def main(args): listModels = [] models_list = args.models.split(",") print("Models to be run: ", models_list) if 'mask_rcnn' in models_list: maskRcnn = testTimeAugmentation.MaskRCNNPred( '/mnt/src/mask_rcnn_coco.h5', '/mnt/src/coco.names') listModels.append(maskRcnn) if 'retinanet' in models_list: retinaResnet50 = testTimeAugmentation.RetinaNetResnet50Pred( '/mnt/src/resnet50_coco_best_v2.1.0.h5', '/mnt/src/coco.csv') listModels.append(retinaResnet50) if 'yolo_darknet' in models_list: yoloDarknet = testTimeAugmentation.DarknetYoloPred( '/mnt/src/yolov3.weights', '/mnt/src/coco.names', '/mnt/src/yolov3.cfg') listModels.append(yoloDarknet) if 'ssd_resnet' in models_list: ssdResnet = testTimeAugmentation.MXnetSSD512Pred( '/mnt/src/ssd_512_resnet50_v1_voc-9c8b225a.params', '/mnt/src/classesMXnet.txt') listModels.append(ssdResnet) if 'faster_resnet' in models_list: fasterResnet = testTimeAugmentation.MXnetFasterRCNNPred( '/mnt/src/faster_rcnn_resnet50_v1b_voc-447328d8.params', '/mnt/src/classesMXnet.txt') listModels.append(fasterResnet) # listaModels = [retinaResnet50, maskRcnn] models(listModels, args.images_path, args.option, args.combine) print(os.listdir('/mnt/src/'))
if notebook is False: shutil.rmtree(pathImg+'/../salida/') if __name__== "__main__": #Enter the path of the folder that will contain the images ap = argparse.ArgumentParser() ap.add_argument("-d", "--dataset", required=True, help="path to the dataset of images") ap.add_argument("-o", "--option", default='consensus', help="option to the ensemble: affirmative, consensus or unanimous") notebook = False args = vars(ap.parse_args()) pathImg= args["dataset"] option = args["option"] #fichs = os.listdir(pathImg) imgFolder = pathImg #the user define configurations fichs yoloDarknet = testTimeAugmentation.DarknetYoloPred('/home/ancasag/Codigo/General/ensembleObjectDetection/peso/AlvaroPrueba1_600train_65000.weights', '../peso/vocEstomas.names','../peso/yolov3Estomas.cfg',0.7) ssdResnet = testTimeAugmentation.MXnetSSD512Pred('/home/ancasag/Codigo/General/ensembleObjectDetection/peso/ssd_512_resnet50_v1_voc-9c8b225a.params', '../peso/classesMXnet.txt',0.7) fasterResnet = testTimeAugmentation.MXnetFasterRCNNPred('/home/ancasag/Codigo/General/ensembleObjectDetection/peso/faster_rcnn_resnet50_v1b_voc-447328d8.params', '../peso/classesMXnet.txt',0.7) yoloResnet = testTimeAugmentation.MXnetYoloPred('/home/ancasag/Codigo/General/ensembleObjectDetection/peso/yolo3_darknet53_voc-f5ece5ce.params', '../peso/classesMXnet.txt',0.7) retinaResnet50 = testTimeAugmentation.RetinaNetResnet50Pred('/home/ancasag/Codigo/General/ensembleObjectDetection/peso/resnet50_coco_best_v2.1.0.h5', '../peso/coco.csv',0.7) maskRcnn = testTimeAugmentation.MaskRCNNPred('/home/ancasag/Codigo/General/ensembleObjectDetection/peso/mask_rcnn_coco.h5', '../peso/coco.names',0.7) listaModels = [retinaResnet50, maskRcnn,yoloResnet,yoloDarknet,fasterResnet,ssdResnet] models(listaModels,pathImg,option)
