Пример #1
0
def run_sfa(dynamic_copies=2, expansion_order=1, cut_off=55):
    """ Batch Slow Feature Analysis

    Runs the batch slow feature analysis algorithm on the Tennessee Eastman
    process data set

    Parameters
    ----------
    dynamic_copies: int
        The number of lagged copies per data point
    expansion_order: int
        The order of nonlinear expansion performed on the data
    cut_off: int
        The index to split the features into the slow and fast groups
    """
    """ Import data """
    X, T0, T4, T5, T10 = imp.import_tep_sets()
    """ Create plotter object """
    figure_text = (f"Lagged Copies= {dynamic_copies} | "
                   f"Expansion Order= {expansion_order} | "
                   f"$M_d$= {cut_off}")
    plotter = SFAPlotter(show=False, save=True, figure_text=figure_text)
    """ Train model """
    SlowFeature = SFA(data=X,
                      dynamic_copies=dynamic_copies,
                      expansion_order=expansion_order)
    SlowFeature.delta = 3
    Y = SlowFeature.train()
    SlowFeature.partition_manual(cut_off)
    # Calculate speed indices for features
    eta = np.around(
        (X.shape[1] / (2 * np.pi)) * np.sqrt(SlowFeature.features_speed), 2)

    # Plot features
    plotter.plot_features("SFA", Y, eta, num_features=5)
    """ Test model """
    T_dc, T_ec, S_dc, S_ec = SlowFeature.calculate_crit_values(alpha=SIG)
    data_iterable = [("SFA_IDV(0)", T0), ("SFA_IDV(4)", T4),
                     ("SFA_IDV(5)", T5), ("SFA_IDV(10)", T10)]
    for name, test in data_iterable:
        print("Evaluating test: " + name)
        stats = SlowFeature.calculate_monitors(test).T
        # Create critical value lines for plots
        threshold = np.ones((test.shape[1], 1))
        Tdc = threshold * T_dc
        Tec = threshold * T_ec
        Sdc = threshold * S_dc
        Sec = threshold * S_ec
        stats_crit = np.concatenate((Tdc, Tec, Sdc, Sec), axis=1).T
        # Plot stats
        plotter.plot_monitors(name, stats, stats_crit)

    plt.show()
Пример #2
0
def sfa_significance(dynamic_copies=2,
                     expansion_order=1,
                     cut_off=55,
                     normal_data_included=0.99):
    """ Import data """
    X, T0, _, _, _ = imp.import_tep_sets()
    """ Train model """
    SlowFeature = SFA(data=X,
                      dynamic_copies=dynamic_copies,
                      expansion_order=expansion_order)
    SlowFeature.delta = 3
    Y = SlowFeature.train()
    SlowFeature.partition_manual(cut_off)
    """ Test model """
    data_points = T0.shape[1]
    stats = np.zeros((4, data_points))
    stats_crit = np.zeros((4, data_points))

    ub = 1
    lb = 0
    all_significance = [0, 0, 0, 0]

    for j in range(4):
        while True:
            # Smaller significance includes more data
            significance = (ub + lb) / 2
            print(f"Checking alpha = {significance}")
            crits = SlowFeature.calculate_crit_values(alpha=significance)
            stats = SlowFeature.calculate_monitors(T0).T

            normal_fraction = np.sum(stats[j, :] < crits[j]) / data_points

            if normal_fraction < normal_data_included:
                ub = significance
            else:
                ub = 1
                all_significance[j] = significance
                break

    return (all_significance)
Пример #3
0
def plot_incsfa(significance):
    X, T0, T4, T5, T10 = imp.import_tep_sets()
    num_vars, train_data_points = X.shape
    """ Train model """
    # Create IncSFA object
    SlowFeature = IncSFA(33, 99, 99, 2, 1, 2, 0)
    SlowFeature.delta = 3
    SlowFeature.Md = 55
    SlowFeature.Me = 99 - 55

    # Train model
    for i in range(X.shape[1]):
        _ = SlowFeature.add_data(X[:, i], use_svd_whitening=True)
    SlowFeature.converged = True

    # """ Test model """
    test_data = [("IncSFA_IDV(0)", T0), ("IncSFA_IDV(4)", T4),
                 ("IncSFA_IDV(5)", T5), ("IncSFA_IDV(10)", T10)]
    for name, test in test_data:
        test_obj = copy.deepcopy(SlowFeature)
        data_points = test.shape[1]
        stats = np.zeros((4, data_points))

        for i in range(data_points):
            run = test_obj.add_data(test[:, i], alpha=0.05)
            stats[:, i] = run[1]

        crit_vals = []
        for alpha in significance:
            p = 1 - alpha
            n = train_data_points
            Md = 55
            Me = 99 - 55
            gd = (Md * (n**2 - 2 * n)) / ((n - 1) * (n - Md - 1))
            ge = (Me * (n**2 - 2 * n)) / ((n - 1) * (n - Me - 1))

