Пример #1
0
def compile_controlled_phase(gate) -> QCircuit:
    """
    Compile multi-controlled phase gates to 1q - phase gate and multi-controlled Rz gates.
    Parameters
    ----------
    gate:
        the gate.

    Returns
    -------
    QCircuit, the result of compilation.
    """
    if not isinstance(gate, PhaseGateImpl):
        return QCircuit.wrap_gate(gate)

    if len(gate.control) == 0:
        return QCircuit.wrap_gate(gate)

    phase = gate.parameter

    result = QCircuit()
    result += Phase(target=gate.control[0],
                    control=gate.control[1:],
                    phi=phase / 2)
    result += Rz(target=gate.target, control=gate.control, angle=phase)
    return compile_controlled_phase(result)
Пример #2
0
def hadamard_axbxc(gate) -> QCircuit:
    """
    Decompose 1 control parametrized hadamard into single qubit rotation and CNOT.
    Parameters
    ----------
    gate:
        the gate

    Returns
    -------
    QCircuit, the result of compilation.
    """
    if not isinstance(gate, PowerGateImpl) or gate.name not in [
            'H', 'h', 'hadamard'
    ]:
        return QCircuit.wrap_gate(gate)
    power = gate.parameter
    target = gate.target
    a = power.wrap(a_calc)
    b = power.wrap(b_calc)
    theta = power.wrap(theta_calc)
    phase = power * jnp.pi / 2

    result = QCircuit()

    result += Rz((a - b) / 2, target)
    result += CNOT(gate.control, target)
    result += Rz(-(a + b) / 2, target)
    result += Ry(-theta / 2, target)
    result += CNOT(gate.control, target)
    result += Ry(theta / 2, target)
    result += Rz(a, target)
    result += Phase(numpy.pi * power / 2, gate.control)

    return result
Пример #3
0
def compile_controlled_power(gate: PowerGateImpl) -> QCircuit:
    """
    Recompilation of a controlled-power gate
    Basis change into Z then recompilation of controled Z, then change basis back
    :param gate: The power gate
    :return: set of gates wrapped in QCircuit class
    """
    if not gate.is_controlled():
        return QCircuit.wrap_gate(gate)

    if not isinstance(gate, PowerGateImpl):
        return QCircuit.wrap_gate(gate)

    if len(gate.target) > 1:
        return compile_controlled_power(gate=compile_multitarget(gate=gate))

    power = gate.power
    target = gate.target
    control = gate.control

    result = QCircuit()
    result += Phase(target=control[0], control=control[1:], phi=power * pi / 2)
    result += change_basis(target=target, name=gate.name)
    result += Rz(target=target, control=control, angle=power * pi)
    result += change_basis(target=target, name=gate.name, daggered=True)

    result.n_qubits = result.max_qubit() + 1
    return result
Пример #4
0
def do_compile_trotterized_gate(generator, steps, factor, randomize, control):
    """
    Todo: Jakob, plz write
    """
    assert (generator.is_hermitian())
    circuit = QCircuit()
    factor = factor / steps
    for index in range(steps):
        paulistrings = generator.paulistrings
        if randomize:
            numpy.random.shuffle(paulistrings)
        for ps in paulistrings:
            coeff = to_float(ps.coeff)
            if len(ps._data) == 0 and len(control) > 0:
                circuit += Phase(target=control[0],
                                 control=control[1:],
                                 phi=-factor * coeff / 2)
            elif len(ps._data) > 0:
                circuit += ExpPauli(paulistring=ps.naked(),
                                    angle=factor * coeff,
                                    control=control)
            else:
                # ignore global phases
                pass
    return circuit
Пример #5
0
def compile_controlled_phase(gate) -> QCircuit:
    if not isinstance(gate, PhaseGateImpl):
        return QCircuit.wrap_gate(gate)
    if len(gate.control) == 0:
        return QCircuit.wrap_gate(gate)
    count = len(gate.control)
    result = QCircuit()
    phase = gate.parameter

    if count == 1:
        result += H(target=gate.target)
        result += CNOT(gate.control, gate.target)
        result += H(target=gate.target)
        result += Phase(gate.parameter + numpy.pi, target=gate.target)
    elif count == 2:
        result += Rz(angle=phase / (2**2), target=gate.control[0])
        result += Rz(angle=phase / (2**(1)),
                     target=gate.control[1],
                     control=gate.control[0])
        result += Rz(angle=phase, target=gate.target, control=gate.control)

