no tensor. ValueError: If either `permutation` is not the same as expected or if you try to permute with a trace edge. """ if not hasattr(node, 'backend'): raise AttributeError('Node {} of type {} has no `backend`'.format( node, type(node))) perm = [node.get_axis_number(p) for p in permutation] if not axis_names: axis_names = node.axis_names new_node = Node(node.tensor, name=name, axis_names=node.axis_names, backend=node.backend) return new_node.reorder_axes(perm)
def redirect_edge(edge: Edge, new_node: AbstractNode, old_node: AbstractNode) -> None: """ Redirect `edge` from `old_node` to `new_node`. Routine updates `new_node` and `old_node`. `edge` is added to `new_node`, `old_node` gets a new Edge instead of `edge`. Args: edge: An Edge. new_node: The new `Node` object. old_node: The old `Node` object. Returns: None Raises: ValueError: if `edge` does not point to `old_node`. """ if not edge.is_trace(): if edge.is_dangling(): if edge.node1 is not old_node: raise ValueError(f"edge {edge} is not pointing " f"to old_node {old_node}") edge.node1 = new_node axis = edge.axis1 else: if edge.node1 is old_node: edge.node1 = new_node axis = edge.axis1 elif edge.node2 is old_node: edge.node2 = new_node axis = edge.axis2 else: raise ValueError(f"edge {edge} is not pointing " f"to old_node {old_node}") new_node.add_edge(edge, axis, True) new_edge = Edge(old_node, axis) old_node.add_edge(new_edge, axis, True) else: if edge.node1 is not old_node: raise ValueError(f"edge {edge} is not pointing " f"to old_node {old_node}") edge.node1 = new_node edge.node2 = new_node axis1 = edge.axis1 axis2 = edge.axis2 new_node.add_edge(edge, axis1, True) new_node.add_edge(edge, axis2, True) new_edge = Edge(old_node, axis1, None, old_node, axis2) old_node.add_edge(new_edge, axis1, True) old_node.add_edge(new_edge, axis2, True)
def split_node_full_svd( node: AbstractNode, left_edges: List[Edge], right_edges: List[Edge], max_singular_values: Optional[int] = None, max_truncation_err: Optional[float] = None, relative: Optional[bool] = False, left_name: Optional[Text] = None, middle_name: Optional[Text] = None, right_name: Optional[Text] = None, left_edge_name: Optional[Text] = None, right_edge_name: Optional[Text] = None, ) -> Tuple[AbstractNode, AbstractNode, AbstractNode, Tensor]: """Split a node by doing a full singular value decomposition. Let :math:`M` be the matrix created by flattening `left_edges` and `right_edges` into 2 axes. Let :math:`U S V^* = M` be the Singular Value Decomposition of :math:`M`. The left most node will be :math:`U` tensor of the SVD, the middle node is the diagonal matrix of the singular values, ordered largest to smallest, and the right most node will be the :math:`V*` tensor of the SVD. The singular value decomposition is truncated if `max_singular_values` or `max_truncation_err` is not `None`. The truncation error is the 2-norm of the vector of truncated singular values. If only `max_truncation_err` is set, as many singular values will be truncated as possible while maintaining: `norm(truncated_singular_values) <= max_truncation_err`. If `relative` is set `True` then `max_truncation_err` is understood relative to the largest singular value. If only `max_singular_values` is set, the number of singular values kept will be `min(max_singular_values, number_of_singular_values)`, so that `max(0, number_of_singular_values - max_singular_values)` are truncated. If both `max_truncation_err` and `max_singular_values` are set, `max_singular_values` takes priority: The truncation error may be larger than `max_truncation_err` if required to satisfy `max_singular_values`. Args: node: The node you want to split. left_edges: The edges you want connected to the new left node. right_edges: The edges you want connected to the new right node. max_singular_values: The maximum number of singular values to keep. max_truncation_err: The maximum allowed truncation error. relative: Multiply `max_truncation_err` with the largest singular value. left_name: The name of the new left node. If None, a name will be generated automatically. middle_name: The name of the new center node. If `None`, a name will be generated automatically. right_name: The name of the new right node. If `None`, a name will be generated automatically. left_edge_name: The name of the new left `Edge` connecting the new left node (:math:`U`) and the new central node (:math:`S`). If `None`, a name will be generated automatically. right_edge_name: The name of the new right `Edge` connecting the new central node (:math:`S`) and the new right node (:math:`V*`). If `None`, a name will be generated automatically. Returns: A tuple containing: left_node: A new node created that connects to all of the `left_edges`. Its underlying tensor is :math:`U` singular_values_node: A new node that