"--option", default='consensus', help="option to the ensemble: affirmative, consensus or unanimous") args = vars(ap.parse_args()) pathImg = args["dataset"] option = args["option"] #fichs = os.listdir(pathImg) imgFolder = pathImg #the user define configurations fichs yoloDarknet = testTimeAugmentation.DarknetYoloPred( '/home/master/Desktop/peso/AlvaroPrueba1_600train_65000.weights', '../peso/vocEstomas.names', '../peso/yolov3Estomas.cfg') ssdResnet = testTimeAugmentation.MXnetSSD512Pred( '/home/master/Desktop/peso/ssd_512_resnet50_v1_voc-9c8b225a.params', '../peso/classesMXnet.txt') fasterResnet = testTimeAugmentation.MXnetFasterRCNNPred( '/home/master/Desktop/peso/faster_rcnn_resnet50_v1b_voc-447328d8.params', '../peso/classesMXnet.txt') yoloResnet = testTimeAugmentation.MXnetYoloPred( '/home/master/Desktop/peso/yolo3_darknet53_voc-f5ece5ce.params', '../peso/classesMXnet.txt') retinaResnet50 = testTimeAugmentation.RetinaNetResnet50Pred( '/home/master/Desktop/peso/resnet50_coco_best_v2.1.0.h5', '../peso/coco.csv') maskRcnn = testTimeAugmentation.MaskRCNNPred( '/home/master/Desktop/peso/mask_rcnn_coco.h5', '../peso/coco.names')
#Enter the path of the folder that will contain the images ap = argparse.ArgumentParser() ap.add_argument("-d", "--dataset", required=True, help="path to the dataset of images") ap.add_argument( "-o", "--option", default='consensus', help="option to the ensemble: affirmative, consensus or unanimous") notebook = False args = vars(ap.parse_args()) pathImg = args["dataset"] option = args["option"] imgFolder = pathImg # the user define configurations fichs yoloDarknet = testTimeAugmentation.DarknetYoloPred( '/home/ancasag/Codigo/General/ensembleObjectDetection/peso/yolov3.weights', '/home/ancasag/Codigo/General/ensembleObjectDetection/peso/coco.names', '/home/ancasag/Codigo/General/ensembleObjectDetection/peso/yolov3.cfg', 0.7) # ssdResnet = testTimeAugmentation.MXnetSSD512Pred('weights/ssd_512_resnet50_v1_voc-9c8b225a.params', 'weights/classesMXnet.txt',0.7) # fasterResnet = testTimeAugmentation.MXnetFasterRCNNPred('weights/Desktop/peso/faster_rcnn_resnet50_v1b_voc-447328d8.params', 'weights/classesMXnet.txt',0.7) # yoloResnet = testTimeAugmentation.MXnetYoloPred('weights/Desktop/peso/yolo3_darknet53_voc-f5ece5ce.params', 'weights/classesMXnet.txt',0.7) # retinaResnet50 = testTimeAugmentation.RetinaNetResnet50Pred('weights/resnet50_coco_best_v2.1.0.h5', 'weights/coco.csv',0.7) # maskRcnn = testTimeAugmentation.MaskRCNNPred('weights/mask_rcnn_coco.h5', 'weights/coco.names',0.7) myTechniques = ["histo", "hflip", "none"] tta(yoloDarknet, myTechniques, pathImg, option)
help="path to the dataset of images") ap.add_argument( "-o", "--option", default='consensus', help="option to the ensemble: affirmative, consensus or unanimous") args = vars(ap.parse_args()) pathImg = args["dataset"] option = args["option"] #2. the user define the techniques and configurations fichs myTechniques = ["histo", "vflip", "gamma"] yoloDarknet = testTimeAugmentation.DarknetYoloPred( '/home/master/Desktop/peso/yolov3.weights', '../peso/coco.names', '../peso/yolov3.cfg') ssdResnet = testTimeAugmentation.MXnetSSD512Pred( '/home/master/Desktop/peso/ssd_512_resnet50_v1_voc-9c8b225a.params', '../peso/classesMXnet.txt') fasterResnet = testTimeAugmentation.MXnetFasterRCNNPred( '/home/master/Desktop/peso/faster_rcnn_resnet50_v1b_voc-447328d8.params', '../peso/classesMXnet.txt') yoloResnet = testTimeAugmentation.MXnetYoloPred( '/home/master/Desktop/peso/yolo3_darknet53_voc-f5ece5ce.params', '../peso/classesMXnet.txt') retinaResnet50 = testTimeAugmentation.RetinaNetResnet50Pred( '/home/master/Desktop/peso/resnet50_coco_best_v2.1.0.h5', '../peso/coco.csv') maskRcnn = testTimeAugmentation.MaskRCNNPred( '/home/master/Desktop/peso/mask_rcnn_coco.h5', '../peso/coco.names')