Пример #1
0
    def build_graph(self, image, label):
        xys = np.array([(y, x, 1) for y in range(WARP_TARGET_SIZE)
                        for x in range(WARP_TARGET_SIZE)], dtype='float32')
        xys = tf.constant(xys, dtype=tf.float32, name='xys')    # p x 3

        image = image / 255.0 - 0.5  # bhw2

        def get_stn(image):
            stn = (LinearWrap(image)
                   .AvgPooling('downsample', 2)
                   .Conv2D('conv0', 20, 5, padding='VALID')
                   .MaxPooling('pool0', 2)
                   .Conv2D('conv1', 20, 5, padding='VALID')
                   .FullyConnected('fc1', 32)
                   .FullyConnected('fct', 6, activation=tf.identity,
                                   kernel_initializer=tf.constant_initializer(),
                                   bias_initializer=tf.constant_initializer([1, 0, HALF_DIFF, 0, 1, HALF_DIFF]))())
            # output 6 parameters for affine transformation
            stn = tf.reshape(stn, [-1, 2, 3], name='affine')  # bx2x3
            stn = tf.reshape(tf.transpose(stn, [2, 0, 1]), [3, -1])  # 3 x (bx2)
            coor = tf.reshape(tf.matmul(xys, stn),
                              [WARP_TARGET_SIZE, WARP_TARGET_SIZE, -1, 2])
            coor = tf.transpose(coor, [2, 0, 1, 3], 'sampled_coords')  # b h w 2
            sampled = GridSample('warp', [image, coor], borderMode='constant')
            return sampled

        with argscope([Conv2D, FullyConnected], activation=tf.nn.relu):
            with tf.variable_scope('STN1'):
                sampled1 = get_stn(image)
            with tf.variable_scope('STN2'):
                sampled2 = get_stn(image)

        # For visualization in tensorboard
        with tf.name_scope('visualization'):
            padded1 = tf.pad(sampled1, [[0, 0], [HALF_DIFF, HALF_DIFF], [HALF_DIFF, HALF_DIFF], [0, 0]])
            padded2 = tf.pad(sampled2, [[0, 0], [HALF_DIFF, HALF_DIFF], [HALF_DIFF, HALF_DIFF], [0, 0]])
            img_orig = tf.concat([image[:, :, :, 0], image[:, :, :, 1]], 1)  # b x 2h  x w
            transform1 = tf.concat([padded1[:, :, :, 0], padded1[:, :, :, 1]], 1)
            transform2 = tf.concat([padded2[:, :, :, 0], padded2[:, :, :, 1]], 1)
            stacked = tf.concat([img_orig, transform1, transform2], 2, 'viz')
            tf.summary.image('visualize',
                             tf.expand_dims(stacked, -1), max_outputs=30)

        sampled = tf.concat([sampled1, sampled2], 3, 'sampled_concat')
        logits = (LinearWrap(sampled)
                  .FullyConnected('fc1', 256, activation=tf.nn.relu)
                  .FullyConnected('fc2', 128, activation=tf.nn.relu)
                  .FullyConnected('fct', 19, activation=tf.identity)())
        tf.nn.softmax(logits, name='prob')

        cost = tf.nn.sparse_softmax_cross_entropy_with_logits(logits=logits, labels=label)
        cost = tf.reduce_mean(cost, name='cross_entropy_loss')

        wrong = tf.cast(tf.logical_not(tf.nn.in_top_k(logits, label, 1)), tf.float32, name='incorrect_vector')
        summary.add_moving_summary(tf.reduce_mean(wrong, name='train_error'))

        wd_cost = tf.multiply(1e-5, regularize_cost('fc.*/W', tf.nn.l2_loss),
                              name='regularize_loss')
        summary.add_moving_summary(cost, wd_cost)
        return tf.add_n([wd_cost, cost], name='cost')
Пример #2
0
def visualize_conv_activations(activation, name):
    """Visualize activations for convolution layers.

    Remarks:
        This tries to place all activations into a square.