    elif count >= 3:
        result += Rz(angle=phase / (2**count), target=gate.control[0])
        for i in range(1, count):
            result += Rz(angle=phase / (2**(count - i)),
                         target=gate.control[i],
                         control=gate.control[0:i])
        result += Rz(angle=phase, target=gate.target, control=gate.control)
    return result
Пример #6
0
def test_moments():
    c = QCircuit()
    c += CNOT(target=0, control=(1, 2, 3))
    c += H(target=[0, 1])
    c += Rx(angle=numpy.pi, target=[0, 3])
    c += Z(target=1)
    c += Phase(phi=numpy.pi, target=4)
    moms = c.moments
    assert len(moms) == 3
    assert (moms[0].gates[1].parameter == assign_variable(numpy.pi))
    assert (moms[0].gates[1].target == (4, ))
Пример #7
0
def test_circuit_from_moments():
    c = QCircuit()
    c += CNOT(target=0, control=(1, 2, 3))
    c += Phase(phi=numpy.pi, target=4)
    c += Rx(angle=Variable('a'), target=[0, 3])
    c += H(target=[0, 1])
    c += Rx(angle=Variable('a'), target=[2, 3])
    ## table[1] should equal 1 at this point, len(moments should be 3)
    c += Z(target=1)
    c += Rx(angle=Variable('a'), target=[0, 3])
    moms = c.moments
    c2 = QCircuit.from_moments(moms)
    assert c == c2
Пример #8
0
def test_canonical_moments():
    c = QCircuit()
    c += CNOT(target=0, control=(1, 2, 3))
    c += Rx(angle=Variable('a'), target=[0, 3])
    c += H(target=[0, 1])
    c += Rx(angle=Variable('a'), target=[2, 3])
    c += Rx(angle=Variable('a'), target=[0, 3])
    c += Z(target=1)
    c += Phase(phi=numpy.pi, target=4)
    moms = c.canonical_moments
    assert len(moms) == 6
    assert (moms[0].gates[1].parameter == assign_variable(numpy.pi))
    assert (moms[0].gates[1].target == (4, ))
    assert hasattr(moms[3].gates[0], 'axis')
    assert len(moms[0].qubits) == 5
Пример #9
0
def hadamard_axbxc(gate) -> QCircuit:
    if not isinstance(gate, PowerGateImpl) or gate.name not in [
            'H', 'h', 'hadamard'
    ]:
        return QCircuit.wrap_gate(gate)
    power = gate.parameter
    target = gate.target
    a = power.wrap(a_calc)
    b = power.wrap(b_calc)
    theta = power.wrap(theta_calc)
    phase = power * jnp.pi / 2

    result = QCircuit()

    result += Rz((a - b) / 2, target)
    result += CNOT(gate.control, target)
    result += Rz(-(a + b) / 2, target)
    result += Ry(-theta / 2, target)
    result += CNOT(gate.control, target)
    result += Ry(theta / 2, target)
    result += Rz(a, target)
    result += Phase(numpy.pi * power / 2, gate.control)

    return result
Пример #10
0
def get_axbxc_decomp(gate):
    """
    Break down single controlled parametrized power gates into CNOT and rotations.
    Parameters
    ----------
    gate:
        the gate.

    Returns
    -------
    QCircuit; the result of compilation.
    """

    if not isinstance(gate, PowerGateImpl) or gate.name not in ['X', 'Y', 'Z']:
        return QCircuit.wrap_gate(gate)
    power = gate.parameter
    target = gate.target
    result = QCircuit()
    if gate.name == 'X':
        a = -numpy.pi / 2
        b = numpy.pi / 2
        theta = power * numpy.pi
        '''
        result+=Phase(numpy.pi*power/2,gate.control)
        result+=Rz(-(a-b)/2,target)
        result+=CNOT(gate.control,target)
        #result+=Rz(-(a+b)/2,target)
        result+=Ry(-theta/2,target)
        result+=CNOT(gate.control,target)
        result+=Ry(theta/2,target)
        result+=Rz(a,target=target)
        '''
        '''
        result+=Rz((a-b)/2,target)
        result+=CNOT(gate.control,target)
        #result+=Rz(-(a+b)/2,target)
        result+=Ry(-theta/2,target)
        result+=CNOT(gate.control,target)
        result+=Ry(theta/2,target)
        result+=Rz(a,target)
        result += Phase(numpy.pi * power / 2, gate.control)
        '''
        result += Rx(angle=theta, target=target, control=gate.control)
        result += Phase(numpy.pi * power / 2, gate.control)

