Пример #1
0
 def eval_prepared(self, num_gpu, batch_size):
     if self.min_num_workers == 0:
         return MapData(self, self.ex_process.val_process)
     else:
         return MultiProcessMapData(self, max(num_gpu,
                                              self.min_num_workers),
                                    self.ex_process.val_process)
Пример #2
0
def get_plain_train_dataflow(batch_size=2):
    # no aspect ratio grouping

    print("In train dataflow")
    roidbs = list(itertools.chain.from_iterable(DatasetRegistry.get(x).training_roidbs() for x in cfg.DATA.TRAIN))
    print_class_histogram(roidbs)
    print("Done loading roidbs")

    # Filter out images that have no gt boxes, but this filter shall not be applied for testing.
    # The model does support training with empty images, but it is not useful for COCO.
    num = len(roidbs)
    roidbs = list(filter(lambda img: len(img["boxes"][img["is_crowd"] == 0]) > 0, roidbs))
    logger.info(
        "Filtered {} images which contain no non-crowd groudtruth boxes. Total #images for training: {}".format(
            num - len(roidbs), len(roidbs)
        )
    )

    ds = DataFromList(roidbs, shuffle=True)
    preprocess = TrainingDataPreprocessor()
    buffer_size = cfg.DATA.NUM_WORKERS * 20
    ds = MultiProcessMapData(ds, cfg.DATA.NUM_WORKERS, preprocess, buffer_size=buffer_size)
    ds.reset_state()
    dataiter = ds.__iter__()
    return dataiter
Пример #3
0
 def prepared(self, num_gpu, batch_size, eval=False):
     # use a single process version to debug if needed
     if self.min_num_workers == 0:
         ds = MapData(self, self.ex_process.train_process)
     else:
         ds = MultiProcessMapData(self, max(num_gpu, self.min_num_workers),
                                  self.ex_process.train_process)
     return BatchData(ds, batch_size)
Пример #4
0
def get_train_dataflow():
    """
    Return a training dataflow. Each datapoint consists of the following:

    An image: (h, w, 3),

    1 or more pairs of (anchor_labels, anchor_boxes):
    anchor_labels: (h', w', NA)
    anchor_boxes: (h', w', NA, 4)

    gt_boxes: (N, 4)
    gt_labels: (N,)

    If MODE_MASK, gt_masks: (N, h, w)
    """
    roidbs = list(
        itertools.chain.from_iterable(
            DatasetRegistry.get(x).training_roidbs() for x in cfg.DATA.TRAIN))
    print(
        "---------------------------------------------------------------- data.py:343"
    )
    print_class_histogram(roidbs)

    # Filter out images that have no gt boxes, but this filter shall not be applied for testing.
    # The model does support training with empty images, but it is not useful for COCO.
    num = len(roidbs)
    roidbs = list(
        filter(lambda img: len(img["boxes"][img["is_crowd"] == 0]) > 0,
               roidbs))
    logger.info(
        "Filtered {} images which contain no non-crowd groudtruth boxes. Total #images for training: {}"
        .format(num - len(roidbs), len(roidbs)))

    ds = DataFromList(roidbs, shuffle=True)

    preprocess = TrainingDataPreprocessor(cfg)

    if cfg.DATA.NUM_WORKERS > 0:
        if cfg.TRAINER == "horovod":
            # one dataflow for each process, therefore don't need large buffer
            buffer_size = cfg.DATA.NUM_WORKERS * 10
            ds = MultiThreadMapData(ds,
                                    cfg.DATA.NUM_WORKERS,
                                    preprocess,
                                    buffer_size=buffer_size)
            # MPI does not like fork()
        else:
            buffer_size = cfg.DATA.NUM_WORKERS * 20
            ds = MultiProcessMapData(ds,
                                     cfg.DATA.NUM_WORKERS,
                                     preprocess,
                                     buffer_size=buffer_size)
    else:
        ds = MapData(ds, preprocess)
    return ds
def get_train_dataflow_coco(add_mask=False):
    """
    Return a training dataflow. Each datapoint is:
    image, fm_labels, fm_boxes, gt_boxes, gt_class [, masks]
    """
    imgs = COCODetection.load_many(config.BASEDIR,
                                   config.TRAIN_DATASET,
                                   add_gt=True,
                                   add_mask=add_mask)
    # Valid training images should have at least one fg box.
    # But this filter shall not be applied for testing.
    imgs = list(filter(lambda img: len(img['boxes']) > 0,
                       imgs))  # log invalid training