    Args:
        activation: tensor with the activation [B,H,W,C]
        name: label for tensorboard

    Returns:
        image of almost all activations
    """
    import math
    with tf.name_scope('visualize_act_' + name):
        _, h, w, c = activation.get_shape().as_list()
        rows = []
        c_per_row = int(math.sqrt(c))
        for y in range(0, c - c_per_row, c_per_row):
            row = activation[:, :, :,
                             y:y + c_per_row]  # [?, H, W, 32] --> [?, H, W, 5]
            cols = tf.unstack(row, axis=3)  # [?, H, W, 5] --> 5 * [?, H, W]
            row = tf.concat(cols, 1)
            rows.append(row)

        viz = tf.concat(rows, 2)
    tf.summary.image('visualize_act_' + name, tf.expand_dims(viz, -1))
Пример #3
0
def GridSample(inputs, borderMode='repeat'):
    """
    Sample the images using the given coordinates, by bilinear interpolation.
    This was described in the paper:
    `Spatial Transformer Networks <http://arxiv.org/abs/1506.02025>`_.

    This is equivalent to `torch.nn.functional.grid_sample`,
    up to some non-trivial coordinate transformation.

    This implementation returns pixel value at pixel (1, 1) for a floating point coordinate (1.0, 1.0).
    Note that this may not be what you need.

    Args:
        inputs (list): [images, coords]. images has shape NHWC.
            coords has shape (N, H', W', 2), where each pair of the last dimension is a (y, x) real-value
            coordinate.
        borderMode: either "repeat" or "constant" (zero-filled)

    Returns:
        tf.Tensor: a tensor named ``output`` of shape (N, H', W', C).
    """
    image, mapping = inputs
    assert image.get_shape().ndims == 4 and mapping.get_shape().ndims == 4
    input_shape = image.get_shape().as_list()[1:]
    assert None not in input_shape, \
        "Images in GridSample layer must have fully-defined shape"
    assert borderMode in ['repeat', 'constant']

    orig_mapping = mapping
    mapping = tf.maximum(mapping, 0.0)
    lcoor = tf.floor(mapping)
    ucoor = lcoor + 1

    diff = mapping - lcoor
    neg_diff = 1.0 - diff  # bxh2xw2x2

    lcoory, lcoorx = tf.split(lcoor, 2, 3)
    ucoory, ucoorx = tf.split(ucoor, 2, 3)

    lyux = tf.concat([lcoory, ucoorx], 3)
    uylx = tf.concat([ucoory, lcoorx], 3)

    diffy, diffx = tf.split(diff, 2, 3)
    neg_diffy, neg_diffx = tf.split(neg_diff, 2, 3)

    ret = tf.add_n([sample(image, lcoor) * neg_diffx * neg_diffy,
                    sample(image, ucoor) * diffx * diffy,
                    sample(image, lyux) * neg_diffy * diffx,
                    sample(image, uylx) * diffy * neg_diffx], name='sampled')
    if borderMode == 'constant':
        max_coor = tf.constant([input_shape[0] - 1, input_shape[1] - 1], dtype=tf.float32)
        mask = tf.greater_equal(orig_mapping, 0.0)
        mask2 = tf.less_equal(orig_mapping, max_coor)
        mask = tf.logical_and(mask, mask2)  # bxh2xw2x2
        mask = tf.reduce_all(mask, [3])  # bxh2xw2 boolean
        mask = tf.expand_dims(mask, 3)
        ret = ret * tf.cast(mask, tf.float32)
    return tf.identity(ret, name='output')
Пример #4
0
    def build_graph(self, image, label):
        """This function should build the model which takes the input variables (defined above)
        and return cost at the end."""