    elif gate.name == 'Y':
        ### off by global phase of Exp[ pi power /2]

        theta = power * numpy.pi
        '''
        result+=Phase(numpy.pi*power/2,gate.control)
        result+=CNOT(gate.control,target)
        result+=Ry(-theta/2,target)
        result+=CNOT(gate.control,target)
        result+=Ry(theta/2,target)
        '''
        a = 0
        b = 0
        # result+=Rz((a-b)/2,target)
        result += CNOT(gate.control, target)
        # result+=Rz(-(a+b)/2,target)
        result += Ry(-theta / 2, target)
        result += CNOT(gate.control, target)
        result += Ry(theta / 2, target)
        # result+=Rz(a,target)
        result += Phase(numpy.pi * power / 2, gate.control)

    elif gate.name == 'Z':
        a = 0
        b = power * numpy.pi
        theta = 0

        result += Rz(b / 2, target)
        result += CNOT(gate.control, target)
        result += Rz(-b / 2, target)
        result += CNOT(gate.control, target)
        # result+=Rz(a,target)
        result += Phase(numpy.pi * power / 2, gate.control)
        '''
        result+=Rz(b/2,target)
        result+=CNOT(gate.control,target)
        result+=Rz(-b/2,target)
        result+=CNOT(gate.control,target)
        '''
    return result
Пример #11
0
def get_axbxc_decomp(gate):
    if not isinstance(gate, PowerGateImpl) or gate.name not in ['X', 'Y', 'Z']:
        return QCircuit.wrap_gate(gate)
    power = gate.parameter
    target = gate.target
    result = QCircuit()
    if gate.name == 'X':
        a = -numpy.pi / 2
        b = numpy.pi / 2
        theta = power * numpy.pi
        '''
        result+=Phase(numpy.pi*power/2,gate.control)
        result+=Rz(-(a-b)/2,target)
        result+=CNOT(gate.control,target)
        #result+=Rz(-(a+b)/2,target)
        result+=Ry(-theta/2,target)
        result+=CNOT(gate.control,target)
        result+=Ry(theta/2,target)
        result+=Rz(a,target=target)
        '''
        '''
        result+=Rz((a-b)/2,target)
        result+=CNOT(gate.control,target)
        #result+=Rz(-(a+b)/2,target)
        result+=Ry(-theta/2,target)
        result+=CNOT(gate.control,target)
        result+=Ry(theta/2,target)
        result+=Rz(a,target)
        result += Phase(numpy.pi * power / 2, gate.control)
        '''
        result += Rx(angle=theta, target=target, control=gate.control)
        result += Phase(numpy.pi * power / 2, gate.control)

    elif gate.name == 'Y':
        ### off by global phase of Exp[ pi power /2]

        theta = power * numpy.pi
        '''
        result+=Phase(numpy.pi*power/2,gate.control)
        result+=CNOT(gate.control,target)
        result+=Ry(-theta/2,target)
        result+=CNOT(gate.control,target)
        result+=Ry(theta/2,target)
        '''
        a = 0
        b = 0
        # result+=Rz((a-b)/2,target)
        result += CNOT(gate.control, target)
        # result+=Rz(-(a+b)/2,target)
        result += Ry(-theta / 2, target)
        result += CNOT(gate.control, target)
        result += Ry(theta / 2, target)
        # result+=Rz(a,target)
        result += Phase(numpy.pi * power / 2, gate.control)

    elif gate.name == 'Z':
        a = 0
        b = power * numpy.pi
        theta = 0

        result += Rz(b / 2, target)
        result += CNOT(gate.control, target)
        result += Rz(-b / 2, target)
        result += CNOT(gate.control, target)
        # result+=Rz(a,target)
        result += Phase(numpy.pi * power / 2, gate.control)
        '''
        result+=Rz(b/2,target)
        result+=CNOT(gate.control,target)
        result+=Rz(-b/2,target)
        result+=CNOT(gate.control,target)
        '''
    return result