has 2 edges connecting `left_node` and `right_node`. Its underlying tensor is :math:`S` right_node: A new node created that connects to all of the `right_edges`. Its underlying tensor is :math:`V^*` truncated_singular_values: The vector of truncated singular values. Raises: AttributeError: If `node` has no backend attribute """ if not hasattr(node, 'backend'): raise AttributeError('Node {} of type {} has no `backend`'.format( node, type(node))) if node.axis_names and left_edge_name and right_edge_name: left_axis_names = [] right_axis_names = [right_edge_name] for edge in left_edges: left_axis_names.append(node.axis_names[edge.axis1] if edge.node1 is node else node.axis_names[edge.axis2]) for edge in right_edges: right_axis_names.append(node.axis_names[edge.axis1] if edge.node1 is node else node.axis_names[edge.axis2]) left_axis_names.append(left_edge_name) center_axis_names = [left_edge_name, right_edge_name] else: left_axis_names = None center_axis_names = None right_axis_names = None backend = node.backend transp_tensor = node.tensor_from_edge_order(left_edges + right_edges) u, s, vh, trun_vals = backend.svd(transp_tensor, len(left_edges), max_singular_values, max_truncation_err, relative=relative) left_node = Node(u, name=left_name, axis_names=left_axis_names, backend=backend) singular_values_node = Node(backend.diagflat(s), name=middle_name, axis_names=center_axis_names, backend=backend) right_node = Node(vh, name=right_name, axis_names=right_axis_names, backend=backend) left_axes_order = [ edge.axis1 if edge.node1 is node else edge.axis2 for edge in left_edges ] for i, edge in enumerate(left_edges): left_node.add_edge(edge, i) edge.update_axis(left_axes_order[i], node, i, left_node) right_axes_order = [ edge.axis1 if edge.node1 is node else edge.axis2 for edge in right_edges ] for i, edge in enumerate(right_edges): # i + 1 to account for the new edge. right_node.add_edge(edge, i + 1) edge.update_axis(right_axes_order[i], node, i + 1, right_node) connect(left_node.edges[-1], singular_values_node.edges[0], name=left_edge_name) connect(singular_values_node.edges[1], right_node.edges[0], name=right_edge_name) node.fresh_edges(node.axis_names) return left_node, singular_values_node, right_node, trun_vals
def split_node_rq( node: AbstractNode, left_edges: List[Edge], right_edges: List[Edge], left_name: Optional[Text] = None, right_name: Optional[Text] = None, edge_name: Optional[Text] = None, ) -> Tuple[AbstractNode, AbstractNode]: """Split a `node` using RQ (reversed QR) decomposition. Let :math:`M` be the matrix created by flattening `left_edges` and `right_edges` into 2 axes. Let :math:`QR = M^*` be the QR Decomposition of :math:`M^*`. This will split the network into 2 nodes. The left node's tensor will be :math:`R^*` (a lower triangular matrix) and the right node's tensor will be :math:`Q^*` (an orthonormal matrix) Args: node: The node you want to split. left_edges: The edges you want connected to the new left node. right_edges: The edges you want connected to the new right node. left_name: The name of the new left node. If `None`, a name will be generated automatically. right_name: The name of the new right node. If `None`, a name will be generated automatically. edge_name: The name of the new `Edge` connecting the new left and right node. If `None`, a name will be generated automatically. Returns: A tuple containing: left_node: A new node that connects to all of the `left_edges`. Its underlying tensor is :math:`R^*` right_node: A new node that connects to all of the `right_edges`. Its underlying tensor is :math:`Q^*` Raises: AttributeError: If `node` has no backend attribute """ if not hasattr(node, 'backend'): raise AttributeError('Node {} of type {} has no `backend`'.format( node, type(node))) if node.axis_names and edge_name: left_axis_names = [] right_axis_names = [edge_name] for edge in left_edges: left_axis_names.append(node.axis_names[edge.axis1] if edge.node1 is node else node.axis_names[edge.axis2]) for edge in right_edges: right_axis_names.append(node.axis_names[edge.axis1] if edge.node1 is node else node.axis_names[edge.axis2]) left_axis_names.append(edge_name) else: left_axis_names = None right_axis_names = None backend = node.backend transp_tensor = node.tensor_from_edge_order(left_edges + right_edges) r, q = backend.rq(transp_tensor, len(left_edges)) left_node = Node(r, name=left_name, axis_names=left_axis_names, backend=backend) left_axes_order = [ edge.axis1 if edge.node1 is node else edge.axis2 for edge in left_edges ] for i, edge in enumerate(left_edges): left_node.add_edge(edge, i) edge.update_axis(left_axes_order[i], node, i, left_node) right_node = Node(q, name=right_name, axis_names=right_axis_names, backend=backend) right_axes_order = [ edge.axis1 if edge.node1 is node else edge.axis2 for edge in right_edges ] for i, edge in enumerate(right_edges): # i + 1 to account for the new edge. right_node.add_edge(edge, i + 1) edge.update_axis(right_axes_order[i], node, i + 1, right_node) connect(left_node.edges[-1], right_node.edges[0], name=edge_name) node.fresh_edges(node.axis_names) return left_node, right_node