    ds = DataFromList(imgs, shuffle=True)

    aug = imgaug.AugmentorList([
        CustomResize(config.SHORT_EDGE_SIZE, config.MAX_SIZE),
        imgaug.Flip(horiz=True)
    ])

    def preprocess(img):
        print("start preproc coco")
        start = time.time()
        if config.USE_SECOND_HEAD:
            fname, boxes, klass, second_klass, is_crowd = img['file_name'], img['boxes'], img['class'], \
                                                          img['second_class'], img['is_crowd']
        else:
            fname, boxes, klass, is_crowd = img['file_name'], img[
                'boxes'], img['class'], img['is_crowd']
            second_klass = None
        res = preproc_img(fname, boxes, klass, second_klass, is_crowd, aug)
        if res is None:
            print("coco: preproc_img returned None on", fname)
            return None

        ret, params = res
        im = ret[0]
        boxes = ret[3]
        # masks
        if add_mask:
            # augmentation will modify the polys in-place
            segmentation = copy.deepcopy(img.get('segmentation', None))
            segmentation = [
                segmentation[k] for k in range(len(segmentation))
                if not is_crowd[k]
            ]
            assert len(segmentation) == len(boxes), (len(segmentation),
                                                     len(boxes))

            # one image-sized binary mask per box
            masks = []
            for polys in segmentation:
                polys = [aug.augment_coords(p, params) for p in polys]
                masks.append(
                    segmentation_to_mask(polys, im.shape[0], im.shape[1]))
            masks = np.asarray(masks, dtype='uint8')  # values in {0, 1}
            ret.append(masks)

            # from viz import draw_annotation, draw_mask
            # viz = draw_annotation(im, boxes, klass)
            # for mask in masks:
            #     viz = draw_mask(viz, mask)
            # tpviz.interactive_imshow(viz)
        end = time.time()
        elapsed = end - start
        print("coco example done, elapsed:", elapsed)
        return ret

    #ds = MapData(ds, preprocess)
    ds = MultiProcessMapData(ds,
                             nr_proc=4,
                             map_func=preprocess,
                             buffer_size=20)
    return ds
def get_train_dataflow_mapillary(add_mask=False, map_to_coco=False):
    train_img_path = config.MAPILLARY_PATH + "training/images/"
    train_label_path = config.MAPILLARY_PATH + "training/instances/"
    imgs = glob.glob(train_img_path + "*.jpg")

    ds = DataFromList(imgs, shuffle=True)
    aug = imgaug.AugmentorList([
        CustomResize(config.SHORT_EDGE_SIZE, config.MAX_SIZE),
        imgaug.Flip(horiz=True)
    ])

    def preprocess(fname):
        print("start preproc mapillary")
        start = time.time()

        label_fname = fname.replace(train_img_path,
                                    train_label_path).replace(".jpg", ".png")
        pil_label = Image.open(label_fname)
        label = np.array(pil_label)
        instances = np.unique(label)
        instance_classes = [x // 256 for x in instances]

        # filter by categories we use
        instances_valid = [
            cls in config.MAPILLARY_CAT_IDS_TO_USE for cls in instance_classes
        ]
        instances = [
            inst for inst, valid in zip(instances, instances_valid) if valid
        ]
        instance_classes = [
            cls for cls, valid in zip(instance_classes, instances_valid)
            if valid
        ]

        if len(instances) == 0:
            print("no instances")
            pil_label.close()
            return None

        if map_to_coco:
            instance_classes = [
                config.MAPILLARY_TO_COCO_MAP[cls] for cls in instance_classes
            ]
            instance_classes = [
                config.VOID_LABEL if cls == config.VOID_LABEL else
                COCOMeta.category_id_to_class_id[cls]
                for cls in instance_classes
            ]
        else:
            # remap to contiguous numbers starting with 1
            instance_classes = [
                config.MAPILLARY_CAT_IDS_TO_USE.index(cls) + 1
                for cls in instance_classes
            ]

        masks = np.array([label == inst for inst in instances], dtype=np.uint8)