            T_d_crit = ST.chi2.ppf(p, Md)
            T_e_crit = ST.chi2.ppf(p, Me)
            S_d_crit = gd * ST.f.ppf(p, Md, n - Md - 1)
            S_e_crit = ge * ST.f.ppf(p, Me, n - Me - 1)

            crit_vals.append([T_d_crit, T_e_crit, S_d_crit, S_e_crit])

        _fig = plt.figure(name)
        plt.subplots_adjust(wspace=0.4)
        figure_text = ("Lagged Copies= 2 | Expansion Order= 1 | $M_d$= 55 | "
                       "Epochs= 1  | K= 99 | J= 99 | L= 2 ")
        plt.figtext(0.05, 0.02, figure_text)
        titles = ["$T^2$", "$T_e^2$", "$S^2$", "$S_e^2$"]
        for i in range(4):
            plt.subplot(4, 1, i + 1)
            plt.ylabel(titles[i])
            plt.xlabel("Sample")
            plt.plot(stats[i, 3:])
            for j in range(len(significance)):
                c_vals = np.ones((data_points)) * crit_vals[j][i]
                line_label = f"alpha = {significance[j]}"
                plt.plot(c_vals, linestyle='--', label=line_label)
            if i == 0:
                plt.legend(loc='upper left')
        _fig.set_size_inches(21, 9)
        plt.savefig(name, dpi=350)
        plt.close(fig=_fig)
Пример #4
0
def incsfa_significance(num_whitened_signals=99,
                        num_features=99,
                        sample_weight_parameter=2,
                        expansion_order=1,
                        dynamic_copies=2,
                        conv_tol=0,
                        cut_off=55,
                        epochs=1,
                        use_SVD=True,
                        normal_data_included=0.99):
    """ Import data """
    X, T0, _, _, _ = imp.import_tep_sets()
    num_vars, data_points = X.shape
    """ Train model """
    # Create IncSFA object
    SlowFeature = IncSFA(input_variables=num_vars,
                         num_features=num_features,
                         num_components=num_whitened_signals,
                         L=sample_weight_parameter,
                         expansion_order=expansion_order,
                         dynamic_copies=dynamic_copies,
                         conv_tol=conv_tol)
    SlowFeature.delta = 3
    SlowFeature.Md = cut_off
    SlowFeature.Me = num_features - cut_off

    # Create empty arrays to store outputs
    total_data_points = data_points * epochs
    Y = np.zeros((num_features, total_data_points))
    stats = np.zeros((4, total_data_points))
    stats_crit = np.zeros((4, total_data_points))

    # Train model
    for j in range(epochs):
        print("Running epoch " + str(j + 1) + "/" + str(epochs))
        for i in range(X.shape[1]):
            pos = j * X.shape[1] + i
            run = SlowFeature.add_data(X[:, i], use_svd_whitening=use_SVD)
            # Store data
            Y[:, pos] = run[0].flat
            stats[:, pos] = run[1]
            stats_crit[:, pos] = run[2]

    SlowFeature.converged = True
    """ Test model """
    data_points = T0.shape[1]
    stats = np.zeros((4, data_points))
    stats_crit = np.zeros((4, data_points))

    ub = 1
    lb = 0
    all_significance = [0, 0, 0, 0]

    for j in range(4):
        while True:
            # Smaller significance includes more data
            significance = (ub + lb) / 2
            print(f"Checking alpha = {significance}")
            test_obj = copy.deepcopy(SlowFeature)
            for i in range(data_points):
                output = test_obj.add_data(T0[:, i], alpha=significance)
                _, stats[:, i], stats_crit[:, i] = output

            normal_fraction = (np.sum(stats[j, :] < stats_crit[j, :]) /
                               data_points)

            if normal_fraction < normal_data_included:
                ub = significance
            else:
                ub = 1
                all_significance[j] = significance
                break

    return (all_significance)
from incsfa import IncSFA
from rsfa import RSFA

if __name__ == "__main__":
    # Define parameters
    m = 33
    k = 1
    d = 2
    K = 99
    J = 99
    M_d = 55
    alpha = 0.01
    L = 2

