def _test_getnodeaddresses(self): self.nodes[0].add_p2p_connection(P2PInterface()) # send some addresses to the node via the p2p message addr msg = msg_addr() imported_addrs = [] for i in range(256): a = "123.123.123.{}".format(i) imported_addrs.append(a) addr = CAddress() addr.time = 100000000 addr.nServices = NODE_NETWORK | NODE_WITNESS addr.ip = a addr.port = 21102 msg.addrs.append(addr) self.nodes[0].p2p.send_and_ping(msg) # obtain addresses via rpc call and check they were ones sent in before REQUEST_COUNT = 10 node_addresses = self.nodes[0].getnodeaddresses(REQUEST_COUNT) assert_equal(len(node_addresses), REQUEST_COUNT) for a in node_addresses: assert_greater_than(a["time"], 1527811200) # 1st June 2018 assert_equal(a["services"], NODE_NETWORK | NODE_WITNESS) assert a["address"] in imported_addrs assert_equal(a["port"], 21102) assert_raises_rpc_error(-8, "Address count out of range", self.nodes[0].getnodeaddresses, -1) # addrman's size cannot be known reliably after insertion, as hash collisions may occur # so only test that requesting a large number of addresses returns less than that LARGE_REQUEST_COUNT = 10000 node_addresses = self.nodes[0].getnodeaddresses(LARGE_REQUEST_COUNT) assert_greater_than(LARGE_REQUEST_COUNT, len(node_addresses))
def test_small_output_with_feerate_succeeds(rbf_node, dest_address): # Make sure additional inputs exist rbf_node.generatetoaddress(101, rbf_node.getnewaddress()) rbfid = spend_one_input(rbf_node, dest_address) original_input_list = rbf_node.getrawtransaction(rbfid, 1)["vin"] assert_equal(len(original_input_list), 1) original_txin = original_input_list[0] # Keep bumping until we out-spend change output tx_fee = 0 while tx_fee < Decimal("0.0005"): new_input_list = rbf_node.getrawtransaction(rbfid, 1)["vin"] new_item = list(new_input_list)[0] assert_equal(len(original_input_list), 1) assert_equal(original_txin["txid"], new_item["txid"]) assert_equal(original_txin["vout"], new_item["vout"]) rbfid_new_details = rbf_node.bumpfee(rbfid) rbfid_new = rbfid_new_details["txid"] raw_pool = rbf_node.getrawmempool() assert rbfid not in raw_pool assert rbfid_new in raw_pool rbfid = rbfid_new tx_fee = rbfid_new_details["origfee"] # input(s) have been added final_input_list = rbf_node.getrawtransaction(rbfid, 1)["vin"] assert_greater_than(len(final_input_list), 1) # Original input is in final set assert [txin for txin in final_input_list if txin["txid"] == original_txin["txid"] and txin["vout"] == original_txin["vout"]] rbf_node.generatetoaddress(1, rbf_node.getnewaddress()) assert_equal(rbf_node.gettransaction(rbfid)["confirmations"], 1)
def run_test(self): node = self.nodes[0] self.log.info("test getmemoryinfo") memory = node.getmemoryinfo()['locked'] assert_greater_than(memory['used'], 0) assert_greater_than(memory['free'], 0) assert_greater_than(memory['total'], 0) # assert_greater_than_or_equal() for locked in case locking pages failed at some point assert_greater_than_or_equal(memory['locked'], 0) assert_greater_than(memory['chunks_used'], 0) assert_greater_than(memory['chunks_free'], 0) assert_equal(memory['used'] + memory['free'], memory['total']) self.log.info("test mallocinfo") try: mallocinfo = node.getmemoryinfo(mode="mallocinfo") self.log.info('getmemoryinfo(mode="mallocinfo") call succeeded') tree = ET.fromstring(mallocinfo) assert_equal(tree.tag, 'malloc') except JSONRPCException: self.log.info('getmemoryinfo(mode="mallocinfo") not available') assert_raises_rpc_error(-8, 'mallocinfo is only available when compiled with glibc 2.10+', node.getmemoryinfo, mode="mallocinfo") assert_raises_rpc_error(-8, "unknown mode foobar", node.getmemoryinfo, mode="foobar")
def run_test (self): self.node = self.nodes[0] # Register a test name to a bech32 pure-segwit address. addr = self.node.getnewaddress ("test", "bech32") name = "d/test" value = "{}" new = self.node.name_new (name) self.node.generate (10) self.firstupdateName (0, name, new, value, {"destAddress": addr}) self.node.generate (5) self.checkNameValueAddr (name, value, addr) # Before segwit activation, the script should behave as anyone-can-spend. # It will still fail due to non-mandatory flag checks when submitted # into the mempool. assert_greater_than (SEGWIT_ACTIVATION_HEIGHT, self.node.getblockcount ()) assert_raises_rpc_error (-26, 'Script failed an OP_EQUALVERIFY operation', self.tryUpdateSegwitName, name, "wrong value", addr) self.node.generate (1) self.checkNameValueAddr (name, value, addr) # But directly in a block, the update should work with a dummy witness. assert_equal (self.tryUpdateInBlock (name, "stolen", addr, withWitness=False), None) self.checkNameValueAddr (name, "stolen", addr) # Activate segwit. Since this makes the original name expire, we have # to re-register it. self.node.generate (400) new = self.node.name_new (name) self.node.generate (10) self.firstupdateName (0, name, new, value, {"destAddress": addr}) self.node.generate (5) self.checkNameValueAddr (name, value, addr) # Verify that now trying to update the name without a proper signature # fails differently. assert_greater_than (self.node.getblockcount (), SEGWIT_ACTIVATION_HEIGHT) assert_equal (self.tryUpdateInBlock (name, "wrong value", addr, withWitness=True), 'non-mandatory-script-verify-flag' + ' (Script failed an OP_EQUALVERIFY operation)') self.checkNameValueAddr (name, value, addr) # Updating the name ordinarily (with signature) should work fine even # though it is at a segwit address. Also spending from P2SH-segwit # should work fine. addrP2SH = self.node.getnewaddress ("test", "p2sh-segwit") self.node.name_update (name, "value 2", {"destAddress": addrP2SH}) self.node.generate (1) self.checkNameValueAddr (name, "value 2", addrP2SH) self.node.name_update (name, "value 3", {"destAddress": addr}) self.node.generate (1) self.checkNameValueAddr (name, "value 3", addr)
def activateCSV(self): # activation should happen at block height 432 (3 periods) # getblockchaininfo will show CSV as active at block 431 (144 * 3 -1) since it's returning whether CSV is active for the next block. min_activation_height = 432 height = self.nodes[0].getblockcount() assert_greater_than(min_activation_height - height, 2) self.nodes[0].generate(min_activation_height - height) assert_equal(self.nodes[0].getblockcount(), min_activation_height) self.sync_blocks()
def run_test(self): passphrase = "WalletPassphrase" passphrase2 = "SecondWalletPassphrase" # Make sure the wallet isn't encrypted first address = self.nodes[0].getnewaddress() privkey = self.nodes[0].dumpprivkey(address) assert_equal(privkey[:1], "c") assert_equal(len(privkey), 52) # Encrypt the wallet self.nodes[0].node_encrypt_wallet(passphrase) self.start_node(0) # Test that the wallet is encrypted assert_raises_rpc_error(-13, "Please enter the wallet passphrase with walletpassphrase first", self.nodes[0].dumpprivkey, address) # Check that walletpassphrase works self.nodes[0].walletpassphrase(passphrase, 2) assert_equal(privkey, self.nodes[0].dumpprivkey(address)) # Check that the timeout is right time.sleep(2) assert_raises_rpc_error(-13, "Please enter the wallet passphrase with walletpassphrase first", self.nodes[0].dumpprivkey, address) # Test wrong passphrase assert_raises_rpc_error(-14, "wallet passphrase entered was incorrect", self.nodes[0].walletpassphrase, passphrase + "wrong", 10) # Test walletlock self.nodes[0].walletpassphrase(passphrase, 84600) assert_equal(privkey, self.nodes[0].dumpprivkey(address)) self.nodes[0].walletlock() assert_raises_rpc_error(-13, "Please enter the wallet passphrase with walletpassphrase first", self.nodes[0].dumpprivkey, address) # Test passphrase changes self.nodes[0].walletpassphrasechange(passphrase, passphrase2) assert_raises_rpc_error(-14, "wallet passphrase entered was incorrect", self.nodes[0].walletpassphrase, passphrase, 10) self.nodes[0].walletpassphrase(passphrase2, 10) assert_equal(privkey, self.nodes[0].dumpprivkey(address)) self.nodes[0].walletlock() # Test timeout bounds assert_raises_rpc_error(-8, "Timeout cannot be negative.", self.nodes[0].walletpassphrase, passphrase2, -10) # Check the timeout # Check a time less than the limit MAX_VALUE = 100000000 expected_time = int(time.time()) + MAX_VALUE - 600 self.nodes[0].walletpassphrase(passphrase2, MAX_VALUE - 600) actual_time = self.nodes[0].getwalletinfo()['unlocked_until'] assert_greater_than_or_equal(actual_time, expected_time) assert_greater_than(expected_time + 5, actual_time) # 5 second buffer # Check a time greater than the limit expected_time = int(time.time()) + MAX_VALUE - 1 self.nodes[0].walletpassphrase(passphrase2, MAX_VALUE + 1000) actual_time = self.nodes[0].getwalletinfo()['unlocked_until'] assert_greater_than_or_equal(actual_time, expected_time) assert_greater_than(expected_time + 5, actual_time) # 5 second buffer
def run_test (self): if self.options.activated: self.generate (0, BIP16_ACTIVATION_HEIGHT, syncBefore=False) self.test_2of2_multisig () self.test_namescript_p2sh () if not self.options.activated: assert_greater_than (BIP16_ACTIVATION_HEIGHT, self.nodes[0].getblockcount ())
def test_settxfee(rbf_node, dest_address): # check that bumpfee reacts correctly to the use of settxfee (paytxfee) rbfid = spend_one_input(rbf_node, dest_address) requested_feerate = Decimal("0.00025000") rbf_node.settxfee(requested_feerate) bumped_tx = rbf_node.bumpfee(rbfid) actual_feerate = bumped_tx["fee"] * 1000 / rbf_node.getrawtransaction(bumped_tx["txid"], True)["vsize"] # Assert that the difference between the requested feerate and the actual # feerate of the bumped transaction is small. assert_greater_than(Decimal("0.00001000"), abs(requested_feerate - actual_feerate)) rbf_node.settxfee(Decimal("0.00000000")) # unset paytxfee
def activateCSV(self): # activation should happen at block height 432 (3 periods) # getblockchaininfo will show CSV as active at block 431 (144 * 3 -1) since it's returning whether CSV is active for the next block. min_activation_height = 432 height = self.nodes[0].getblockcount() assert_greater_than(min_activation_height - height, 2) self.nodes[0].generate(min_activation_height - height - 2) assert_equal(get_bip9_status(self.nodes[0], 'csv')['status'], "locked_in") self.nodes[0].generate(1) assert_equal(get_bip9_status(self.nodes[0], 'csv')['status'], "active") sync_blocks(self.nodes)
def _test_getblockchaininfo(self): self.log.info("Test getblockchaininfo") keys = [ 'bestblockhash', 'bip9_softforks', 'blocks', 'chain', 'chainwork', 'difficulty', 'headers', 'initialblockdownload', 'mediantime', 'pruned', 'size_on_disk', 'softforks', 'verificationprogress', 'warnings', ] res = self.nodes[0].getblockchaininfo() # result should have these additional pruning keys if manual pruning is enabled assert_equal(sorted(res.keys()), sorted(['pruneheight', 'automatic_pruning'] + keys)) # size_on_disk should be > 0 assert_greater_than(res['size_on_disk'], 0) # pruneheight should be greater or equal to 0 assert_greater_than_or_equal(res['pruneheight'], 0) # check other pruning fields given that prune=1 assert res['pruned'] assert not res['automatic_pruning'] self.restart_node(0, ['-stopatheight=207']) res = self.nodes[0].getblockchaininfo() # should have exact keys assert_equal(sorted(res.keys()), keys) self.restart_node(0, ['-stopatheight=207', '-prune=550']) res = self.nodes[0].getblockchaininfo() # result should have these additional pruning keys if prune=550 assert_equal(sorted(res.keys()), sorted(['pruneheight', 'automatic_pruning', 'prune_target_size'] + keys)) # check related fields assert res['pruned'] assert_equal(res['pruneheight'], 0) assert res['automatic_pruning'] assert_equal(res['prune_target_size'], 576716800) assert_greater_than(res['size_on_disk'], 0)