        # In tensorflow, inputs to convolution function are assumed to be
        # NHWC. Add a single channel here.
        image = tf.expand_dims(image, 3)

        image = image * 2 - 1   # center the pixels values at zero
        # The context manager `argscope` sets the default option for all the layers under
        # this context. Here we use 32 channel convolution with shape 3x3
        # See tutorial at https://tensorpack.readthedocs.io/tutorial/symbolic.html
        with argscope(Conv2D, kernel_size=3, activation=tf.nn.relu, filters=32):
            # LinearWrap is just a syntax sugar.
            # See tutorial at https://tensorpack.readthedocs.io/tutorial/symbolic.html
            logits = (LinearWrap(image)
                      .Conv2D('conv0')
                      .MaxPooling('pool0', 2)
                      .Conv2D('conv1')
                      .Conv2D('conv2')
                      .MaxPooling('pool1', 2)
                      .Conv2D('conv3')
                      .FullyConnected('fc0', 512, activation=tf.nn.relu)
                      .Dropout('dropout', rate=0.5)
                      .FullyConnected('fc1', 10, activation=tf.identity)())

        # a vector of length B with loss of each sample
        cost = tf.nn.sparse_softmax_cross_entropy_with_logits(logits=logits, labels=label)
        cost = tf.reduce_mean(cost, name='cross_entropy_loss')  # the average cross-entropy loss

        correct = tf.cast(tf.nn.in_top_k(predictions=logits, targets=label, k=1), tf.float32, name='correct')
        accuracy = tf.reduce_mean(correct, name='accuracy')

        # This will monitor training error & accuracy (in a moving average fashion). The value will be automatically
        # 1. written to tensosrboard
        # 2. written to stat.json
        # 3. printed after each epoch
        # You can also just call `tf.summary.scalar`. But moving summary has some other benefits.
        # See tutorial at https://tensorpack.readthedocs.io/tutorial/summary.html
        train_error = tf.reduce_mean(1 - correct, name='train_error')
        summary.add_moving_summary(train_error, accuracy)

        # Use a regex to find parameters to apply weight decay.
        # Here we apply a weight decay on all W (weight matrix) of all fc layers
        # If you don't like regex, you can certainly define the cost in any other methods.
        wd_cost = tf.multiply(1e-5,
                              regularize_cost('fc.*/W', tf.nn.l2_loss),
                              name='regularize_loss')
        total_cost = tf.add_n([wd_cost, cost], name='total_cost')
        summary.add_moving_summary(cost, wd_cost, total_cost)

        # monitor histogram of all weight (of conv and fc layers) in tensorboard
        summary.add_param_summary(('.*/W', ['histogram', 'rms']))
        # the function should return the total cost to be optimized
        return total_cost
Пример #5
0
def visualize_conv_weights(filters, name):
    """Visualize use weights in convolution filters.

    Args:
        filters: tensor containing the weights [H,W,Cin,Cout]
        name: label for tensorboard

    Returns:
        image of all weight
    """
    with tf.name_scope('visualize_w_' + name):
        filters = tf.transpose(
            filters, (3, 2, 0, 1))  # [h, w, cin, cout] -> [cout, cin, h, w]
        filters = tf.unstack(filters)  # --> cout * [cin, h, w]
        filters = tf.concat(filters, 1)  # --> [cin, cout * h, w]
        filters = tf.unstack(filters)  # --> cin * [cout * h, w]
        filters = tf.concat(filters, 1)  # --> [cout * h, cin * w]
        filters = tf.expand_dims(filters, 0)
        filters = tf.expand_dims(filters, -1)

    tf.summary.image('visualize_w_' + name, filters)
Пример #6
0
    def build_graph(self, image, label):
        """This function should build the model which takes the input variables
        and return cost at the end"""

        # In tensorflow, inputs to convolution function are assumed to be
        # NHWC. Add a single channel here.
        image = tf.expand_dims(image, 3)

        image = image * 2 - 1   # center the pixels values at zero

        # The context manager `argscope` sets the default option for all the layers under
        # this context. Here we use 32 channel convolution with shape 3x3
        with argscope([tf.layers.conv2d], padding='same', activation=tf.nn.relu):
            l = tf.layers.conv2d(image, 32, 3, name='conv0')
            l = tf.layers.max_pooling2d(l, 2, 2, padding='valid')
            l = tf.layers.conv2d(l, 32, 3, name='conv1')
            l = tf.layers.conv2d(l, 32, 3, name='conv2')
            l = tf.layers.max_pooling2d(l, 2, 2, padding='valid')
            l = tf.layers.conv2d(l, 32, 3, name='conv3')
            l = tf.layers.flatten(l)
            l = tf.layers.dense(l, 512, activation=tf.nn.relu, name='fc0')
            l = tf.layers.dropout(l, rate=0.5, training=self.training)
        logits = tf.layers.dense(l, 10, activation=tf.identity, name='fc1')

