def test_real_single_vector_vector_dot(self): na = np.array(self.real_veca, dtype=np.float32) nb = np.array(self.real_vecb, dtype=np.float32) nc = np.dot(na, nb) nd = cn.pdot(na, nb) self.assert_(test.scalars_equal(nc, nd, epsilon=0.05))
def test_complex_single_vector_vector_dot(self): va = cn.array(self.complex_veca, dtype=cn.complex64) vb = cn.array(self.complex_vecb, dtype=cn.complex64) vc = va.dot(vb) # check we get the same answer as numpy na = np.array(self.complex_veca, dtype=np.complex64) nb = np.array(self.complex_vecb, dtype=np.complex64) nc = np.dot(na, nb) self.assert_(test.scalars_equal(vc, nc, epsilon=0.05))
def test_real_double_vector_vector_dot(self): va = cn.array(self.real_veca, dtype=cn.float64) vb = cn.array(self.real_vecb, dtype=cn.float64) vc = va.dot(vb) # check we get the same answer as numpy na = np.array(self.real_veca, dtype=np.float64) nb = np.array(self.real_vecb, dtype=np.float64) nc = np.dot(na,nb) self.assert_(test.scalars_equal(vc, nc, epsilon=0.0001))
def test_real_single_matrix_product(self): A_ = cn.array(self.real_mata, dtype=cn.float32) A = np.array(self.real_mata, dtype=np.float32) # gpu s = A_.product() # cpu sn = np.product(A) # XXX this precision doesn't always return true self.assert_(test.scalars_equal(sn, s, 1E-04))
def test_norm_complex_matrix(self): A = cn.array(self.complex_mata, dtype=cn.complex64) # numpy a = np.array(self.complex_mata, dtype=np.complex64) self.assert_(test.scalars_equal(lalg.norm(a), A.norm()))
def test_norm_real_matrix(self): A = cn.array(self.real_mata, dtype=cn.float32) # numpy a = np.array(self.real_mata, dtype=np.float32) self.assert_(test.scalars_equal(lalg.norm(a), A.norm()))
def test_asum_complex_matrix(self): A = cn.array(self.complex_mata, dtype=cn.complex64) # numpy a = np.array(self.complex_mata, dtype=np.complex64) self.assert_(test.scalars_equal(np.sum(np.abs(a)), A.asum()))
def test_asum_real_matrix(self): A = cn.array(self.real_mata, dtype=cn.float32) # numpy a = np.array(self.real_mata, dtype=np.float32) self.assert_(test.scalars_equal(np.sum(np.abs(a)), A.asum()))