def prune(index, expected_ret=None): ret = node.pruneblockchain(height(index)) # Check the return value. When use_timestamp is True, just check # that the return value is less than or equal to the expected # value, because when more than one block is generated per second, # a timestamp will not be granular enough to uniquely identify an # individual block. if expected_ret is None: expected_ret = index if use_timestamp: assert_greater_than(ret, 0) assert_greater_than(expected_ret + 1, ret) else: assert_equal(ret, expected_ret)
def test_height_min(self): assert os.path.isfile(os.path.join(self.prunedir, "blk00000.dat")), "blk00000.dat is missing, pruning too early" self.log.info("Success") self.log.info("Though we're already using more than 550MiB, current usage: %d" % calc_usage(self.prunedir)) self.log.info("Mining 25 more blocks should cause the first block file to be pruned") # Pruning doesn't run until we're allocating another chunk, 20 full blocks past the height cutoff will ensure this mine_large_blocks(self.nodes[0], 25) # Wait for blk00000.dat to be pruned wait_until(lambda: not os.path.isfile(os.path.join(self.prunedir, "blk00000.dat")), timeout=30) self.log.info("Success") usage = calc_usage(self.prunedir) self.log.info("Usage should be below target: %d" % usage) assert_greater_than(550, usage)
def run_test(self): txouts = gen_return_txouts() relayfee = self.nodes[0].getnetworkinfo()['relayfee'] self.log.info('Check that mempoolminfee is minrelytxfee') assert_equal(self.nodes[0].getmempoolinfo()['minrelaytxfee'], Decimal('0.00001000')) assert_equal(self.nodes[0].getmempoolinfo()['mempoolminfee'], Decimal('0.00001000')) txids = [] utxos = create_confirmed_utxos(relayfee, self.nodes[0], 91) self.log.info('Create a mempool tx that will be evicted') us0 = utxos.pop() inputs = [{ "txid" : us0["txid"], "vout" : us0["vout"]}] outputs = {self.nodes[0].getnewaddress() : 0.0001} tx = self.nodes[0].createrawtransaction(inputs, outputs) self.nodes[0].settxfee(relayfee) # specifically fund this tx with low fee txF = self.nodes[0].fundrawtransaction(tx) self.nodes[0].settxfee(0) # return to automatic fee selection txFS = self.nodes[0].signrawtransactionwithwallet(txF['hex']) txid = self.nodes[0].sendrawtransaction(txFS['hex']) relayfee = self.nodes[0].getnetworkinfo()['relayfee'] base_fee = relayfee*100 for i in range (3): txids.append([]) txids[i] = create_lots_of_big_transactions(self.nodes[0], txouts, utxos[30*i:30*i+30], 30, (i+1)*base_fee) self.log.info('The tx should be evicted by now') assert(txid not in self.nodes[0].getrawmempool()) txdata = self.nodes[0].gettransaction(txid) assert(txdata['confirmations'] == 0) #confirmation should still be 0 self.log.info('Check that mempoolminfee is larger than minrelytxfee') assert_equal(self.nodes[0].getmempoolinfo()['minrelaytxfee'], Decimal('0.00001000')) assert_greater_than(self.nodes[0].getmempoolinfo()['mempoolminfee'], Decimal('0.00001000')) self.log.info('Create a mempool tx that will not pass mempoolminfee') us0 = utxos.pop() inputs = [{ "txid" : us0["txid"], "vout" : us0["vout"]}] outputs = {self.nodes[0].getnewaddress() : 0.0001} tx = self.nodes[0].createrawtransaction(inputs, outputs) # specifically fund this tx with a fee < mempoolminfee, >= than minrelaytxfee txF = self.nodes[0].fundrawtransaction(tx, {'feeRate': relayfee}) txFS = self.nodes[0].signrawtransactionwithwallet(txF['hex']) assert_raises_rpc_error(-26, "mempool min fee not met", self.nodes[0].sendrawtransaction, txFS['hex'])
def reorg_test(self): # Node 1 will mine a 300 block chain starting 287 blocks back from Node 0 and Node 2's tip # This will cause Node 2 to do a reorg requiring 288 blocks of undo data to the reorg_test chain height = self.nodes[1].getblockcount() self.log.info("Current block height: %d" % height) self.forkheight = height - 287 self.forkhash = self.nodes[1].getblockhash(self.forkheight) self.log.info("Invalidating block %s at height %d" % (self.forkhash, self.forkheight)) self.nodes[1].invalidateblock(self.forkhash) # We've now switched to our previously mined-24 block fork on node 1, but that's not what we want # So invalidate that fork as well, until we're on the same chain as node 0/2 (but at an ancestor 288 blocks ago) mainchainhash = self.nodes[0].getblockhash(self.forkheight - 1) curhash = self.nodes[1].getblockhash(self.forkheight - 1) while curhash != mainchainhash: self.nodes[1].invalidateblock(curhash) curhash = self.nodes[1].getblockhash(self.forkheight - 1) assert self.nodes[1].getblockcount() == self.forkheight - 1 self.log.info("New best height: %d" % self.nodes[1].getblockcount()) # Disconnect node1 and generate the new chain disconnect_nodes(self.nodes[0], 1) disconnect_nodes(self.nodes[1], 2) self.log.info("Generating new longer chain of 300 more blocks") self.nodes[1].generate(300) self.log.info("Reconnect nodes") connect_nodes(self.nodes[0], 1) connect_nodes(self.nodes[1], 2) self.sync_blocks(self.nodes[0:3], timeout=120) self.log.info("Verify height on node 2: %d" % self.nodes[2].getblockcount()) self.log.info("Usage possibly still high because of stale blocks in block files: %d" % calc_usage(self.prunedir)) self.log.info("Mine 220 more large blocks so we have requisite history") mine_large_blocks(self.nodes[0], 220) usage = calc_usage(self.prunedir) self.log.info("Usage should be below target: %d" % usage) assert_greater_than(550, usage)
def check_estimates(node, fees_seen): """Call estimatesmartfee and verify that the estimates meet certain invariants.""" delta = 1.0e-6 # account for rounding error last_feerate = float(max(fees_seen)) all_smart_estimates = [node.estimatesmartfee(i) for i in range(1, 26)] for i, e in enumerate(all_smart_estimates): # estimate is for i+1 feerate = float(e["feerate"]) assert_greater_than(feerate, 0) if feerate + delta < min(fees_seen) or feerate - delta > max(fees_seen): raise AssertionError("Estimated fee (%f) out of range (%f,%f)" % (feerate, min(fees_seen), max(fees_seen))) if feerate - delta > last_feerate: raise AssertionError("Estimated fee (%f) larger than last fee (%f) for lower number of confirms" % (feerate, last_feerate)) last_feerate = feerate if i == 0: assert_equal(e["blocks"], 2) else: assert_greater_than_or_equal(i + 1, e["blocks"])
def run_test(self): self.nodes[0].generate(101) #Issue two assets that we will later label using the assetdir parameter issuance1 = self.nodes[0].issueasset(100, 1, False) asset1hex = issuance1["asset"] issuance2 = self.nodes[0].issueasset(100, 1, False) asset2hex = issuance2["asset"] #Stop and restart the nodes, providing the assetdir parameter to locally label the assets self.stop_nodes() self.start_nodes([["-assetdir=" + asset1hex + ":asset1", "-assetdir=" + asset2hex + ":asset2"]]) #Check that listissuances return all issuances issuances = self.nodes[0].listissuances() assert_equal(len(issuances), 2) #Check all asset labels have been set: 'asset1', 'asset2' #We can not be sure they will always be returned in the same order so will loop each one label = "" for issue in issuances: label += issue["assetlabel"] assert_greater_than(label.find("asset1"), -1) assert_greater_than(label.find("asset2"), -1) #Check we can get a list of isuances for a given label issuances = self.nodes[0].listissuances("asset1") assert_equal(len(issuances), 1) assert_equal(issuances[0]["assetlabel"], "asset1") #Check we can get a list of issuances for a given hex issuances = self.nodes[0].listissuances(asset2hex) assert_equal(len(issuances), 1) assert_equal(issuances[0]["assetlabel"], "asset2")
def verify_utxos(node, amts, zaddr): amts.sort(reverse=True) txs = node.z_listreceivedbyaddress(zaddr) def cmp_confirmations_high_to_low(a, b): return cmp(b["amount"], a["amount"]) txs.sort(cmp_confirmations_high_to_low) print("Sorted txs", txs) print("amts", amts) try: assert_equal(amts, [tx["amount"] for tx in txs]) for tx in txs: # make sure JoinSplit keys exist and have valid values assert_equal("jsindex" in tx, True) assert_equal("jsoutindex" in tx, True) assert_greater_than(tx["jsindex"], -1) assert_greater_than(tx["jsoutindex"], -1) except AssertionError: logging.error( 'Expected amounts: %r; txs: %r', amts, txs) raise
def run_test(self): chain_height = self.nodes[0].getblockcount() assert_equal(chain_height, 200) node0_address = self.nodes[0].getnewaddress() # Coinbase at height chain_height-100+1 ok in mempool, should # get mined. Coinbase at height chain_height-100+2 is # is too immature to spend. b = [ self.nodes[0].getblockhash(n) for n in range(101, 103) ] coinbase_txids = [ self.nodes[0].getblock(h)['tx'][0] for h in b ] spends_raw = [ self.create_tx(txid, node0_address, 10) for txid in coinbase_txids ] spend_101_id = self.nodes[0].sendrawtransaction(spends_raw[0]) # coinbase at height 102 should be too immature to spend assert_raises(JSONRPCException, self.nodes[0].sendrawtransaction, spends_raw[1]) # mempool should have just spend_101: mempoolinfo = self.nodes[0].getmempoolinfo() assert_equal(mempoolinfo['size'], 1) assert_equal(self.nodes[0].getrawmempool(), [ spend_101_id ]) # the size of the memory pool should be greater than 1x ~100 bytes assert_greater_than(mempoolinfo['bytes'], 100) # the actual memory usage should be strictly greater than the size # of the memory pool assert_greater_than(mempoolinfo['usage'], mempoolinfo['bytes']) # mine a block, spend_101 should get confirmed self.nodes[0].generate(1) mempoolinfo = self.nodes[0].getmempoolinfo() assert_equal(mempoolinfo['size'], 0) assert_equal(mempoolinfo['bytes'], 0) assert_equal(mempoolinfo['usage'], 0) assert_equal(set(self.nodes[0].getrawmempool()), set()) # ... and now height 102 can be spent: spend_102_id = self.nodes[0].sendrawtransaction(spends_raw[1]) mempoolinfo = self.nodes[0].getmempoolinfo() assert_equal(mempoolinfo['size'], 1) assert_equal(self.nodes[0].getrawmempool(), [ spend_102_id ]) assert_greater_than(mempoolinfo['bytes'], 100) assert_greater_than(mempoolinfo['usage'], mempoolinfo['bytes'])