        # a vector of length B with loss of each sample
        cost = tf.nn.sparse_softmax_cross_entropy_with_logits(logits=logits, labels=label)
        cost = tf.reduce_mean(cost, name='cross_entropy_loss')  # the average cross-entropy loss

        correct = tf.cast(tf.nn.in_top_k(logits, label, 1), tf.float32, name='correct')
        accuracy = tf.reduce_mean(correct, name='accuracy')

        # This will monitor training error & accuracy (in a moving average fashion). The value will be automatically
        # 1. written to tensosrboard
        # 2. written to stat.json
        # 3. printed after each epoch
        train_error = tf.reduce_mean(1 - correct, name='train_error')
        summary.add_moving_summary(train_error, accuracy)

        # Use a regex to find parameters to apply weight decay.
        # Here we apply a weight decay on all W (weight matrix) of all fc layers
        # If you don't like regex, you can certainly define the cost in any other methods.
        wd_cost = tf.multiply(1e-5,
                              regularize_cost('fc.*/kernel', tf.nn.l2_loss),
                              name='regularize_loss')
        total_cost = tf.add_n([wd_cost, cost], name='total_cost')
        summary.add_moving_summary(cost, wd_cost, total_cost)

        # monitor histogram of all weight (of conv and fc layers) in tensorboard
        summary.add_param_summary(('.*/kernel', ['histogram', 'rms']))
        # the function should return the total cost to be optimized
        return total_cost
Пример #7
0
    def build_graph(self, image, label):
        image = tf.expand_dims(image * 2 - 1, 3)

        with argscope(Conv2D, kernel_shape=3, nl=tf.nn.relu, out_channel=32):
            c0 = Conv2D('conv0', image)
            p0 = MaxPooling('pool0', c0, 2)
            c1 = Conv2D('conv1', p0)
            c2 = Conv2D('conv2', c1)
            p1 = MaxPooling('pool1', c2, 2)
            c3 = Conv2D('conv3', p1)
            fc1 = FullyConnected('fc0', c3, 512, nl=tf.nn.relu)
            fc1 = Dropout('dropout', fc1, 0.5)
            logits = FullyConnected('fc1', fc1, out_dim=10, nl=tf.identity)

        with tf.name_scope('visualizations'):
            visualize_conv_weights(c0.variables.W, 'conv0')
            visualize_conv_activations(c0, 'conv0')
            visualize_conv_weights(c1.variables.W, 'conv1')
            visualize_conv_activations(c1, 'conv1')
            visualize_conv_weights(c2.variables.W, 'conv2')
            visualize_conv_activations(c2, 'conv2')
            visualize_conv_weights(c3.variables.W, 'conv3')
            visualize_conv_activations(c3, 'conv3')

            tf.summary.image('input', (image + 1.0) * 128., 3)

        cost = tf.nn.sparse_softmax_cross_entropy_with_logits(logits=logits,
                                                              labels=label)
        cost = tf.reduce_mean(cost, name='cross_entropy_loss')

        tf.reduce_mean(tf.cast(tf.nn.in_top_k(logits, label, 1), tf.float32),
                       name='accuracy')

        wd_cost = tf.multiply(1e-5,
                              regularize_cost('fc.*/W', tf.nn.l2_loss),
                              name='regularize_loss')
        return tf.add_n([wd_cost, cost], name='total_cost')
Пример #8
0
    def roi_heads(self, image, features, proposals, targets):
        image_shape2d = tf.shape(image)[2:]  # h,w
        assert len(features) == 5, "Features have to be P23456!"
        gt_boxes, gt_labels, *_ = targets

