Пример #1
0
    def __init__(self,
                 data_type,
                 from_rgb_detection,
                 use_multisweep,
                 use_detected_2d=False):
        if data_type == "train":
            self.lyftd = load_train_data()
        elif data_type == "test":
            self.lyftd = load_test_data()
        else:
            raise ValueError(
                "invalid data type. Valid dataset names are train or test")
        self.from_rgb_detection = from_rgb_detection
        self.data_type = data_type
        if self.from_rgb_detection:
            if use_detected_2d:
                from object_classifier import LoaderClassifier
                self.object_classifier = LoaderClassifier()
            else:
                from object_classifier import TLClassifier
                self.object_classifier = TLClassifier()
        else:
            self.object_classifier = None

        if self.from_rgb_detection:
            self.file_type = "rgb"
        else:
            self.file_type = "gt"

        self.use_multisweep = use_multisweep
def main(argv):
    lyftd = load_test_data()
    data_path, artifacts_path, _ = get_paths()

    det_path = os.path.join(artifacts_path, "detection")

    scenes_to_process = range(0, 218, 1)
    sp = SceneImagePathSaver(det_path, lyftd)

    from multiprocessing import Pool
    with Pool(processes=3) as p:
        p.map(sp.find_and_save_image_in_scene, scenes_to_process)
Пример #3
0
def plot_prediction_data():
    lyftd = load_test_data()
    pv = PredViewer(pred_file="prediction.csv", lyftd=lyftd)

    # test_token = lyftd.sample[2]['token']
    test_token = pv.pred_pd.index[1]

    pv.render_3d_lidar_points_to_camera_coordinates(test_token, prob_threshold=0.4)
    from object_classifier import TLClassifier

    tl = TLClassifier()

    draw_preprocess_results(test_sample_token=test_token,
                            lyftd=lyftd,
                            object_classifier=tl)
Пример #4
0
def plot_prediction_data():
    lyftd = load_test_data()

    pv = PredViewer(pred_file="test_pred.csv", lyftd=lyftd)

    # test_token = lyftd.sample[2]['token']
    test_token = pv.pred_pd.index[100]

    fig, ax = plt.subplots(nrows=1, ncols=2, figsize=(10, 5))
    pv.render_camera_image(ax[0], sample_token=test_token, prob_threshold=0.1)

    pv.render_lidar_points(ax[1], sample_token=test_token, prob_threshold=0.1)

    fig.savefig("./artifact/camera_top_view.png", dpi=600)

    pv.render_3d_lidar_points_to_camera_coordinates(test_token,
                                                    prob_threshold=0.1)
Пример #5
0
def main(argv):
    inference_pickle_file = FLAGS.inference_file
    pred_csv_file = FLAGS.pred_file
    FROM_RGB_DETECTION = FLAGS.from_rgb_detection
    data_name = FLAGS.data_name
    if data_name == 'train':
        data = load_train_data()
    elif data_name == 'test':
        data = load_test_data()

    pred_boxes = []
    sample_token_list = []
    for box, sample_token in read_frustum_pointnet_output_v2(
            data, inference_pickle_file):
        pred_boxes.append(box)
        sample_token_list.append(sample_token)

    write_output_csv(pred_boxes, sample_token_list, pred_csv_file)
Пример #6
0
def main(argv):
    logging.set_verbosity(logging.INFO)

    tlc = FastClassifer()

    if FLAGS.data_type == "test":
        lyftd = load_test_data()
        file_pat = "test_scene_{}_images.pickle"
    elif FLAGS.data_type == "train":
        lyftd = load_train_data()
        file_pat = "train_scene_{}_images.pickle"
    else:
        raise ValueError("data_type should be either test or train")

    scene_num = map(int, FLAGS.scenes)

    for s in scene_num:
        detect_image_in_scene(s, lyftd, tlc, file_pat)
Пример #7
0
def conv_net_model_test(save_dir, test_dir, output_dir0, output_dir1):
    """
    The feed forward convolutional neural network model

    Hyper parameters include learning rate, number of convolutional layers and
    fully connected layers. (Currently TBD)

    """
    # Reset graphs
    tf.reset_default_graph()

    # Create placeholders
    x = tf.placeholder(dtype=tf.float32,
                       shape=[
                           None, INPUT_IMAGE_DIMENSION, INPUT_IMAGE_DIMENSION,
                           INPUT_IMAGE_CHANNELS
                       ],
                       name="x")

    weight1 = tf.Variable(tf.truncated_normal([4, 4, 3, 16], stddev=0.1),
                          dtype=tf.float32,
                          name="W1")
    bias1 = tf.Variable(tf.constant(0.1, shape=[16]),
                        dtype=tf.float32,
                        name="B1")
    weight2 = tf.Variable(tf.truncated_normal([4, 4, 16, 32], stddev=0.1),
                          dtype=tf.float32,
                          name="W2")
    bias2 = tf.Variable(tf.constant(0.1, shape=[32]),
                        dtype=tf.float32,
                        name="B2")
    weight3 = tf.Variable(tf.truncated_normal([4608, 2], stddev=0.1),
                          dtype=tf.float32,
                          name="W3")
    bias3 = tf.Variable(tf.constant(0.1, shape=[2]),
                        dtype=tf.float32,
                        name="B3")

    # First convolutional layer
    conv1 = ly.conv_layer(x, weight1, bias1, False)

    # First pooling
    pool1 = ly.pool_layer(conv1)

    # Second convolutional layer
    conv2 = ly.conv_layer(pool1, weight2, bias2, True)

    # Second pooling
    pool2 = ly.pool_layer(conv2)

    # Flatten input
    flattened = tf.reshape(pool2, shape=[-1, 12 * 12 * 32])

    # Create fully connected layer
    logits = ly.fully_connected_layer(flattened, weight3, bias3)

    saver = tf.train.Saver()

    with tf.Session() as sess:
        saver.restore(sess, save_dir)
        # Run model
        test_images = tdl.load_test_data(test_dir)

        coord = tf.train.Coordinator()

        # Test the model
        l = sess.run(tf.argmax(logits, 1), feed_dict={x: test_images})
        od.output(output_dir0, output_dir1, test_images, l)

    coord.request_stop()
Пример #8
0
 def setUp(self) -> None:
     self.level5testdata = load_test_data()
     self.object_classifier = TLClassifier()