def _test_getblockchaininfo(self): self.log.info("Test getblockchaininfo") keys = [ 'bestblockhash', 'blocks', 'chain', 'chainwork', 'difficulty', 'headers', 'initialblockdownload', 'mediantime', 'pruned', 'size_on_disk', 'softforks', 'time', 'verificationprogress', 'warnings', ] res = self.nodes[0].getblockchaininfo() assert_equal(res['time'], TIME_RANGE_END - TIME_RANGE_STEP) assert_equal(res['mediantime'], TIME_RANGE_MTP) # result should have these additional pruning keys if manual pruning is enabled assert_equal(sorted(res.keys()), sorted(['pruneheight', 'automatic_pruning'] + keys)) # size_on_disk should be > 0 assert_greater_than(res['size_on_disk'], 0) # pruneheight should be greater or equal to 0 assert_greater_than_or_equal(res['pruneheight'], 0) # check other pruning fields given that prune=1 assert res['pruned'] assert not res['automatic_pruning'] self.restart_node(0, ['-stopatheight=207']) res = self.nodes[0].getblockchaininfo() # should have exact keys assert_equal(sorted(res.keys()), keys) self.stop_node(0) self.nodes[0].assert_start_raises_init_error( extra_args=['-testactivationheight=name@2'], expected_msg= 'Error: Invalid name (name@2) for -testactivationheight=name@height.', ) self.nodes[0].assert_start_raises_init_error( extra_args=['-testactivationheight=bip34@-2'], expected_msg= 'Error: Invalid height value (bip34@-2) for -testactivationheight=name@height.', ) self.nodes[0].assert_start_raises_init_error( extra_args=['-testactivationheight='], expected_msg= 'Error: Invalid format () for -testactivationheight=name@height.', ) self.start_node(0, extra_args=[ '-stopatheight=207', '-prune=550', '-testactivationheight=bip34@2', '-testactivationheight=dersig@3', '-testactivationheight=cltv@4', '-testactivationheight=csv@5', '-testactivationheight=segwit@6', ]) res = self.nodes[0].getblockchaininfo() # result should have these additional pruning keys if prune=550 assert_equal( sorted(res.keys()), sorted(['pruneheight', 'automatic_pruning', 'prune_target_size'] + keys)) # check related fields assert res['pruned'] assert_equal(res['pruneheight'], 0) assert res['automatic_pruning'] assert_equal(res['prune_target_size'], 576716800) assert_greater_than(res['size_on_disk'], 0) assert_equal( res['softforks'], { 'bip34': { 'type': 'buried', 'active': True, 'height': 2 }, 'bip66': { 'type': 'buried', 'active': True, 'height': 3 }, 'bip65': { 'type': 'buried', 'active': True, 'height': 4 }, 'csv': { 'type': 'buried', 'active': True, 'height': 5 }, 'segwit': { 'type': 'buried', 'active': True, 'height': 6 }, 'testdummy': { 'type': 'bip9', 'bip9': { 'status': 'started', 'bit': 28, 'start_time': 0, 'timeout': 0x7fffffffffffffff, # testdummy does not have a timeout so is set to the max int64 value 'since': 144, 'statistics': { 'period': 144, 'threshold': 108, 'elapsed': HEIGHT - 143, 'count': HEIGHT - 143, 'possible': True, }, 'min_activation_height': 0, }, 'active': False }, 'taproot': { 'type': 'bip9', 'bip9': { 'status': 'active', 'start_time': -1, 'timeout': 9223372036854775807, 'since': 0, 'min_activation_height': 0, }, 'height': 0, 'active': True } })
def test_coinbase_witness(self): def WitToHex(obj): return bytes_to_hex_str(obj.serialize(with_witness=True)) block = self.nodes[0].getnewblockhex() block_struct = FromHex(CBlock(), block) # Test vanilla block round-trip self.nodes[0].testproposedblock(WitToHex(block_struct)) # Assert there's scriptWitness in the coinbase input that is the witness nonce and nothing else assert_equal(block_struct.vtx[0].wit.vtxinwit[0].scriptWitness.stack, [b'\x00'*32]) assert_equal(block_struct.vtx[0].wit.vtxinwit[0].vchIssuanceAmountRangeproof, b'') assert_equal(block_struct.vtx[0].wit.vtxinwit[0].vchInflationKeysRangeproof, b'') assert_equal(block_struct.vtx[0].wit.vtxinwit[0].peginWitness.stack, []) # Add extra witness that isn't covered by witness merkle root, make sure blocks are still valid block_witness_stuffed = copy.deepcopy(block_struct) block_witness_stuffed.vtx[0].wit.vtxinwit[0].vchIssuanceAmountRangeproof = b'\x00' assert_raises_rpc_error(-25, "bad-cb-witness", self.nodes[0].testproposedblock, WitToHex(block_witness_stuffed)) block_witness_stuffed = copy.deepcopy(block_struct) block_witness_stuffed.vtx[0].wit.vtxinwit[0].vchInflationKeysRangeproof = b'\x00' assert_raises_rpc_error(-25, "bad-cb-witness", self.nodes[0].testproposedblock, WitToHex(block_witness_stuffed)) block_witness_stuffed = copy.deepcopy(block_struct) # Let's blow out block weight limit by adding 4MW here block_witness_stuffed.vtx[0].wit.vtxinwit[0].peginWitness.stack = [b'\x00'*4000000] assert_raises_rpc_error(-25, "bad-cb-witness", self.nodes[0].testproposedblock, WitToHex(block_witness_stuffed)) # Test that node isn't blinded to the block # Previously an over-stuffed block >4MW would have been marked permanently bad # as it already passes witness merkle and regular merkle root checks block_height = self.nodes[0].getblockcount() assert_equal(self.nodes[0].submitblock(WitToHex(block_witness_stuffed)), "bad-cb-witness") assert_equal(block_height, self.nodes[0].getblockcount()) assert_equal(self.nodes[0].submitblock(WitToHex(block_struct)), None) assert_equal(block_height+1, self.nodes[0].getblockcount()) # New block since we used the first one block_struct = FromHex(CBlock(), self.nodes[0].getnewblockhex()) block_witness_stuffed = copy.deepcopy(block_struct) # Add extra witness data that is covered by witness merkle root, make sure invalid assert_equal(block_witness_stuffed.vtx[0].wit.vtxoutwit[0].vchSurjectionproof, b'') assert_equal(block_witness_stuffed.vtx[0].wit.vtxoutwit[0].vchRangeproof, b'') block_witness_stuffed.vtx[0].wit.vtxoutwit[0].vchRangeproof = b'\x00'*100000 block_witness_stuffed.vtx[0].wit.vtxoutwit[0].vchSurjectionproof = b'\x00'*100000 assert_raises_rpc_error(-25, "bad-witness-merkle-match", self.nodes[0].testproposedblock, WitToHex(block_witness_stuffed)) witness_root_hex = block_witness_stuffed.calc_witness_merkle_root() witness_root = uint256_from_str(hex_str_to_bytes(witness_root_hex)[::-1]) block_witness_stuffed.vtx[0].vout[-1] = CTxOut(0, get_witness_script(witness_root, 0)) block_witness_stuffed.vtx[0].rehash() block_witness_stuffed.hashMerkleRoot = block_witness_stuffed.calc_merkle_root() block_witness_stuffed.rehash() assert_raises_rpc_error(-25, "bad-cb-amount", self.nodes[0].testproposedblock, WitToHex(block_witness_stuffed)) assert_greater_than(len(WitToHex(block_witness_stuffed)), 100000*4) # Make sure the witness data is actually serialized # A CTxIn that always serializes the asset issuance, even for coinbases. class AlwaysIssuanceCTxIn(CTxIn): def serialize(self): r = b'' outpoint = COutPoint() outpoint.hash = self.prevout.hash outpoint.n = self.prevout.n outpoint.n |= OUTPOINT_ISSUANCE_FLAG r += outpoint.serialize() r += ser_string(self.scriptSig) r += struct.pack("<I", self.nSequence) r += self.assetIssuance.serialize() return r # Test that issuance inputs in coinbase don't survive a serialization round-trip # (even though this can't cause issuance to occur either way due to VerifyCoinbaseAmount semantics) block_witness_stuffed = copy.deepcopy(block_struct) coinbase_orig = copy.deepcopy(block_witness_stuffed.vtx[0].vin[0]) coinbase_ser_size = len(block_witness_stuffed.vtx[0].vin[0].serialize()) block_witness_stuffed.vtx[0].vin[0] = AlwaysIssuanceCTxIn() block_witness_stuffed.vtx[0].vin[0].prevout = coinbase_orig.prevout block_witness_stuffed.vtx[0].vin[0].scriptSig = coinbase_orig.scriptSig block_witness_stuffed.vtx[0].vin[0].nSequence = coinbase_orig.nSequence block_witness_stuffed.vtx[0].vin[0].assetIssuance.nAmount.setToAmount(1) bad_coinbase_ser_size = len(block_witness_stuffed.vtx[0].vin[0].serialize()) # 32+32+9+1 should be serialized for each assetIssuance field assert_equal(bad_coinbase_ser_size, coinbase_ser_size+32+32+9+1) assert(not block_witness_stuffed.vtx[0].vin[0].assetIssuance.isNull()) assert_raises_rpc_error(-22, "TX decode failed", self.nodes[0].decoderawtransaction, ToHex(block_witness_stuffed.vtx[0]))
def run_test(self): # Check that there's no UTXO on none of the nodes assert_equal(len(self.nodes[0].listunspent()), 0) assert_equal(len(self.nodes[1].listunspent()), 0) assert_equal(len(self.nodes[2].listunspent()), 0) self.log.info("Mining blocks...") self.nodes[0].generate(1) walletinfo = self.nodes[0].getwalletinfo() assert_equal(walletinfo['immature_balance'], 50) assert_equal(walletinfo['balance'], 0) self.sync_all([self.nodes[0:3]]) self.nodes[1].generate(101) self.sync_all([self.nodes[0:3]]) assert_equal(self.nodes[0].getbalance(), 50) assert_equal(self.nodes[1].getbalance(), 50) assert_equal(self.nodes[2].getbalance(), 0) # Check that only first and second nodes have UTXOs utxos = self.nodes[0].listunspent() assert_equal(len(utxos), 1) assert_equal(len(self.nodes[1].listunspent()), 1) assert_equal(len(self.nodes[2].listunspent()), 0) self.log.info("test gettxout") confirmed_txid, confirmed_index = utxos[0]["txid"], utxos[0]["vout"] # First, outputs that are unspent both in the chain and in the # mempool should appear with or without include_mempool txout = self.nodes[0].gettxout(txid=confirmed_txid, n=confirmed_index, include_mempool=False) assert_equal(txout['value'], 50) txout = self.nodes[0].gettxout(txid=confirmed_txid, n=confirmed_index, include_mempool=True) assert_equal(txout['value'], 50) # Send 21 BTC from 0 to 2 using sendtoaddress call. # Locked memory should increase to sign transactions self.log.info("test getmemoryinfo") memory_before = self.nodes[0].getmemoryinfo() self.nodes[0].sendtoaddress(self.nodes[2].getnewaddress(), 11) mempool_txid = self.nodes[0].sendtoaddress(self.nodes[2].getnewaddress(), 10) memory_after = self.nodes[0].getmemoryinfo() assert_greater_than(memory_after['locked']['used'], memory_before['locked']['used']) self.log.info("test gettxout (second part)") # utxo spent in mempool should be visible if you exclude mempool # but invisible if you include mempool txout = self.nodes[0].gettxout(confirmed_txid, confirmed_index, False) assert_equal(txout['value'], 50) txout = self.nodes[0].gettxout(confirmed_txid, confirmed_index, True) assert txout is None # new utxo from mempool should be invisible if you exclude mempool # but visible if you include mempool txout = self.nodes[0].gettxout(mempool_txid, 0, False) assert txout is None txout1 = self.nodes[0].gettxout(mempool_txid, 0, True) txout2 = self.nodes[0].gettxout(mempool_txid, 1, True) # note the mempool tx will have randomly assigned indices # but 10 will go to node2 and the rest will go to node0 balance = self.nodes[0].getbalance() assert_equal(set([txout1['value'], txout2['value']]), set([10, balance])) walletinfo = self.nodes[0].getwalletinfo() assert_equal(walletinfo['immature_balance'], 0) # Have node0 mine a block, thus it will collect its own fee. self.nodes[0].generate(1) self.sync_all([self.nodes[0:3]]) # Exercise locking of unspent outputs unspent_0 = self.nodes[2].listunspent()[0] unspent_0 = {"txid": unspent_0["txid"], "vout": unspent_0["vout"]} assert_raises_rpc_error(-8, "Invalid parameter, expected locked output", self.nodes[2].lockunspent, True, [unspent_0]) self.nodes[2].lockunspent(False, [unspent_0]) assert_raises_rpc_error(-8, "Invalid parameter, output already locked", self.nodes[2].lockunspent, False, [unspent_0]) assert_raises_rpc_error(-4, "Insufficient funds", self.nodes[2].sendtoaddress, self.nodes[2].getnewaddress(), 20) assert_equal([unspent_0], self.nodes[2].listlockunspent()) self.nodes[2].lockunspent(True, [unspent_0]) assert_equal(len(self.nodes[2].listlockunspent()), 0) assert_raises_rpc_error(-8, "txid must be of length 64 (not 34, for '0000000000000000000000000000000000')", self.nodes[2].lockunspent, False, [{"txid": "0000000000000000000000000000000000", "vout": 0}]) assert_raises_rpc_error(-8, "txid must be hexadecimal string (not 'ZZZ0000000000000000000000000000000000000000000000000000000000000')", self.nodes[2].lockunspent, False, [{"txid": "ZZZ0000000000000000000000000000000000000000000000000000000000000", "vout": 0}]) assert_raises_rpc_error(-8, "Invalid parameter, unknown transaction", self.nodes[2].lockunspent, False, [{"txid": "0000000000000000000000000000000000000000000000000000000000000000", "vout": 0}]) assert_raises_rpc_error(-8, "Invalid parameter, vout index out of bounds", self.nodes[2].lockunspent, False, [{"txid": unspent_0["txid"], "vout": 