        if self.training:
            proposals = sample_fast_rcnn_targets(proposals.boxes, gt_boxes,
                                                 gt_labels)

        fastrcnn_head_func = getattr(model_frcnn, cfg.FPN.FRCNN_HEAD_FUNC)
        if not cfg.FPN.CASCADE:
            roi_feature_fastrcnn = multilevel_roi_align(
                features[:4], proposals.boxes, 7)

            head_feature = fastrcnn_head_func('fastrcnn', roi_feature_fastrcnn)
            fastrcnn_label_logits, fastrcnn_box_logits = fastrcnn_outputs(
                'fastrcnn/outputs', head_feature, cfg.DATA.NUM_CATEGORY)
            fastrcnn_head = FastRCNNHead(
                proposals, fastrcnn_box_logits, fastrcnn_label_logits,
                gt_boxes,
                tf.constant(cfg.FRCNN.BBOX_REG_WEIGHTS, dtype=tf.float32))
        else:

            def roi_func(boxes):
                return multilevel_roi_align(features[:4], boxes, 7)

            fastrcnn_head = CascadeRCNNHead(proposals, roi_func,
                                            fastrcnn_head_func,
                                            (gt_boxes, gt_labels),
                                            image_shape2d,
                                            cfg.DATA.NUM_CATEGORY)

        if self.training:
            all_losses = fastrcnn_head.losses()

            if cfg.MODE_MASK:
                gt_masks = targets[2]
                # maskrcnn loss
                roi_feature_maskrcnn = multilevel_roi_align(
                    features[:4],
                    proposals.fg_boxes(),
                    14,
                    name_scope='multilevel_roi_align_mask')
                maskrcnn_head_func = getattr(model_mrcnn,
                                             cfg.FPN.MRCNN_HEAD_FUNC)
                mask_logits = maskrcnn_head_func(
                    'maskrcnn', roi_feature_maskrcnn,
                    cfg.DATA.NUM_CATEGORY)  # #fg x #cat x 28 x 28

                target_masks_for_fg = crop_and_resize(
                    tf.expand_dims(gt_masks, 1),
                    proposals.fg_boxes(),
                    proposals.fg_inds_wrt_gt,
                    28,
                    pad_border=False)  # fg x 1x28x28
                target_masks_for_fg = tf.squeeze(target_masks_for_fg, 1,
                                                 'sampled_fg_mask_targets')
                all_losses.append(
                    maskrcnn_loss(mask_logits, proposals.fg_labels(),
                                  target_masks_for_fg))
            return all_losses
        else:
            decoded_boxes = fastrcnn_head.decoded_output_boxes()
            decoded_boxes = clip_boxes(decoded_boxes,
                                       image_shape2d,
                                       name='fastrcnn_all_boxes')
            label_scores = fastrcnn_head.output_scores(
                name='fastrcnn_all_scores')
            final_boxes, final_scores, final_labels = fastrcnn_predictions(
                decoded_boxes, label_scores, name_scope='output')
            if cfg.MODE_MASK:
                # Cascade inference needs roi transform with refined boxes.
                roi_feature_maskrcnn = multilevel_roi_align(
                    features[:4], final_boxes, 14)
                maskrcnn_head_func = getattr(model_mrcnn,
                                             cfg.FPN.MRCNN_HEAD_FUNC)
                mask_logits = maskrcnn_head_func(
                    'maskrcnn', roi_feature_maskrcnn,
                    cfg.DATA.NUM_CATEGORY)  # #fg x #cat x 28 x 28
                indices = tf.stack([
                    tf.range(tf.size(final_labels)),
                    tf.cast(final_labels, tf.int32) - 1
                ],
                                   axis=1)
                final_mask_logits = tf.gather_nd(mask_logits,
                                                 indices)  # #resultx28x28
                tf.sigmoid(final_mask_logits, name='output/masks')
            return []
Пример #9
0
 def preprocess(self, image):
     image = tf.expand_dims(image, 0)
     image = image_preprocess(image, bgr=True)
     return tf.transpose(image, [0, 3, 1, 2])
Пример #10
0
    def roi_heads(self, image, features, proposals, targets):
        image_shape2d = tf.shape(image)[2:]  # h,w
        featuremap = features[0]