    # Import data set
    X, T0, T4, T5, T10 = imp.import_tep_sets()

    # Create models
    ModelSFA = SlowFeature = SFA(data=X, dynamic_copies=d, expansion_order=k)
    ModelRSFA = RSFA(input_variables=m,
                     num_features=J,
                     num_components=K,
                     L=L,
                     expansion_order=k,
                     dynamic_copies=d)
    ModelIncSFA = IncSFA(input_variables=m,
                         num_features=J,
                         num_components=K,
                         L=L,
                         expansion_order=k,
                         dynamic_copies=d)
Пример #6
0
def run_incsfa(dynamic_copies=2,
               expansion_order=1,
               cut_off=55,
               num_whitened_signals=99,
               num_features=99,
               sample_weight_parameter=2,
               conv_tol=0,
               epochs=1,
               plot_last_epoch=True,
               use_SVD=True):
    """ Incremental Slow Feature Analysis

    Runs the incremental slow feature analysis algorithm on the Tennessee
    Eastman process data set

    Parameters
    ----------
    dynamic_copies: int
        The number of lagged copies per data point
    expansion_order: int
        The order of nonlinear expansion performed on the data
    cut_off: int
        The index to split the features into the slow and fast groups
    num_whitened_signals: int
        The number of principal components to calculate in the whitening step
    num_features: int
        The number of features to calculate
    sample_weight_parameter: float
        The sample weighting parameter used for setting the learning rate
    conv_tol: float
        The tolerance for convergance
    epochs: int
        The number of times to pass the training data to the model
    plot_last_epoch: boolean
        Only plot the last epoch of data for the features plot
    """
    """ Import data """
    X, T0, T4, T5, T10 = imp.import_tep_sets()
    num_vars, data_points = X.shape
    """ Create plotter object """
    figure_text = (f"Lagged Copies= {dynamic_copies} | "
                   f"Expansion Order= {expansion_order} | "
                   f"$M_d$= {cut_off} | "
                   f"Epochs: {epochs}  | "
                   f"K= {num_whitened_signals} | "
                   f"J= {num_features} | "
                   f"L= {sample_weight_parameter} | "
                   f"Tolerance= {conv_tol}")
    plotter = SFAPlotter(show=False, save=True, figure_text=figure_text)
    """ Train model """
    # Create IncSFA object
    SlowFeature = IncSFA(input_variables=num_vars,
                         num_features=num_features,
                         num_components=num_whitened_signals,
                         L=sample_weight_parameter,
                         expansion_order=expansion_order,
                         dynamic_copies=dynamic_copies,
                         conv_tol=conv_tol)
    SlowFeature.delta = 3
    SlowFeature.Md = cut_off
    SlowFeature.Me = num_features - cut_off

    # Create empty arrays to store outputs
    total_data_points = data_points * epochs
    Y = np.zeros((num_features, total_data_points))
    stats = np.zeros((4, total_data_points))
    stats_crit = np.zeros((4, total_data_points))

    # Train model
    for j in range(epochs):
        print("Running epoch " + str(j + 1) + "/" + str(epochs))
        for i in range(X.shape[1]):
            pos = j * X.shape[1] + i
            run = SlowFeature.add_data(X[:, i], use_svd_whitening=use_SVD)
            # Store data
            Y[:, pos] = run[0].flat
            stats[:, pos] = run[1]
            stats_crit[:, pos] = run[2]

    SlowFeature.converged = True

    if plot_last_epoch:
        Y = Y[:, -data_points:]
        stats = stats[:, -data_points:]
        stats_crit = stats_crit[:, -data_points:]
    # Calculate speed indices for features
    eta = np.around(
        Y.shape[1] / (2 * np.pi) * np.sqrt(SlowFeature.features_speed), 2)

    # Plot features
    plotter.plot_features("IncSFA", Y, eta, num_features=5)

    # """ Test model """
    test_data = [("IncSFA_IDV(0)", T0), ("IncSFA_IDV(4)", T4),
                 ("IncSFA_IDV(5)", T5), ("IncSFA_IDV(10)", T10)]
    for name, test in test_data:
        print("Evaluating test: " + name)
        test_obj = copy.deepcopy(SlowFeature)
        data_points = test.shape[1]
        stats = np.zeros((4, data_points))
        stats_crit = np.zeros((4, data_points))

        for i in range(data_points):
            _, stats[:, i], stats_crit[:, i] = test_obj.add_data(test[:, i],
                                                                 alpha=SIG)
        # Plot stats
        plotter.plot_monitors(name, stats, stats_crit)