999}]) # An output should be unlocked when spent unspent_0 = self.nodes[1].listunspent()[0] self.nodes[1].lockunspent(False, [unspent_0]) tx = self.nodes[1].createrawtransaction([unspent_0], { self.nodes[1].getnewaddress() : 1 }) tx = self.nodes[1].fundrawtransaction(tx)['hex'] tx = self.nodes[1].signrawtransactionwithwallet(tx)["hex"] self.nodes[1].sendrawtransaction(tx) assert_equal(len(self.nodes[1].listlockunspent()), 0) # Have node1 generate 100 blocks (so node0 can recover the fee) self.nodes[1].generate(100) self.sync_all([self.nodes[0:3]]) # node0 should end up with 100 btc in block rewards plus fees, but # minus the 21 plus fees sent to node2 assert_equal(self.nodes[0].getbalance(), 100 - 21) assert_equal(self.nodes[2].getbalance(), 21) # Node0 should have two unspent outputs. # Create a couple of transactions to send them to node2, submit them through # node1, and make sure both node0 and node2 pick them up properly: node0utxos = self.nodes[0].listunspent(1) assert_equal(len(node0utxos), 2) # create both transactions txns_to_send = [] for utxo in node0utxos: inputs = [] outputs = {} inputs.append({"txid": utxo["txid"], "vout": utxo["vout"]}) outputs[self.nodes[2].getnewaddress()] = utxo["amount"] - 3 raw_tx = self.nodes[0].createrawtransaction(inputs, outputs) txns_to_send.append(self.nodes[0].signrawtransactionwithwallet(raw_tx)) # Have node 1 (miner) send the transactions self.nodes[1].sendrawtransaction(txns_to_send[0]["hex"], True) self.nodes[1].sendrawtransaction(txns_to_send[1]["hex"], True) # Have node1 mine a block to confirm transactions: self.nodes[1].generate(1) self.sync_all([self.nodes[0:3]]) assert_equal(self.nodes[0].getbalance(), 0) assert_equal(self.nodes[2].getbalance(), 94) # Verify that a spent output cannot be locked anymore spent_0 = {"txid": node0utxos[0]["txid"], "vout": node0utxos[0]["vout"]} assert_raises_rpc_error(-8, "Invalid parameter, expected unspent output", self.nodes[0].lockunspent, False, [spent_0]) # Send 10 BTC normal address = self.nodes[0].getnewaddress("test") fee_per_byte = Decimal('0.001') / 1000 self.nodes[2].settxfee(fee_per_byte * 1000) txid = self.nodes[2].sendtoaddress(address, 10, "", "", False) self.nodes[2].generate(1) self.sync_all([self.nodes[0:3]]) node_2_bal = self.check_fee_amount(self.nodes[2].getbalance(), Decimal('84'), fee_per_byte, self.get_vsize(self.nodes[2].gettransaction(txid)['hex'])) assert_equal(self.nodes[0].getbalance(), Decimal('10')) # Send 10 BTC with subtract fee from amount txid = self.nodes[2].sendtoaddress(address, 10, "", "", True) self.nodes[2].generate(1) self.sync_all([self.nodes[0:3]]) node_2_bal -= Decimal('10') assert_equal(self.nodes[2].getbalance(), node_2_bal) node_0_bal = self.check_fee_amount(self.nodes[0].getbalance(), Decimal('20'), fee_per_byte, self.get_vsize(self.nodes[2].gettransaction(txid)['hex'])) # Sendmany 10 BTC txid = self.nodes[2].sendmany('', {address: 10}, 0, "", []) self.nodes[2].generate(1) self.sync_all([self.nodes[0:3]]) node_0_bal += Decimal('10') node_2_bal = self.check_fee_amount(self.nodes[2].getbalance(), node_2_bal - Decimal('10'), fee_per_byte, self.get_vsize(self.nodes[2].gettransaction(txid)['hex'])) assert_equal(self.nodes[0].getbalance(), node_0_bal) # Sendmany 10 BTC with subtract fee from amount txid = self.nodes[2].sendmany('', {address: 10}, 0, "", [address]) self.nodes[2].generate(1) self.sync_all([self.nodes[0:3]]) node_2_bal -= Decimal('10') assert_equal(self.nodes[2].getbalance(), node_2_bal) node_0_bal = self.check_fee_amount(self.nodes[0].getbalance(), node_0_bal + Decimal('10'), fee_per_byte, self.get_vsize(self.nodes[2].gettransaction(txid)['hex'])) # Test ResendWalletTransactions: # Create a couple of transactions, then start up a fourth # node (nodes[3]) and ask nodes[0] to rebroadcast. # EXPECT: nodes[3] should have those transactions in its mempool. txid1 = self.nodes[0].sendtoaddress(self.nodes[1].getnewaddress(), 1) txid2 = self.nodes[1].sendtoaddress(self.nodes[0].getnewaddress(), 1) sync_mempools(self.nodes[0:2]) self.start_node(3) connect_nodes_bi(self.nodes, 0, 3) sync_blocks(self.nodes) relayed = self.nodes[0].resendwallettransactions() assert_equal(set(relayed), {txid1, txid2}) sync_mempools(self.nodes) assert txid1 in self.nodes[3].getrawmempool() # check if we can list zero value tx as available coins # 1. create raw_tx # 2. hex-changed one output to 0.0 # 3. sign and send # 4. check if recipient (node0) can list the zero value tx usp = self.nodes[1].listunspent(query_options={'minimumAmount': '49.998'})[0] inputs = [{"txid": usp['txid'], "vout": usp['vout']}] outputs = {self.nodes[1].getnewaddress(): 49.998, self.nodes[0].getnewaddress(): 11.11} raw_tx = self.nodes[1].createrawtransaction(inputs, outputs).replace("c0833842", "00000000") # replace 11.11 with 0.0 (int32) signed_raw_tx = self.nodes[1].signrawtransactionwithwallet(raw_tx) decoded_raw_tx = self.nodes[1].decoderawtransaction(signed_raw_tx['hex']) zero_value_txid = decoded_raw_tx['txid'] self.nodes[1].sendrawtransaction(signed_raw_tx['hex']) self.sync_all() self.nodes[1].generate(1) # mine a block self.sync_all() unspent_txs = self.nodes[0].listunspent() # zero value tx must be in listunspents output found = False for uTx in unspent_txs: if uTx['txid'] == zero_value_txid: found = True assert_equal(uTx['amount'], Decimal('0')) assert found # do some -walletbroadcast tests self.stop_nodes() self.start_node(0, ["-walletbroadcast=0"]) self.start_node(1, ["-walletbroadcast=0"]) self.start_node(2, ["-walletbroadcast=0"]) connect_nodes_bi(self.nodes, 0, 1) connect_nodes_bi(self.nodes, 1, 2) connect_nodes_bi(self.nodes, 0, 2) self.sync_all([self.nodes[0:3]]) txid_not_broadcast = self.nodes[0].sendtoaddress(self.nodes[2].getnewaddress(), 2) tx_obj_not_broadcast = self.nodes[0].gettransaction(txid_not_broadcast) self.nodes[1].generate(1) # mine a block, tx should not be in there self.sync_all([self.nodes[0:3]]) assert_equal(self.nodes[2].getbalance(), node_2_bal) # should not be changed because tx was not broadcasted # now broadcast from another node, mine a block, sync, and check the balance self.nodes[1].sendrawtransaction(tx_obj_not_broadcast['hex']) self.nodes[1].generate(1) self.sync_all([self.nodes[0:3]]) node_2_bal += 2 tx_obj_not_broadcast = self.nodes[0].gettransaction(txid_not_broadcast) assert_equal(self.nodes[2].getbalance(), node_2_bal) # create another tx self.nodes[0].sendtoaddress(self.nodes[2].getnewaddress(), 2) # restart the nodes with -walletbroadcast=1 self.stop_nodes() self.start_node(0) self.start_node(1) self.start_node(2) connect_nodes_bi(self.nodes, 0, 1) connect_nodes_bi(self.nodes, 1, 2) connect_nodes_bi(self.nodes, 0, 2) sync_blocks(self.nodes[0:3]) self.nodes[0].generate(1) sync_blocks(self.nodes[0:3]) node_2_bal += 2 # tx should be added to balance because after restarting the nodes tx should be broadcast assert_equal(self.nodes[2].getbalance(), node_2_bal) # send a tx with value in a string (PR#6380 +) txid = self.nodes[0].sendtoaddress(self.nodes[2].getnewaddress(), "2") tx_obj = self.nodes[0].gettransaction(txid) assert_equal(tx_obj['amount'], Decimal('-2')) txid = self.nodes[0].sendtoaddress(self.nodes[2].getnewaddress(), "0.0001") tx_obj = self.nodes[0].gettransaction(txid) assert_equal(tx_obj['amount'], Decimal('-0.0001')) # check if JSON parser can handle scientific notation in strings txid = self.nodes[0].sendtoaddress(self.nodes[2].getnewaddress(), "1e-4") tx_obj = self.nodes[0].gettransaction(txid) assert_equal(tx_obj['amount'], Decimal('-0.0001')) # General checks for errors from incorrect inputs # This will raise an exception because the amount type is wrong assert_raises_rpc_error(-3, "Invalid amount", self.nodes[0].sendtoaddress, self.nodes[2].getnewaddress(), "1f-4") # This will raise an exception since generate does not accept a string assert_raises_rpc_error(-1, "not an integer", self.nodes[0].generate, "2") # This will raise an exception for the invalid private key format assert_raises_rpc_error(-5, "Invalid private key encoding", self.nodes[0].importprivkey, "invalid") # This will raise an exception for importing an address with the PS2H flag temp_address = self.nodes[1].getnewaddress() assert_raises_rpc_error(-5, "Cannot use the p2sh flag with an address - use a script instead", self.nodes[0].importaddress, temp_address, "label", False, True) # This will raise an exception for attempting to dump the private key of an address you do not own assert_raises_rpc_error(-3, "Address does not refer to a key", self.nodes[0].dumpprivkey, temp_address) # This will raise an exception for attempting to get the private key of an invalid Bitcoin address assert_raises_rpc_error(-5, "Invalid Bitcoin address", self.nodes[0].dumpprivkey, "invalid") # This will raise an exception for attempting to set a label for an invalid Bitcoin address assert_raises_rpc_error(-5, "Invalid Bitcoin address", self.nodes[0].setlabel, "invalid address", "label") # This will raise an exception for importing an invalid address assert_raises_rpc_error(-5, "Invalid Bitcoin address or script", self.nodes[0].importaddress, "invalid") # This will raise an exception for attempting to import a pubkey that isn't in hex assert_raises_rpc_error(-5, "Pubkey must be a hex string", self.nodes[0].importpubkey, "not hex") # This will raise an exception for importing an invalid pubkey assert_raises_rpc_error(-5, "Pubkey is not a valid public key", self.nodes[0].importpubkey, "5361746f736869204e616b616d6f746f") # Import address and private key to check correct behavior of spendable unspents # 1. Send some coins to generate new UTXO address_to_import = self.nodes[2].getnewaddress() txid = self.nodes[0].sendtoaddress(address_to_import, 1) self.nodes[0].generate(1) self.sync_all([self.nodes[0:3]]) # 2. Import address from node2 to node1 self.nodes[1].importaddress(address_to_import) # 3. Validate that the imported address is watch-only on node1 assert self.nodes[1].getaddressinfo(address_to_import)["iswatchonly"] # 4. Check that the unspents after import are not spendable assert_array_result(self.nodes[1].listunspent(), {"address": address_to_import}, {"spendable": False}) # 5. Import private key of the previously imported address on node1 priv_key = self.nodes[2].dumpprivkey(address_to_import) self.nodes[1].importprivkey(priv_key) # 6. Check that the unspents are now spendable on node1 assert_array_result(self.nodes[1].listunspent(), {"address": address_to_import}, {"spendable": True}) # Mine a block from node0 to an address from node1 coinbase_addr = self.nodes[1].getnewaddress() block_hash = self.nodes[0].generatetoaddress(1, coinbase_addr)[0] coinbase_txid = self.nodes[0].getblock(block_hash)['tx'][0] self.sync_all([self.nodes[0:3]]) # Check that the txid and balance is found by node1 self.nodes[1].gettransaction(coinbase_txid) # check if wallet or blockchain maintenance changes the balance self.sync_all([self.nodes[0:3]]) blocks = self.nodes[0].generate(2) self.sync_all([self.nodes[0:3]]) balance_nodes = [self.nodes[i].getbalance() for i in range(3)] block_count = self.nodes[0].getblockcount() # Check modes: # - True: unicode escaped as \u.... # - False: unicode directly as UTF-8 for mode in [True, False]: self.nodes[0].rpc.ensure_ascii = mode # unicode check: Basic Multilingual Plane, Supplementary Plane respectively