        gt_boxes, gt_labels, *_ = targets

        if self.training:
            # sample proposal boxes in training
            proposals = sample_fast_rcnn_targets(proposals.boxes, gt_boxes,
                                                 gt_labels)
        # The boxes to be used to crop RoIs.
        # Use all proposal boxes in inference

        boxes_on_featuremap = proposals.boxes * (1.0 / cfg.RPN.ANCHOR_STRIDE)
        roi_resized = roi_align(featuremap, boxes_on_featuremap, 14)

        feature_fastrcnn = resnet_conv5(
            roi_resized, cfg.BACKBONE.RESNET_NUM_BLOCKS[-1])  # nxcx7x7
        # Keep C5 feature to be shared with mask branch
        feature_gap = GlobalAvgPooling('gap',
                                       feature_fastrcnn,
                                       data_format='channels_first')
        fastrcnn_label_logits, fastrcnn_box_logits = fastrcnn_outputs(
            'fastrcnn', feature_gap, cfg.DATA.NUM_CATEGORY)

        fastrcnn_head = FastRCNNHead(
            proposals, fastrcnn_box_logits, fastrcnn_label_logits, gt_boxes,
            tf.constant(cfg.FRCNN.BBOX_REG_WEIGHTS, dtype=tf.float32))

        if self.training:
            all_losses = fastrcnn_head.losses()

            if cfg.MODE_MASK:
                gt_masks = targets[2]
                # maskrcnn loss
                # In training, mask branch shares the same C5 feature.
                fg_feature = tf.gather(feature_fastrcnn, proposals.fg_inds())
                mask_logits = maskrcnn_upXconv_head(
                    'maskrcnn', fg_feature, cfg.DATA.NUM_CATEGORY,
                    num_convs=0)  # #fg x #cat x 14x14

                target_masks_for_fg = crop_and_resize(
                    tf.expand_dims(gt_masks, 1),
                    proposals.fg_boxes(),
                    proposals.fg_inds_wrt_gt,
                    14,
                    pad_border=False)  # nfg x 1x14x14
                target_masks_for_fg = tf.squeeze(target_masks_for_fg, 1,
                                                 'sampled_fg_mask_targets')
                all_losses.append(
                    maskrcnn_loss(mask_logits, proposals.fg_labels(),
                                  target_masks_for_fg))
            return all_losses
        else:
            decoded_boxes = fastrcnn_head.decoded_output_boxes()
            decoded_boxes = clip_boxes(decoded_boxes,
                                       image_shape2d,
                                       name='fastrcnn_all_boxes')
            label_scores = fastrcnn_head.output_scores(
                name='fastrcnn_all_scores')
            final_boxes, final_scores, final_labels = fastrcnn_predictions(
                decoded_boxes, label_scores, name_scope='output')

            if cfg.MODE_MASK:
                roi_resized = roi_align(
                    featuremap, final_boxes * (1.0 / cfg.RPN.ANCHOR_STRIDE),
                    14)
                feature_maskrcnn = resnet_conv5(
                    roi_resized, cfg.BACKBONE.RESNET_NUM_BLOCKS[-1])
                mask_logits = maskrcnn_upXconv_head(
                    'maskrcnn', feature_maskrcnn, cfg.DATA.NUM_CATEGORY,
                    0)  # #result x #cat x 14x14
                indices = tf.stack([
                    tf.range(tf.size(final_labels)),
                    tf.cast(final_labels, tf.int32) - 1
                ],
                                   axis=1)
                final_mask_logits = tf.gather_nd(mask_logits,
                                                 indices)  # #resultx14x14
                tf.sigmoid(final_mask_logits, name='output/masks')
            return []