Пример #1
0
def multilayer_perceptron(x, weights, biases):
    # Hidden layer with RELU activation
    layer_1 = tf.matmul(x, weights['h1']) + biases['b1']
    layer_1 = tf.nn.relu(layer_1)
    # Hidden layer with RELU activation
    layer_2 = tf.matmul(layer_1, weights['h2']) + biases['b2']
    layer_2 = tf.nn.relu(layer_2)
    # Output layer with linear activation
    out_layer = tf.matmul(layer_2, weights['out']) + biases['out']
    return out_layer
Пример #2
0
h_conv1 = tf.nn.relu(conv2d(x_image, W_conv1) + b_conv1)
h_pool1 = max_pool_2x2(h_conv1)

# second layer
W_conv2 = weight_variable([5, 5, 32, 64])
b_conv2 = bias_variable([64])

h_conv2 = tf.nn.relu(conv2d(h_pool1, W_conv2) + b_conv2)
h_pool1 = max_pool_2x2(h_conv2)

# densely connected layer
W_fc1 = weight_variable([7 * 7 * 64, 1024])
b_fc1 = bias_variable([1024])

h_pool2_flat = tf.reshape(h_pool1, [-1, 7 * 7 * 64])
h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, W_fc1) + b_fc1)

# dropout
keep_prob = tf.placeholder(tf.float32)
h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob)

# readout layer
W_fc2 = weight_variable([1024, 10])
b_fc2 = bias_variable([10])

y_conv = tf.matmul(h_fc1_drop, W_fc2) + b_fc2

# loss
cross_entropy = tf.reduce_mean(
    tf.nn.softmax_cross_entropy_with_logits(labels=y_, logits=y_conv))
Пример #3
0
""" import your model here """
import tensorwolf as tf
""" your model should support the following code """

# create model
x = tf.placeholder(tf.float32, [None, 784])
W = tf.Variable(tf.zeros([784, 10]))
b = tf.Variable(tf.zeros([10]))
y = tf.nn.softmax(tf.matmul(x, W) + b)

# define loss and optimizer
y_ = tf.placeholder(tf.float32, [None, 10])

cross_entropy = tf.reduce_mean(
    -tf.reduce_sum(y_ * tf.log(y), reduction_indices=[1]))
train_step = tf.train.AdamOptimizer(0.005).minimize(cross_entropy)

sess = tf.Session()
sess.run(tf.global_variables_initializer())

# get the mnist dataset (use tensorflow here)
from tensorflow.examples.tutorials.mnist import input_data
mnist = input_data.read_data_sets("MNIST_data/", one_hot=True)

# train
for _ in range(1000):
    batch_xs, batch_ys = mnist.train.next_batch(100)
    sess.run(train_step, feed_dict={x: batch_xs, y_: batch_ys})

# eval
correct_prediction = tf.equal(tf.argmax(y, 1), tf.argmax(y_, 1))
Пример #4
0
#import tensorflow as tf
import tensorwolf as tf
import numpy as np

# create model
x = tf.placeholder(tf.float32, [None, 784])
W = tf.Variable(tf.zeros([784, 10]))
b = tf.Variable(tf.zeros([10]))
muln = tf.matmul(x, W) + b
#y = tf.nn.softmax(muln)

expn = tf.exp(muln)
#redn = tf.broadcastto_op(tf.reduce_sum(expn2, axis=-1, keep_dims=True), expn)
redn = tf.broadcastto_op(tf.reduce_sum(expn, axis=-1), expn)
y = expn / redn


# define loss and optimizer
y_ = tf.placeholder(tf.float32, [None, 10])

cross_entropy = tf.reduce_mean(-tf.reduce_sum(y_ *
                                              tf.log(y), reduction_indices=[1]))

#W_grad = tf.gradients(cross_entropy, [W])[0]
W_grad = tf.gradients(cross_entropy, [W])[0]
train_step = tf.assign(W, W - 0.5 * W_grad)

sess = tf.Session()
sess.run(tf.global_variables_initializer())

# get the mnist dataset (use tensorflow here)
Пример #5
0
""" import your model here """
import tensorwolf as tf
import numpy as np
""" your model should support the following code """

# create model
x = tf.placeholder(tf.float32, [None, 784])
W = tf.Variable(tf.zeros([784, 10]))
b = tf.Variable(tf.zeros([10]))
y = tf.nn.softmax(tf.matmul(x, W) + b)

# define loss and optimizer

y_ = tf.placeholder(tf.float32, [None, 10])
'''
cross_entropy = tf.reduce_mean(-tf.reduce_sum(y_ *
                                              tf.log(y), reduction_indices=[1]))
'''
cross_entropy = tf.nn.softmax_cross_entropy_with_logits(
    logits=tf.matmul(x, W) + b, labels=y_)

W_grad = tf.gradients(cross_entropy, [W])[0]
train_step = tf.assign(W, W - 0.5 * W_grad)

sess = tf.Session()
sess.run(tf.global_variables_initializer())

# get the mnist dataset (use tensorflow here)
from tensorflow.examples.tutorials.mnist import input_data
mnist = input_data.read_data_sets("MNIST_data/", one_hot=True)