for label in [u'ббаБаА', u'№ Ё']: addr = self.nodes[0].getnewaddress() self.nodes[0].setlabel(addr, label) assert_equal(self.nodes[0].getaddressinfo(addr)['label'], label) assert label in self.nodes[0].listlabels() self.nodes[0].rpc.ensure_ascii = True # restore to default # maintenance tests maintenance = [ '-rescan', '-reindex', '-zapwallettxes=1', '-zapwallettxes=2', # disabled until issue is fixed: https://github.com/bitcoin/bitcoin/issues/7463 # '-salvagewallet', ] chainlimit = 6 for m in maintenance: self.log.info("check " + m) self.stop_nodes() # set lower ancestor limit for later self.start_node(0, [m, "-limitancestorcount=" + str(chainlimit)]) self.start_node(1, [m, "-limitancestorcount=" + str(chainlimit)]) self.start_node(2, [m, "-limitancestorcount=" + str(chainlimit)]) if m == '-reindex': # reindex will leave rpc warm up "early"; Wait for it to finish wait_until(lambda: [block_count] * 3 == [self.nodes[i].getblockcount() for i in range(3)]) assert_equal(balance_nodes, [self.nodes[i].getbalance() for i in range(3)]) # Exercise listsinceblock with the last two blocks coinbase_tx_1 = self.nodes[0].listsinceblock(blocks[0]) assert_equal(coinbase_tx_1["lastblock"], blocks[1]) assert_equal(len(coinbase_tx_1["transactions"]), 1) assert_equal(coinbase_tx_1["transactions"][0]["blockhash"], blocks[1]) assert_equal(len(self.nodes[0].listsinceblock(blocks[1])["transactions"]), 0) # ==Check that wallet prefers to use coins that don't exceed mempool limits ===== # Get all non-zero utxos together chain_addrs = [self.nodes[0].getnewaddress(), self.nodes[0].getnewaddress()] singletxid = self.nodes[0].sendtoaddress(chain_addrs[0], self.nodes[0].getbalance(), "", "", True) self.nodes[0].generate(1) node0_balance = self.nodes[0].getbalance() # Split into two chains rawtx = self.nodes[0].createrawtransaction([{"txid": singletxid, "vout": 0}], {chain_addrs[0]: node0_balance / 2 - Decimal('0.01'), chain_addrs[1]: node0_balance / 2 - Decimal('0.01')}) signedtx = self.nodes[0].signrawtransactionwithwallet(rawtx) singletxid = self.nodes[0].sendrawtransaction(signedtx["hex"]) self.nodes[0].generate(1) # Make a long chain of unconfirmed payments without hitting mempool limit # Each tx we make leaves only one output of change on a chain 1 longer # Since the amount to send is always much less than the outputs, we only ever need one output # So we should be able to generate exactly chainlimit txs for each original output sending_addr = self.nodes[1].getnewaddress() txid_list = [] for i in range(chainlimit * 2): txid_list.append(self.nodes[0].sendtoaddress(sending_addr, Decimal('0.0001'))) assert_equal(self.nodes[0].getmempoolinfo()['size'], chainlimit * 2) assert_equal(len(txid_list), chainlimit * 2) # Without walletrejectlongchains, we will still generate a txid # The tx will be stored in the wallet but not accepted to the mempool extra_txid = self.nodes[0].sendtoaddress(sending_addr, Decimal('0.0001')) assert extra_txid not in self.nodes[0].getrawmempool() assert extra_txid in [tx["txid"] for tx in self.nodes[0].listtransactions()] self.nodes[0].abandontransaction(extra_txid) total_txs = len(self.nodes[0].listtransactions("*", 99999)) # Try with walletrejectlongchains # Double chain limit but require combining inputs, so we pass SelectCoinsMinConf self.stop_node(0) self.start_node(0, extra_args=["-walletrejectlongchains", "-limitancestorcount=" + str(2 * chainlimit)]) # wait for loadmempool timeout = 10 while (timeout > 0 and len(self.nodes[0].getrawmempool()) < chainlimit * 2): time.sleep(0.5) timeout -= 0.5 assert_equal(len(self.nodes[0].getrawmempool()), chainlimit * 2) node0_balance = self.nodes[0].getbalance() # With walletrejectlongchains we will not create the tx and store it in our wallet. assert_raises_rpc_error(-4, "Transaction has too long of a mempool chain", self.nodes[0].sendtoaddress, sending_addr, node0_balance - Decimal('0.01')) # Verify nothing new in wallet assert_equal(total_txs, len(self.nodes[0].listtransactions("*", 99999))) # Test getaddressinfo on external address. Note that these addresses are taken from disablewallet.py assert_raises_rpc_error(-5, "Invalid address", self.nodes[0].getaddressinfo, "3J98t1WpEZ73CNmQviecrnyiWrnqRhWNLy") address_info = self.nodes[0].getaddressinfo("mneYUmWYsuk7kySiURxCi3AGxrAqZxLgPZ") assert_equal(address_info['address'], "mneYUmWYsuk7kySiURxCi3AGxrAqZxLgPZ") assert_equal(address_info["scriptPubKey"], "76a9144e3854046c7bd1594ac904e4793b6a45b36dea0988ac") assert not address_info["ismine"] assert not address_info["iswatchonly"] assert not address_info["isscript"] assert not address_info["ischange"] # Test getaddressinfo 'ischange' field on change address. self.nodes[0].generate(1) destination = self.nodes[1].getnewaddress() txid = self.nodes[0].sendtoaddress(destination, 0.123) tx = self.nodes[0].decoderawtransaction(self.nodes[0].gettransaction(txid)['hex']) output_addresses = [vout['scriptPubKey']['addresses'][0] for vout in tx["vout"]] assert len(output_addresses) > 1 for address in output_addresses: ischange = self.nodes[0].getaddressinfo(address)['ischange'] assert_equal(ischange, address != destination) if ischange: change = address self.nodes[0].setlabel(change, 'foobar') assert_equal(self.nodes[0].getaddressinfo(change)['ischange'], False)
# Node 0 shields to Node 3, a coinbase utxo of value 10.0 less fee 0.00010000 zsendamount = Decimal('10.0') - Decimal('0.0001') recipients = [] recipients.append({"address":zaddr3, "amount": zsendamount}) myopid = self.nodes[0].z_sendmany(taddr0, recipients) txid_shielded = wait_and_assert_operationid_status(self.nodes[0], myopid) # Mine the first Overwinter block self.sync_all() self.nodes[0].generate(1) self.sync_all() bci = self.nodes[0].getblockchaininfo() # size_on_disk should be > 0 assert_greater_than(bci['size_on_disk'], 0) assert_equal(bci['consensus']['chaintip'], '5ba81b19') assert_equal(bci['consensus']['nextblock'], '5ba81b19') assert_equal(bci['upgrades']['5ba81b19']['status'], 'active') # Verify balance assert_equal(self.nodes[1].z_getbalance(taddr1), Decimal('1.0')) assert_equal(self.nodes[3].getbalance(), Decimal('0.4999')) assert_equal(self.nodes[3].z_getbalance(zaddr3), zsendamount) # Verify transaction version is 3 (intended for Overwinter) result = self.nodes[0].getrawtransaction(txid_transparent, 1) assert_equal(result["version"], 3) assert_equal(result["overwintered"], True) assert_equal(result["versiongroupid"], "03c48270")
def run_test(self): # Create and fund a raw tx for sending 10 BTC psbtx1 = self.nodes[0].walletcreatefundedpsbt([], {self.nodes[2].getnewaddress():10})['psbt'] # Node 1 should not be able to add anything to it but still return the psbtx same as before psbtx = self.nodes[1].walletprocesspsbt(psbtx1)['psbt'] assert_equal(psbtx1, psbtx) # Sign the transaction and send signed_tx = self.nodes[0].walletprocesspsbt(psbtx)['psbt'] final_tx = self.nodes[0].finalizepsbt(signed_tx)['hex'] self.nodes[0].sendrawtransaction(final_tx) # Create p2sh, p2wpkh, and p2wsh addresses pubkey0 = self.nodes[0].getaddressinfo(self.nodes[0].getnewaddress())['pubkey'] pubkey1 = self.nodes[1].getaddressinfo(self.nodes[1].getnewaddress())['pubkey'] pubkey2 = self.nodes[2].getaddressinfo(self.nodes[2].getnewaddress())['pubkey'] p2sh = self.nodes[1].addmultisigaddress(2, [pubkey0, pubkey1, pubkey2], "", "legacy")['address'] p2wsh = self.nodes[1].addmultisigaddress(2, [pubkey0, pubkey1, pubkey2], "", "bech32")['address'] p2sh_p2wsh = self.nodes[1].addmultisigaddress(2, [pubkey0, pubkey1, pubkey2], "", "p2sh-segwit")['address'] p2wpkh = self.nodes[1].getnewaddress("", "bech32") p2pkh = self.nodes[1].getnewaddress("", "legacy") p2sh_p2wpkh = self.nodes[1].getnewaddress("", "p2sh-segwit") # fund those addresses rawtx = self.nodes[0].createrawtransaction([], {p2sh:10, p2wsh:10, p2wpkh:10, p2sh_p2wsh:10, p2sh_p2wpkh:10, p2pkh:10}) rawtx = self.nodes[0].fundrawtransaction(rawtx, {"changePosition":3}) signed_tx = self.nodes[0].signrawtransactionwithwallet(rawtx['hex'])['hex'] txid = self.nodes[0].sendrawtransaction(signed_tx) self.nodes[0].generate(6) self.sync_all() # Find the output pos p2sh_pos = -1 p2wsh_pos = -1 p2wpkh_pos = -1 p2pkh_pos = -1 p2sh_p2wsh_pos = -1 p2sh_p2wpkh_pos = -1 decoded = self.nodes[0].decoderawtransaction(signed_tx) for out in decoded['vout']: if out['scriptPubKey']['addresses'][0] == p2sh: p2sh_pos = out['n'] elif out['scriptPubKey']['addresses'][0] == p2wsh: p2wsh_pos = out['n'] elif out['scriptPubKey']['addresses'][0] == p2wpkh: p2wpkh_pos = out['n'] elif out['scriptPubKey']['addresses'][0] == p2sh_p2wsh: p2sh_p2wsh_pos = out['n'] elif out['scriptPubKey']['addresses'][0] == p2sh_p2wpkh: p2sh_p2wpkh_pos = out['n'] elif out['scriptPubKey']['addresses'][0] == p2pkh: p2pkh_pos = out['n'] # spend single key from node 1 rawtx = self.nodes[1].walletcreatefundedpsbt([{"txid":txid,"vout":p2wpkh_pos},{"txid":txid,"vout":p2sh_p2wpkh_pos},{"txid":txid,"vout":p2pkh_pos}], {self.nodes[1].getnewaddress():29.99})['psbt'] walletprocesspsbt_out = self.nodes[1].walletprocesspsbt(rawtx) assert_equal(walletprocesspsbt_out['complete'], True) self.nodes[1].sendrawtransaction(self.nodes[1].finalizepsbt(walletprocesspsbt_out['psbt'])['hex']) # feeRate of 0.1 BTC / KB produces a total fee slightly below -maxtxfee (~0.05280000): res = self.nodes[1].walletcreatefundedpsbt([{"txid":txid,"vout":p2wpkh_pos},{"txid":txid,"vout":p2sh_p2wpkh_pos},{"txid":txid,"vout":p2pkh_pos}], {self.nodes[1].getnewaddress():29.99}, 0, {"feeRate": 0.1}) assert_greater_than(res["fee"], 0.05) assert_greater_than(0.06, res["fee"]) # feeRate of 10 BTC / KB produces a total fee well above -maxtxfee # previously this was silently capped at -maxtxfee assert_raises_rpc_error(-4, "Fee exceeds maximum configured by -maxtxfee", self.nodes[1].walletcreatefundedpsbt, [{"txid":txid,"vout":p2wpkh_pos},{"txid":txid,"vout":p2sh_p2wpkh_pos},{"txid":txid,"vout":p2pkh_pos}], {self.nodes[1].getnewaddress():29.99}, 0, {"feeRate": 10}) # partially sign multisig things with node 1 psbtx = self.nodes[1].walletcreatefundedpsbt([{"txid":txid,"vout":p2wsh_pos},{"txid":txid,"vout":p2sh_pos},{"txid":txid,"vout":p2sh_p2wsh_pos}], {self.nodes[1].getnewaddress():29.99})['psbt'] walletprocesspsbt_out = self.nodes[1].walletprocesspsbt(psbtx) psbtx = walletprocesspsbt_out['psbt'] assert_equal(walletprocesspsbt_out['complete'], False) # partially sign with node 2. This should be complete and sendable walletprocesspsbt_out = self.nodes[2].walletprocesspsbt(psbtx) assert_equal(walletprocesspsbt_out['complete'], True) self.nodes[2].sendrawtransaction(self.nodes[2].finalizepsbt(walletprocesspsbt_out['psbt'])['hex']) # check that walletprocesspsbt fails to decode a non-psbt rawtx = self.nodes[1].createrawtransaction([{"txid":txid,"vout":p2wpkh_pos}], {self.nodes[1].getnewaddress():9.99}) assert_raises_rpc_error(-22, "TX decode failed", self.nodes[1].walletprocesspsbt, rawtx) # Convert a non-psbt to psbt and make sure we can decode it rawtx = self.nodes[0].createrawtransaction([], {self.nodes[1].getnewaddress():10}) rawtx = self.nodes[0].fundrawtransaction(rawtx) new_psbt = self.nodes[0].converttopsbt(rawtx['hex']) self.nodes[0].decodepsbt(new_psbt) # Make sure that a non-psbt with signatures cannot be converted # Error could be either "TX decode failed" (segwit inputs causes parsing to fail) or "Inputs must not