        #import cProfile
        #start1 = time.time()
        boxes1 = np.array(
            [get_bbox_from_segmentation_mask(mask) for mask in masks],
            dtype=np.float32)
        #boxes1_time = time.time() - start1
        #pr = cProfile.Profile()
        #pr.enable()
        #start1 = time.time()
        #boxes2 = get_bboxes_from_segmentation_masks(masks)
        #print("boxes1", boxes1_time, "boxes2", time.time() - start1)
        #pr.disable()
        #pr.print_stats(sort="cumulative")
        #assert (boxes1 == boxes2).all(), (boxes1, boxes2)
        boxes = boxes1

        second_klass = np.array(instance_classes, dtype=np.int)
        klass = np.ones_like(second_klass)
        is_crowd = np.zeros_like(second_klass)

        res = preproc_img(fname, boxes, klass, second_klass, is_crowd, aug)
        if res is None:
            print("mapillary: preproc_img returned None on", fname)
            pil_label.close()
            return None
        ret, params = res
        if add_mask:
            do_flip, h, w = params[1]
            assert do_flip in (True, False), do_flip
            # augment label
            label = np.array(pil_label.resize((w, h), Image.NEAREST))
            if do_flip:
                label = label[:, ::-1]
            # create augmented masks
            masks = np.array([label == inst for inst in instances],
                             dtype=np.uint8)
            ret.append(masks)

        end = time.time()
        elapsed = end - start
        print("mapillary example done, elapsed:", elapsed)

        VISUALIZE = False
        if VISUALIZE:
            from viz import draw_annotation, draw_mask
            config.CLASS_NAMES = [str(idx) for idx in range(81)]
            im = ret[0]
            boxes = ret[3]
            draw_klass = ret[-2]
            viz = draw_annotation(im, boxes, draw_klass)
            for mask in masks:
                viz = draw_mask(viz, mask)
            tpviz.interactive_imshow(viz)

        pil_label.close()
        return ret

    #ds = MapData(ds, preprocess)
    ds = MultiProcessMapData(ds,
                             nr_proc=8,
                             map_func=preprocess,
                             buffer_size=35)
    return ds
Пример #7
0
def get_train_dataflow_w_unlabeled(load_path):
    """
    Return a training dataflow. Each datapoint consists of the following:

    An image: (h, w, 3),

    1 or more pairs of (anchor_labels, anchor_boxes):
    anchor_labels: (h', w', NA)
    anchor_boxes: (h', w', NA, 4)

    gt_boxes: (N, 4)
    gt_labels: (N,)

    If MODE_MASK, gt_masks: (N, h, w)
    """
    assert os.path.isfile(load_path), "{} does not find".format(load_path)
    roidbs = list(
        itertools.chain.from_iterable(
            DatasetRegistry.get(x).training_roidbs() for x in cfg.DATA.TRAIN))
    print_class_histogram(roidbs)

    if "VOC" in cfg.DATA.TRAIN[0]:
        roidbs_u = list(
            itertools.chain.from_iterable(
                DatasetRegistry.get(x).training_roidbs()
                for x in cfg.DATA.UNLABEL))
        unlabled2017_used = False
    else:
        unlabled2017_used = np.any(["@" not in x for x in cfg.DATA.TRAIN])

        def prase_name(x):
            if not unlabled2017_used:
                assert "@" in load_path, (
                    "{}: Did you use wrong pseudo_data.py for "
                    "this model?").format(load_path)
                return x + "-unlabeled"
            else:
                # return coco2017 unlabeled data
                return "coco_unlabeled2017"

        roidbs_u = list(
            itertools.chain.from_iterable(
                DatasetRegistry.get(prase_name(x)).training_roidbs()
                for x in cfg.DATA.TRAIN))
    print_class_histogram(roidbs_u)

    # Filter out images that have no gt boxes, but this filter shall not be applied for testing.
    # The model does support training with empty images, but it is not useful for COCO.
    def remove_no_box_data(_roidbs, filter_fn, dset):
        num = len(_roidbs)
        _roidbs = filter_fn(_roidbs)
        logger.info(
            "Filtered {} images which contain no non-crowd groudtruth boxes. Total {} #images for training: {}"
            .format(num - len(_roidbs), dset, len(_roidbs)))
        return _roidbs

    roidbs = remove_no_box_data(
        roidbs, lambda x: list(
            filter(lambda img: len(img["boxes"][img["is_crowd"] == 0]) > 0, x)
        ), "labeled")
    # load unlabeled
    if unlabled2017_used:
        assert "@" not in load_path, "Did you use the wrong pseudo path"
    pseudo_targets = dd.io.load(load_path)
    logger.info("Loaded {} pseudo targets from {}".format(
        len(pseudo_targets), load_path))
    roidbs_u = remove_no_box_data(
        roidbs_u, lambda x: list(
            filter(
                lambda img: len(pseudo_targets[img["image_id"]]["boxes"]) > 0,
                x)), "unlabeled")
    preprocess = TrainingDataPreprocessorSSlAug(
        cfg, confidence=cfg.TRAIN.CONFIDENCE, pseudo_targets=pseudo_targets)