def split_node( node: AbstractNode, left_edges: List[Edge], right_edges: List[Edge], max_singular_values: Optional[int] = None, max_truncation_err: Optional[float] = None, relative: Optional[bool] = False, left_name: Optional[Text] = None, right_name: Optional[Text] = None, edge_name: Optional[Text] = None, ) -> Tuple[AbstractNode, AbstractNode, Tensor]: """Split a `node` using Singular Value Decomposition. Let :math:`M` be the matrix created by flattening `left_edges` and `right_edges` into 2 axes. Let :math:`U S V^* = M` be the SVD of :math:`M`. This will split the network into 2 nodes. The left node's tensor will be :math:`U \\sqrt{S}` and the right node's tensor will be :math:`\\sqrt{S} V^*` where :math:`V^*` is the adjoint of :math:`V`. The singular value decomposition is truncated if `max_singular_values` or `max_truncation_err` is not `None`. The truncation error is the 2-norm of the vector of truncated singular values. If only `max_truncation_err` is set, as many singular values will be truncated as possible while maintaining: `norm(truncated_singular_values) <= max_truncation_err`. If `relative` is set `True` then `max_truncation_err` is understood relative to the largest singular value. If only `max_singular_values` is set, the number of singular values kept will be `min(max_singular_values, number_of_singular_values)`, so that `max(0, number_of_singular_values - max_singular_values)` are truncated. If both `max_truncation_err` and `max_singular_values` are set, `max_singular_values` takes priority: The truncation error may be larger than `max_truncation_err` if required to satisfy `max_singular_values`. Args: node: The node you want to split. left_edges: The edges you want connected to the new left node. right_edges: The edges you want connected to the new right node. max_singular_values: The maximum number of singular values to keep. max_truncation_err: The maximum allowed truncation error. relative: Multiply `max_truncation_err` with the largest singular value. left_name: The name of the new left node. If `None`, a name will be generated automatically. right_name: The name of the new right node. If `None`, a name will be generated automatically. edge_name: The name of the new `Edge` connecting the new left and right node. If `None`, a name will be generated automatically. The new axis will get the same name as the edge. Returns: A tuple containing: left_node: A new node created that connects to all of the `left_edges`. Its underlying tensor is :math:`U \\sqrt{S}` right_node: A new node created that connects to all of the `right_edges`. Its underlying tensor is :math:`\\sqrt{S} V^*` truncated_singular_values: The vector of truncated singular values. Raises: AttributeError: If `node` has no backend attribute """ if not hasattr(node, 'backend'): raise AttributeError('Node {} of type {} has no `backend`'.format( node, type(node))) if node.axis_names and edge_name: left_axis_names = [] right_axis_names = [edge_name] for edge in left_edges: left_axis_names.append(node.axis_names[edge.axis1] if edge.node1 is node else node.axis_names[edge.axis2]) for edge in right_edges: right_axis_names.append(node.axis_names[edge.axis1] if edge.node1 is node else node.axis_names[edge.axis2]) left_axis_names.append(edge_name) else: left_axis_names = None right_axis_names = None backend = node.backend transp_tensor = node.tensor_from_edge_order(left_edges + right_edges) u, s, vh, trun_vals = backend.svd(transp_tensor, len(left_edges), max_singular_values, max_truncation_err, relative=relative) sqrt_s = backend.sqrt(s) u_s = backend.broadcast_right_multiplication(u, sqrt_s) vh_s = backend.broadcast_left_multiplication(sqrt_s, vh) left_node = Node(u_s, name=left_name, axis_names=left_axis_names, backend=backend) left_axes_order = [ edge.axis1 if edge.node1 is node else edge.axis2 for edge in left_edges ] for i, edge in enumerate(left_edges): left_node.add_edge(edge, i) edge.update_axis(left_axes_order[i], node, i, left_node) right_node = Node(vh_s, name=right_name, axis_names=right_axis_names, backend=backend) right_axes_order = [ edge.axis1 if edge.node1 is node else edge.axis2 for edge in right_edges ] for i, edge in enumerate(right_edges): # i + 1 to account for the new edge. right_node.add_edge(edge, i + 1) edge.update_axis(right_axes_order[i], node, i + 1, right_node) connect(left_node.edges[-1], right_node.edges[0], name=edge_name) node.fresh_edges(node.axis_names) return left_node, right_node, trun_vals