have scriptSigs and scriptWitnesses" # We must set iswitness=True because the serialized transaction has inputs and is therefore a witness transaction signedtx = self.nodes[0].signrawtransactionwithwallet(rawtx['hex']) assert_raises_rpc_error(-22, "", self.nodes[0].converttopsbt, hexstring=signedtx['hex'], iswitness=True) assert_raises_rpc_error(-22, "", self.nodes[0].converttopsbt, hexstring=signedtx['hex'], permitsigdata=False, iswitness=True) # Unless we allow it to convert and strip signatures self.nodes[0].converttopsbt(signedtx['hex'], True) # Explicitly allow converting non-empty txs new_psbt = self.nodes[0].converttopsbt(rawtx['hex']) self.nodes[0].decodepsbt(new_psbt) # Create outputs to nodes 1 and 2 node1_addr = self.nodes[1].getnewaddress() node2_addr = self.nodes[2].getnewaddress() txid1 = self.nodes[0].sendtoaddress(node1_addr, 13) txid2 = self.nodes[0].sendtoaddress(node2_addr, 13) blockhash = self.nodes[0].generate(6)[0] self.sync_all() vout1 = find_output(self.nodes[1], txid1, 13, blockhash=blockhash) vout2 = find_output(self.nodes[2], txid2, 13, blockhash=blockhash) # Create a psbt spending outputs from nodes 1 and 2 psbt_orig = self.nodes[0].createpsbt([{"txid":txid1, "vout":vout1}, {"txid":txid2, "vout":vout2}], {self.nodes[0].getnewaddress():25.999}) # Update psbts, should only have data for one input and not the other psbt1 = self.nodes[1].walletprocesspsbt(psbt_orig)['psbt'] psbt1_decoded = self.nodes[0].decodepsbt(psbt1) assert psbt1_decoded['inputs'][0] and not psbt1_decoded['inputs'][1] psbt2 = self.nodes[2].walletprocesspsbt(psbt_orig)['psbt'] psbt2_decoded = self.nodes[0].decodepsbt(psbt2) assert not psbt2_decoded['inputs'][0] and psbt2_decoded['inputs'][1] # Combine, finalize, and send the psbts combined = self.nodes[0].combinepsbt([psbt1, psbt2]) finalized = self.nodes[0].finalizepsbt(combined)['hex'] self.nodes[0].sendrawtransaction(finalized) self.nodes[0].generate(6) self.sync_all() # Test additional args in walletcreatepsbt # Make sure both pre-included and funded inputs # have the correct sequence numbers based on # replaceable arg block_height = self.nodes[0].getblockcount() unspent = self.nodes[0].listunspent()[0] psbtx_info = self.nodes[0].walletcreatefundedpsbt([{"txid":unspent["txid"], "vout":unspent["vout"]}], [{self.nodes[2].getnewaddress():unspent["amount"]+1}], block_height+2, {"replaceable": False}, False) decoded_psbt = self.nodes[0].decodepsbt(psbtx_info["psbt"]) for tx_in, psbt_in in zip(decoded_psbt["tx"]["vin"], decoded_psbt["inputs"]): assert_greater_than(tx_in["sequence"], MAX_BIP125_RBF_SEQUENCE) assert "bip32_derivs" not in psbt_in assert_equal(decoded_psbt["tx"]["locktime"], block_height+2) # Same construction with only locktime set and RBF explicitly enabled psbtx_info = self.nodes[0].walletcreatefundedpsbt([{"txid":unspent["txid"], "vout":unspent["vout"]}], [{self.nodes[2].getnewaddress():unspent["amount"]+1}], block_height, {"replaceable": True}, True) decoded_psbt = self.nodes[0].decodepsbt(psbtx_info["psbt"]) for tx_in, psbt_in in zip(decoded_psbt["tx"]["vin"], decoded_psbt["inputs"]): assert_equal(tx_in["sequence"], MAX_BIP125_RBF_SEQUENCE) assert "bip32_derivs" in psbt_in assert_equal(decoded_psbt["tx"]["locktime"], block_height) # Same construction without optional arguments psbtx_info = self.nodes[0].walletcreatefundedpsbt([{"txid":unspent["txid"], "vout":unspent["vout"]}], [{self.nodes[2].getnewaddress():unspent["amount"]+1}]) decoded_psbt = self.nodes[0].decodepsbt(psbtx_info["psbt"]) for tx_in in decoded_psbt["tx"]["vin"]: assert_equal(tx_in["sequence"], MAX_BIP125_RBF_SEQUENCE) assert_equal(decoded_psbt["tx"]["locktime"], 0) # Same construction without optional arguments, for a node with -walletrbf=0 unspent1 = self.nodes[1].listunspent()[0] psbtx_info = self.nodes[1].walletcreatefundedpsbt([{"txid":unspent1["txid"], "vout":unspent1["vout"]}], [{self.nodes[2].getnewaddress():unspent1["amount"]+1}], block_height) decoded_psbt = self.nodes[1].decodepsbt(psbtx_info["psbt"]) for tx_in in decoded_psbt["tx"]["vin"]: assert_greater_than(tx_in["sequence"], MAX_BIP125_RBF_SEQUENCE) # Make sure change address wallet does not have P2SH innerscript access to results in success # when attempting BnB coin selection self.nodes[0].walletcreatefundedpsbt([], [{self.nodes[2].getnewaddress():unspent["amount"]+1}], block_height+2, {"changeAddress":self.nodes[1].getnewaddress()}, False) # Regression test for 14473 (mishandling of already-signed witness transaction): psbtx_info = self.nodes[0].walletcreatefundedpsbt([{"txid":unspent["txid"], "vout":unspent["vout"]}], [{self.nodes[2].getnewaddress():unspent["amount"]+1}]) complete_psbt = self.nodes[0].walletprocesspsbt(psbtx_info["psbt"]) double_processed_psbt = self.nodes[0].walletprocesspsbt(complete_psbt["psbt"]) assert_equal(complete_psbt, double_processed_psbt) # We don't care about the decode result, but decoding must succeed. self.nodes[0].decodepsbt(double_processed_psbt["psbt"]) # BIP 174 Test Vectors # Check that unknown values are just passed through unknown_psbt = "cHNidP8BAD8CAAAAAf//////////////////////////////////////////AAAAAAD/////AQAAAAAAAAAAA2oBAAAAAAAACg8BAgMEBQYHCAkPAQIDBAUGBwgJCgsMDQ4PAAA=" unknown_out = self.nodes[0].walletprocesspsbt(unknown_psbt)['psbt'] assert_equal(unknown_psbt, unknown_out) # Open the data file with open(os.path.join(os.path.dirname(os.path.realpath(__file__)), 'data/rpc_psbt.json'), encoding='utf-8') as f: d = json.load(f) invalids = d['invalid'] valids = d['valid'] creators = d['creator'] signers = d['signer'] combiners = d['combiner'] finalizers = d['finalizer'] extractors = d['extractor'] # Invalid PSBTs for invalid in invalids: assert_raises_rpc_error(-22, "TX decode failed", self.nodes[0].decodepsbt, invalid) # Valid PSBTs for valid in valids: self.nodes[0].decodepsbt(valid) # Creator Tests for creator in creators: created_tx = self.nodes[0].createpsbt(creator['inputs'], creator['outputs']) assert_equal(created_tx, creator['result']) # Signer tests for i, signer in enumerate(signers): self.nodes[2].createwallet("wallet{}".format(i)) wrpc = self.nodes[2].get_wallet_rpc("wallet{}".format(i)) for key in signer['privkeys']: wrpc.importprivkey(key) signed_tx = wrpc.walletprocesspsbt(signer['psbt'])['psbt'] assert_equal(signed_tx, signer['result']) # Combiner test for combiner in combiners: combined = self.nodes[2].combinepsbt(combiner['combine']) assert_equal(combined, combiner['result']) # Empty combiner test assert_raises_rpc_error(-8, "Parameter 'txs' cannot be empty", self.nodes[0].combinepsbt, []) # Finalizer test for finalizer in finalizers: finalized = self.nodes[2].finalizepsbt(finalizer['finalize'], False)['psbt'] assert_equal(finalized, finalizer['result']) # Extractor test for extractor in extractors: extracted = self.nodes[2].finalizepsbt(extractor['extract'], True)['hex'] assert_equal(extracted, extractor['result']) # Unload extra wallets for i, signer in enumerate(signers): self.nodes[2].unloadwallet("wallet{}".format(i)) self.test_utxo_conversion() # Test that psbts with p2pkh outputs are created properly p2pkh = self.nodes[0].getnewaddress(address_type='legacy') psbt = self.nodes[1].walletcreatefundedpsbt([], [{p2pkh : 1}], 0, {"includeWatching" : True}, True) self.nodes[0].decodepsbt(psbt['psbt']) # Test decoding error: invalid base64 assert_raises_rpc_error(-22, "TX decode failed invalid base64", self.nodes[0].decodepsbt, ";definitely not base64;") # Send to all types of addresses addr1 = self.nodes[1].getnewaddress("", "bech32") txid1 = self.nodes[0].sendtoaddress(addr1, 11) vout1 = find_output(self.nodes[0], txid1, 11) addr2 = self.nodes[1].getnewaddress("", "legacy") txid2 = self.nodes[0].sendtoaddress(addr2, 11) vout2 = find_output(self.nodes[0], txid2, 11) addr3 = self.nodes[1].getnewaddress("", "p2sh-segwit") txid3 = self.nodes[0].sendtoaddress(addr3, 11) vout3 = find_output(self.nodes[0], txid3, 11) self.sync_all() def test_psbt_input_keys(psbt_input, keys): """Check that the psbt input has only the expected keys.""" assert_equal(set(keys), set(psbt_input.keys())) # Create a PSBT. None of the inputs are filled initially psbt = self.nodes[1].createpsbt([{"txid":txid1, "vout":vout1},{"txid":txid2, "vout":vout2},{"txid":txid3, "vout":vout3}], {self.nodes[0].getnewaddress():32.999}) decoded = self.nodes[1].decodepsbt(psbt) test_psbt_input_keys(decoded['inputs'][0], []) test_psbt_input_keys(decoded['inputs'][1], []) test_psbt_input_keys(decoded['inputs'][2], []) # Update a PSBT with UTXOs from the node # Bech32 inputs should be filled with witness UTXO. Other inputs should not be filled because they are non-witness updated = self.nodes[1].utxoupdatepsbt(psbt) decoded = self.nodes[1].decodepsbt(updated) test_psbt_input_keys(decoded['inputs'][0], ['witness_utxo']) test_psbt_input_keys(decoded['inputs'][1], []) test_psbt_input_keys(decoded['inputs'][2], []) # Try again, now while providing descriptors, making P2SH-segwit work, and causing bip32_derivs and redeem_script to be filled in descs = [self.nodes[1].getaddressinfo(addr)['desc'] for addr in [addr1,addr2,addr3]] updated = self.nodes[1].utxoupdatepsbt(psbt=psbt, descriptors=descs) decoded = self.nodes[1].decodepsbt(updated) test_psbt_input_keys(decoded['inputs'][0], ['witness_utxo', 'bip32_derivs']) test_psbt_input_keys(decoded['inputs'][1], []) test_psbt_input_keys(decoded['inputs'][2], ['witness_utxo', 'bip32_derivs', 'redeem_script']) # Two PSBTs with a common input should not be joinable psbt1 = self.nodes[1].createpsbt([{"txid":txid1, "vout":vout1}], {self.nodes[0].getnewaddress():Decimal('10.999')}) assert_raises_rpc_error(-8, "exists in multiple PSBTs", self.nodes[1].joinpsbts, [psbt1, updated]) # Join two distinct PSBTs addr4 = self.nodes[1].getnewaddress("", "p2sh-segwit") txid4 = self.nodes[0].sendtoaddress(addr4, 5) vout4 = find_output(self.nodes[0], txid4, 5) self.nodes[0].generate(6) self.sync_all() psbt2 = self.nodes[1].createpsbt([{"txid":txid4, "vout":vout4}], {self.nodes[0].getnewaddress():Decimal('4.999')}) psbt2 = self.nodes[1].walletprocesspsbt(psbt2)['psbt'] psbt2_decoded = self.nodes[0].decodepsbt(psbt2) assert "final_scriptwitness" in psbt2_decoded['inputs'][0] and "final_scriptSig" in psbt2_decoded['inputs'][0] joined = self.nodes[0].joinpsbts([psbt, psbt2]) joined_decoded = self.nodes[0].decodepsbt(joined) assert len(joined_decoded['inputs']) == 4 and len(joined_decoded['outputs']) == 2 and "final_scriptwitness" not in joined_decoded['inputs'][3] and "final_scriptSig" not in joined_decoded['inputs'][3] # Check that joining shuffles the inputs and outputs # 10 attempts should be enough to get a shuffled join shuffled = False for i in range(0, 10): shuffled_joined = self.nodes[0].joinpsbts([psbt, psbt2]) shuffled |= joined != shuffled_joined if shuffled: break assert shuffled # Newly created PSBT needs UTXOs and updating addr = self.nodes[1].getnewaddress("", "p2sh-segwit") txid = self.nodes[0].sendtoaddress(addr, 7) addrinfo = self.nodes[1].getaddressinfo(addr) blockhash = self.nodes[0].generate(6)[0] self.sync_all() vout = find_output(self.nodes[0], txid, 7, blockhash=blockhash) psbt = self.nodes[1].createpsbt([{"txid":txid, "vout":vout}], {self.nodes[0].getnewaddress("", "p2sh-segwit"):Decimal('6.999')}) analyzed = self.nodes[0].analyzepsbt(psbt) assert not analyzed['inputs'][0]['has_utxo'] and not analyzed['inputs'][0]['is_final'] and analyzed['inputs'][0]['next'] == 'updater' and analyzed['next'] == 'updater' # After update with wallet, only needs signing updated = self.nodes[1].walletprocesspsbt(psbt, False, 'ALL', True)['psbt'] analyzed = self.nodes[0].analyzepsbt(updated) assert analyzed['inputs'][0]['has_utxo'] and not analyzed['inputs'][0]['is_final'] and analyzed['inputs'][0]['next'] == 'signer' and analyzed['next'] == 'signer' and analyzed['inputs'][0]['missing']['signatures'][0] == addrinfo['embedded']['witness_program'] # Check fee and size things assert analyzed['fee'] == Decimal('0.001') and analyzed['estimated_vsize'] == 134 and analyzed['estimated_feerate'] == Decimal('0.00746268') # After signing and finalizing, needs extracting signed = self.nodes[1].walletprocesspsbt(updated)['psbt'] analyzed = self.nodes[0].analyzepsbt(signed) assert analyzed['inputs'][0]['has_utxo'] and analyzed['inputs'][0]['is_final'] and analyzed['next'] == 'extractor' self.log.info("PSBT spending unspendable outputs should have error message and Creator as next") analysis = self.nodes[0].analyzepsbt('cHNidP8BAJoCAAAAAljoeiG1ba8MI76OcHBFbDNvfLqlyHV5JPVFiHuyq911AAAAAAD/////g40EJ9DsZQpoqka7CwmK6kQiwHGyyng1Kgd5WdB86h0BAAAAAP////8CcKrwCAAAAAAWAEHYXCtx0AYLCcmIauuBXlCZHdoSTQDh9QUAAAAAFv8/wADXYP/7//////8JxOh0LR2HAI8AAAAAAAEBIADC6wsAAAAAF2oUt/X69ELjeX2nTof+fZ10l+OyAokDAQcJAwEHEAABAACAAAEBIADC6wsAAAAAF2oUt/X69ELjeX2nTof+fZ10l+OyAokDAQcJAwEHENkMak8AAAAA') assert_equal(analysis['next'], 'creator') assert_equal(analysis['error'], 'PSBT is not valid. Input 0 spends unspendable output')