    ds = DataFrom2List(roidbs, roidbs_u, shuffle=True)

    if cfg.DATA.NUM_WORKERS > 0:
        if cfg.TRAINER == "horovod":
            buffer_size = cfg.DATA.NUM_WORKERS * 10
            ds = MultiThreadMapData(ds,
                                    cfg.DATA.NUM_WORKERS,
                                    preprocess,
                                    buffer_size=buffer_size)
        else:
            buffer_size = cfg.DATA.NUM_WORKERS * 20
            ds = MultiProcessMapData(ds,
                                     cfg.DATA.NUM_WORKERS,
                                     preprocess,
                                     buffer_size=buffer_size)
    else:
        ds = MapData(ds, preprocess)
    return ds
Пример #8
0
def get_train_dataflow(add_mask=False):
    """
    Return a training dataflow. Each datapoint is:
    image, fm_labels, fm_boxes, gt_boxes, gt_class [, masks]
    """

    imgs = COCODetection.load_many(config.BASEDIR,
                                   config.TRAIN_DATASET,
                                   add_gt=True,
                                   add_mask=add_mask)
    """
    To train on your own data, change this to your loader.
    Produce "igms" as a list of dict, in the dict the following keys are needed for training:
    height, width: integer
    file_name: str
    boxes: kx4 floats
    class: k integers
    is_crowd: k booleans. Use k False if you don't know what it means.
    segmentation: k numpy arrays. Each array is a polygon of shape Nx2.
        If your segmentation annotations are masks rather than polygons,
        either convert it, or the augmentation code below will need to be
        changed or skipped accordingly.
    """

    # Valid training images should have at least one fg box.
    # But this filter shall not be applied for testing.
    imgs = list(filter(lambda img: len(img['boxes']) > 0,
                       imgs))  # log invalid training

    ds = DataFromList(imgs, shuffle=True)

    aug = imgaug.AugmentorList([
        CustomResize(config.SHORT_EDGE_SIZE, config.MAX_SIZE),
        imgaug.Flip(horiz=True)
    ])

    def preprocess(img):
        fname, boxes, klass, is_crowd = img['file_name'], img['boxes'], img[
            'class'], img['is_crowd']
        im = cv2.imread(fname, cv2.IMREAD_COLOR)
        assert im is not None, fname
        im = im.astype('float32')
        # assume floatbox as input
        assert boxes.dtype == np.float32

        # augmentation:
        im, params = aug.augment_return_params(im)
        points = box_to_point8(boxes)
        points = aug.augment_coords(points, params)
        boxes = point8_to_box(points)

        # rpn anchor:
        try:
            fm_labels, fm_boxes = get_rpn_anchor_input(im, boxes, is_crowd)
            boxes = boxes[is_crowd == 0]  # skip crowd boxes in training target
            klass = klass[is_crowd == 0]
            if not len(boxes):
                raise MalformedData("No valid gt_boxes!")
        except MalformedData as e:
            log_once(
                "Input {} is filtered for training: {}".format(fname, str(e)),
                'warn')
            return None

        ret = [im, fm_labels, fm_boxes, boxes, klass]

        if add_mask:
            # augmentation will modify the polys in-place
            segmentation = copy.deepcopy(img.get('segmentation', None))
            segmentation = [
                segmentation[k] for k in range(len(segmentation))
                if not is_crowd[k]
            ]
            assert len(segmentation) == len(boxes)

            # Apply augmentation on polygon coordinates.
            # And produce one image-sized binary mask per box.
            masks = []
            for polys in segmentation:
                polys = [aug.augment_coords(p, params) for p in polys]
                masks.append(
                    segmentation_to_mask(polys, im.shape[0], im.shape[1]))
            masks = np.asarray(masks, dtype='uint8')  # values in {0, 1}
            ret.append(masks)

            # from viz import draw_annotation, draw_mask
            # viz = draw_annotation(im, boxes, klass)
            # for mask in masks:
            #     viz = draw_mask(viz, mask)
            # tpviz.interactive_imshow(viz)
        return ret

    ds = MultiProcessMapData(ds, 3, preprocess)
    return ds