def run_test(self): node = self.nodes[0] self.log.info("test CHECK_NONFATAL") assert_raises_rpc_error( -1, 'Internal bug detected: \'request.params[9].get_str() != "trigger_internal_bug"\'', lambda: node.echo(arg9='trigger_internal_bug'), ) self.log.info("test getmemoryinfo") memory = node.getmemoryinfo()['locked'] assert_greater_than(memory['used'], 0) assert_greater_than(memory['free'], 0) assert_greater_than(memory['total'], 0) # assert_greater_than_or_equal() for locked in case locking pages failed at some point assert_greater_than_or_equal(memory['locked'], 0) assert_greater_than(memory['chunks_used'], 0) assert_greater_than(memory['chunks_free'], 0) assert_equal(memory['used'] + memory['free'], memory['total']) self.log.info("test mallocinfo") try: mallocinfo = node.getmemoryinfo(mode="mallocinfo") self.log.info('getmemoryinfo(mode="mallocinfo") call succeeded') tree = ET.fromstring(mallocinfo) assert_equal(tree.tag, 'malloc') except JSONRPCException: self.log.info('getmemoryinfo(mode="mallocinfo") not available') assert_raises_rpc_error( -8, 'mallocinfo is only available when compiled with glibc 2.10+', node.getmemoryinfo, mode="mallocinfo") assert_raises_rpc_error(-8, "unknown mode foobar", node.getmemoryinfo, mode="foobar") self.log.info("test logging") assert_equal(node.logging()['qt'], True) node.logging(exclude=['qt']) assert_equal(node.logging()['qt'], False) node.logging(include=['qt']) assert_equal(node.logging()['qt'], True) self.log.info("test getindexinfo") # Without any indices running the RPC returns an empty object assert_equal(node.getindexinfo(), {}) # Restart the node with indices and wait for them to sync self.restart_node(0, ["-txindex", "-blockfilterindex"]) self.wait_until( lambda: all(i["synced"] for i in node.getindexinfo().values())) # Returns a list of all running indices by default assert_equal( node.getindexinfo(), { "txindex": { "synced": True, "best_block_height": 200 }, "basic block filter index": { "synced": True, "best_block_height": 200 } }) # Specifying an index by name returns only the status of that index assert_equal(node.getindexinfo("txindex"), { "txindex": { "synced": True, "best_block_height": 200 }, }) # Specifying an unknown index name returns an empty result assert_equal(node.getindexinfo("foo"), {})
def run_test(self): # z_sendmany is expected to fail if tx size breaks limit myzaddr = self.nodes[0].z_getnewaddress() recipients = [] num_t_recipients = 1000 num_z_recipients = 2100 amount_per_recipient = Decimal('0.00000001') errorString = '' for i in range(0, num_t_recipients): newtaddr = self.nodes[2].getnewaddress() recipients.append({ "address": newtaddr, "amount": amount_per_recipient }) for i in range(0, num_z_recipients): newzaddr = self.nodes[2].z_getnewaddress() recipients.append({ "address": newzaddr, "amount": amount_per_recipient }) # Issue #2759 Workaround START # HTTP connection to node 0 may fall into a state, during the few minutes it takes to process # loop above to create new addresses, that when z_sendmany is called with a large amount of # rpc data in recipients, the connection fails with a 'broken pipe' error. Making a RPC call # to node 0 before calling z_sendmany appears to fix this issue, perhaps putting the HTTP # connection into a good state to handle a large amount of data in recipients. self.nodes[0].getinfo() # Issue #2759 Workaround END try: self.nodes[0].z_sendmany(myzaddr, recipients) except JSONRPCException as e: errorString = e.error['message'] assert ("size of raw transaction would be larger than limit" in errorString) # add zaddr to node 2 myzaddr = self.nodes[2].z_getnewaddress() # add taddr to node 2 mytaddr = self.nodes[2].getnewaddress() # send from node 0 to node 2 taddr mytxid = self.nodes[0].sendtoaddress(mytaddr, 10.0) self.sync_all() self.nodes[0].generate(1) self.sync_all() # send node 2 taddr to zaddr recipients = [] recipients.append({"address": myzaddr, "amount": 7}) mytxid = wait_and_assert_operationid_status( self.nodes[2], self.nodes[2].z_sendmany(mytaddr, recipients)) self.sync_all() # check balances zsendmanynotevalue = Decimal('7.0') zsendmanyfee = DEFAULT_FEE node2utxobalance = Decimal( '2435.00000000') - zsendmanynotevalue - zsendmanyfee # check shielded balance status with getwalletinfo wallet_info = self.nodes[2].getwalletinfo() assert_equal(Decimal(wallet_info["shielded_unconfirmed_balance"]), zsendmanynotevalue) assert_equal(Decimal(wallet_info["shielded_balance"]), Decimal('0.0')) self.nodes[2].generate(1) self.sync_all() assert_equal(self.nodes[2].getbalance(), node2utxobalance) assert_equal(self.nodes[2].getbalance("*"), node2utxobalance) # check zaddr balance with z_getbalance assert_equal(self.nodes[2].z_getbalance(myzaddr), zsendmanynotevalue) # check via z_gettotalbalance resp = self.nodes[2].z_gettotalbalance() assert_equal(Decimal(resp["transparent"]), node2utxobalance) assert_equal(Decimal(resp["private"]), zsendmanynotevalue) assert_equal(Decimal(resp["total"]), node2utxobalance + zsendmanynotevalue) # check confirmed shielded balance with getwalletinfo wallet_info = self.nodes[2].getwalletinfo() assert_equal(Decimal(wallet_info["shielded_unconfirmed_balance"]), Decimal('0.0')) assert_equal(Decimal(wallet_info["shielded_balance"]), zsendmanynotevalue) # there should be at least one Sapling output mytxdetails = self.nodes[2].getrawtransaction(mytxid, 1) assert_greater_than(len(mytxdetails["vShieldedOutput"]), 0) # the Sapling output should take in all the public value assert_equal(mytxdetails["valueBalance"], -zsendmanynotevalue) # send from private note to node 0 and node 2 node0balance = self.nodes[0].getbalance() # The following assertion fails nondeterministically # assert_equal(node0balance, Decimal('25.99798873')) node2balance = self.nodes[2].getbalance() # The following assertion might fail nondeterministically # assert_equal(node2balance, Decimal('16.99799000')) recipients = [] recipients.append({ "address": self.nodes[0].getnewaddress(), "amount": 1 }) recipients.append({ "address": self.nodes[2].getnewaddress(), "amount": 1.0 }) wait_and_assert_operationid_status( self.nodes[2], self.nodes[2].z_sendmany(myzaddr, recipients)) self.sync_all() self.nodes[2].generate(1) self.sync_all() node0balance += Decimal('98.0') node2balance += Decimal('1.0') assert_equal(Decimal(self.nodes[0].getbalance()), node0balance) assert_equal(Decimal(self.nodes[0].getbalance("*")), node0balance) assert_equal(Decimal(self.nodes[2].getbalance()), node2balance) assert_equal(Decimal(self.nodes[2].getbalance("*")), node2balance)
def run_test(self): node = self.nodes[0] self.log.info("test CHECK_NONFATAL") assert_raises_rpc_error( -1, 'Internal bug detected: "request.params[9].get_str() != "trigger_internal_bug""', lambda: node.echo(arg9='trigger_internal_bug'), ) self.log.info("test getmemoryinfo") memory = node.getmemoryinfo()['locked'] assert_greater_than(memory['used'], 0) assert_greater_than(memory['free'], 0) assert_greater_than(memory['total'], 0) # assert_greater_than_or_equal() for locked in case locking pages failed at some point assert_greater_than_or_equal(memory['locked'], 0) assert_greater_than(memory['chunks_used'], 0) assert_greater_than(memory['chunks_free'], 0) assert_equal(memory['used'] + memory['free'], memory['total']) self.log.info("test mallocinfo") try: mallocinfo = node.getmemoryinfo(mode="mallocinfo") self.log.info('getmemoryinfo(mode="mallocinfo") call succeeded') tree = ET.fromstring(mallocinfo) assert_equal(tree.tag, 'malloc') except JSONRPCException: self.log.info('getmemoryinfo(mode="mallocinfo") not available') assert_raises_rpc_error(-8, 'mallocinfo mode not available', node.getmemoryinfo, mode="mallocinfo") assert_raises_rpc_error(-8, "unknown mode foobar", node.getmemoryinfo, mode="foobar") self.log.info("test logging rpc and help") # Test toggling a logging category on/off/on with the logging RPC. assert_equal(node.logging()['qt'], True) node.logging(exclude=['qt']) assert_equal(node.logging()['qt'], False) node.logging(include=['qt']) assert_equal(node.logging()['qt'], True) # Test logging RPC returns the logging categories in alphabetical order. sorted_logging_categories = sorted(node.logging()) assert_equal(list(node.logging()), sorted_logging_categories) # Test logging help returns the logging categories string in alphabetical order. categories = ', '.join(sorted_logging_categories) logging_help = self.nodes[0].help('logging') assert f"valid logging categories are: {categories}" in logging_help self.log.info("test echoipc (testing spawned process in multiprocess build)") assert_equal(node.echoipc("hello"), "hello") self.log.info("test getindexinfo") # Without any indices running the RPC returns an empty object assert_equal(node.getindexinfo(), {}) # Restart the node with indices and wait for them to sync self.restart_node(0, ["-txindex", "-blockfilterindex", "-coinstatsindex"]) self.wait_until(lambda: all(i["synced"] for i in node.getindexinfo().values())) # Returns a list of all running indices by default values = {"synced": True, "best_block_height": 200} assert_equal( node.getindexinfo(), { "txindex": values, "basic block filter index": values, "coinstatsindex": values, } ) # Specifying an index by name returns only the status of that index for i in {"txindex", "basic block filter index", "coinstatsindex"}: assert_equal(node.getindexinfo(i), {i: values}) # Specifying an unknown index name returns an empty result assert_equal(node.getindexinfo("foo"), {})
def _test_getblockchaininfo(self): self.log.info("Test getblockchaininfo") keys = [ 'bestblockhash', 'blocks', 'chain', 'chainwork', 'difficulty', 'headers', 'initialblockdownload', 'mediantime', 'pruned', 'size_on_disk', 'softforks', 'verificationprogress', 'warnings', ] res = self.nodes[0].getblockchaininfo() # result should have these additional pruning keys if manual pruning is enabled assert_equal(sorted(res.keys()), sorted(['pruneheight', 'automatic_pruning'] + keys)) # size_on_disk should be > 0 assert_greater_than(res['size_on_disk'], 0) # pruneheight should be greater or equal to 0 assert_greater_than_or_equal(res['pruneheight'], 0) # check other pruning fields given that prune=1 assert res['pruned'] assert not res['automatic_pruning'] self.restart_node(0, ['-stopatheight=207']) res = self.nodes[0].getblockchaininfo() # should have exact keys assert_equal(sorted(res.keys()), keys) self.restart_node(0, ['-stopatheight=207', '-prune=550']) res = self.nodes[0].getblockchaininfo() # result should have these additional pruning keys if prune=550 assert_equal( sorted(res.keys()), sorted(['pruneheight', 'automatic_pruning', 'prune_target_size'] + keys)) # check related fields assert res['pruned'] assert_equal(res['pruneheight'], 0) assert res['automatic_pruning'] assert_equal(res['prune_target_size'], 576716800) assert_greater_than(res['size_on_disk'], 0) assert_equal( res['softforks'], { 'bip34': { 'type': 'buried', 'active': False, 'height': 500 }, 'bip66': { 'type': 'buried', 'active': False, 'height': 1251 }, 'bip65': { 'type': 'buried', 'active': False, 'height': 1351 }, 'csv': { 'type': 'buried', 'active': False, 'height': 432 }, 'segwit': { 'type': 'buried', 'active': True, 'height': 0 }, 'testdummy': { 'type': 'bip9', 'bip9': { 'status': 'started', 'bit': 28, 'start_time': 0, 'timeout': 0x7fffffffffffffff, # testdummy does not have a timeout so is set to the max int64 value 'since': 144, 'statistics': { 'period': 144, 'threshold': 108, 'elapsed': 57, 'count': 57, 'possible': True, }, }, 'active': False } })
def run_test(self): url = urlparse.urlparse(self.nodes[0].url) print "Mining blocks..." self.nodes[0].generate(1) self.sync_all() self.nodes[2].generate(100) self.sync_all() assert_equal(self.nodes[0].getbalance(), 10) txid = self.nodes[0].sendtoaddress(self.nodes[1].getnewaddress(), 0.1) self.sync_all() self.nodes[2].generate(1) self.sync_all() bb_hash = self.nodes[0].getbestblockhash() assert_equal(self.nodes[1].getbalance(), Decimal("0.1")) # balance now should be 0.1 on node 1 # load the latest 0.1 tx over the REST API json_string = http_get_call( url.hostname, url.port, '/rest/tx/' + txid + self.FORMAT_SEPARATOR + "json") json_obj = json.loads(json_string) vintx = json_obj['vin'][0][ 'txid'] # get the vin to later check for utxo (should be spent by then) # get n of 0.1 outpoint n = 0 for vout in json_obj['vout']: if vout['value'] == 0.1: n = vout['n'] ###################################### # GETUTXOS: query a unspent outpoint # ###################################### json_request = '/checkmempool/' + txid + '-' + str(n) json_string = http_get_call( url.hostname, url.port, '/rest/getutxos' + json_request + self.FORMAT_SEPARATOR + 'json') json_obj = json.loads(json_string) #check chainTip response assert_equal(json_obj['chaintipHash'], bb_hash) #make sure there is one utxo assert_equal(len(json_obj['utxos']), 1) assert_equal(json_obj['utxos'][0]['value'], 0.1) ################################################ # GETUTXOS: now query a already spent outpoint # ################################################ json_request = '/checkmempool/' + vintx + '-0' json_string = http_get_call( url.hostname, url.port, '/rest/getutxos' + json_request + self.FORMAT_SEPARATOR + 'json') json_obj = json.loads(json_string) # check chainTip response assert_equal(json_obj['chaintipHash'], bb_hash) # make sure there is no utox in the response because this oupoint has been spent assert_equal(len(json_obj['utxos']), 0) # check bitmap assert_equal(json_obj['bitmap'], "0") ################################################## # GETUTXOS: now check both with the same request # ################################################## json_request = '/checkmempool/' + txid + '-' + str( n) + '/' + vintx + '-0' json_string = http_get_call( url.hostname, url.port, '/rest/getutxos' + json_request + self.FORMAT_SEPARATOR + 'json') json_obj = json.loads(json_string) assert_equal(len(json_obj['utxos']), 1) assert_equal(json_obj['bitmap'], "10") # test binary response bb_hash = self.nodes[0].getbestblockhash() binaryRequest = b'\x01\x02' binaryRequest += binascii.unhexlify(txid) binaryRequest += struct.pack("i", n) binaryRequest += binascii.unhexlify(vintx) binaryRequest += struct.pack("i", 0) bin_response = http_post_call( url.hostname, url.port, '/rest/getutxos' + self.FORMAT_SEPARATOR + 'bin', binaryRequest) output = StringIO.StringIO() output.write(bin_response) output.seek(0) chainHeight = struct.unpack("i", output.read(4))[0] hashFromBinResponse = hex( deser_uint256(output))[2:].zfill(65).rstrip("L") assert_equal( bb_hash, hashFromBinResponse ) # check if getutxo's chaintip during calculation was fine assert_equal(chainHeight, 102) # chain height must be 102 ############################ # GETUTXOS: mempool checks # ############################ # do a tx and don't sync txid = self.nodes[0].sendtoaddress(self.nodes[1].getnewaddress(), 0.1) json_string = http_get_call( url.hostname, url.port, '/rest/tx/' + txid + self.FORMAT_SEPARATOR + "json") json_obj = json.loads(json_string) vintx = json_obj['vin'][0][ 'txid'] # get the vin to later check for utxo (should be spent by then) # get n of 0.1 outpoint n = 0 for vout in json_obj['vout']: if vout['value'] == 0.1: n = vout['n'] json_request = '/' + txid + '-' + str(n) json_string = http_get_call( url.hostname, url.port, '/rest/getutxos' + json_request + self.FORMAT_SEPARATOR + 'json') json_obj = json.loads(json_string) assert_equal( len(json_obj['utxos']), 0 ) # there should be a outpoint because it has just added to the mempool json_request = '/checkmempool/' + txid + '-' + str(n) json_string = http_get_call( url.hostname, url.port, '/rest/getutxos' + json_request + self.FORMAT_SEPARATOR + 'json') json_obj = json.loads(json_string) assert_equal( len(json_obj['utxos']), 1 ) # there should be a outpoint because it has just added to the mempool # do some invalid requests json_request = '{"checkmempool' response = http_post_call( url.hostname, url.port, '/rest/getutxos' + self.FORMAT_SEPARATOR + 'json', json_request, True) assert_equal( response.status, 500) # must be a 500 because we send a invalid json request json_request = '{"checkmempool' response = http_post_call( url.hostname, url.port, '/rest/getutxos' + self.FORMAT_SEPARATOR + 'bin', json_request, True) assert_equal( response.status, 500) # must be a 500 because we send a invalid bin request response = http_post_call( url.hostname, url.port, '/rest/getutxos/checkmempool' + self.FORMAT_SEPARATOR + 'bin', '', True) assert_equal( response.status, 500) # must be a 500 because we send a invalid bin request # test limits json_request = '/checkmempool/' for x in range(0, 20): json_request += txid + '-' + str(n) + '/' json_request = json_request.rstrip("/") response = http_post_call( url.hostname, url.port, '/rest/getutxos' + json_request + self.FORMAT_SEPARATOR + 'json', '', True) assert_equal(response.status, 500) # must be a 500 because we exceeding the limits json_request = '/checkmempool/' for x in range(0, 15): json_request += txid + '-' + str(n) + '/' json_request = json_request.rstrip("/") response = http_post_call( url.hostname, url.port, '/rest/getutxos' + json_request + self.FORMAT_SEPARATOR + 'json', '', True) assert_equal(response.status, 200) # must be a 500 because we exceeding the limits self.nodes[0].generate( 1) # generate block to not affect upcoming tests self.sync_all() ################ # /rest/block/ # ################ # Block header length of 177 is: # - 108 bytes: regular fields # - 32 bytes: nonce # - 37 bytes: Equihash solution: # - 1 byte length # - 2^k ((n/(k+1))+1)-bit indices. # For regtest parameters (n = 48, k = 5), # this is 32 9-bit indices # check binary format response = http_get_call( url.hostname, url.port, '/rest/block/' + bb_hash + self.FORMAT_SEPARATOR + "bin", True) assert_equal(response.status, 200) assert_greater_than(int(response.getheader('content-length')), 177) response_str = response.read() # compare with block header response_header = http_get_call( url.hostname, url.port, '/rest/headers/1/' + bb_hash + self.FORMAT_SEPARATOR + "bin", True) assert_equal(response_header.status, 200) assert_equal(int(response_header.getheader('content-length')), 177) response_header_str = response_header.read() assert_equal(response_str[0:177], response_header_str) # check block hex format response_hex = http_get_call( url.hostname, url.port, '/rest/block/' + bb_hash + self.FORMAT_SEPARATOR + "hex", True) assert_equal(response_hex.status, 200) assert_greater_than(int(response_hex.getheader('content-length')), 354) response_hex_str = response_hex.read() assert_equal( response_str.encode("hex")[0:354], response_hex_str[0:354]) # compare with hex block header response_header_hex = http_get_call( url.hostname, url.port, '/rest/headers/1/' + bb_hash + self.FORMAT_SEPARATOR + "hex", True) assert_equal(response_header_hex.status, 200) assert_greater_than( int(response_header_hex.getheader('content-length')), 354) response_header_hex_str = response_header_hex.read() assert_equal(response_hex_str[0:354], response_header_hex_str[0:354]) assert_equal( response_header_str.encode("hex")[0:354], response_header_hex_str[0:354]) # check json format block_json_string = http_get_call( url.hostname, url.port, '/rest/block/' + bb_hash + self.FORMAT_SEPARATOR + 'json') block_json_obj = json.loads(block_json_string) assert_equal(block_json_obj['hash'], bb_hash) # compare with json block header response_header_json = http_get_call( url.hostname, url.port, '/rest/headers/1/' + bb_hash + self.FORMAT_SEPARATOR + "json", True) assert_equal(response_header_json.status, 200) response_header_json_str = response_header_json.read() json_obj = json.loads(response_header_json_str, parse_float=Decimal) assert_equal(len(json_obj), 1) # ensure that there is one header in the json response assert_equal(json_obj[0]['hash'], bb_hash) # request/response hash should be the same # compare with normal RPC block response rpc_block_json = self.nodes[0].getblock(bb_hash) assert_equal(json_obj[0]['hash'], rpc_block_json['hash']) assert_equal(json_obj[0]['confirmations'], rpc_block_json['confirmations']) assert_equal(json_obj[0]['height'], rpc_block_json['height']) assert_equal(json_obj[0]['version'], rpc_block_json['version']) assert_equal(json_obj[0]['merkleroot'], rpc_block_json['merkleroot']) assert_equal(json_obj[0]['time'], rpc_block_json['time']) assert_equal(json_obj[0]['nonce'], rpc_block_json['nonce']) assert_equal(json_obj[0]['bits'], rpc_block_json['bits']) assert_equal(json_obj[0]['difficulty'], rpc_block_json['difficulty']) assert_equal(json_obj[0]['chainwork'], rpc_block_json['chainwork']) assert_equal(json_obj[0]['previousblockhash'], rpc_block_json['previousblockhash']) # see if we can get 5 headers in one response self.nodes[1].generate(5) self.sync_all() response_header_json = http_get_call( url.hostname, url.port, '/rest/headers/5/' + bb_hash + self.FORMAT_SEPARATOR + "json", True) assert_equal(response_header_json.status, 200) response_header_json_str = response_header_json.read() json_obj = json.loads(response_header_json_str) assert_equal(len(json_obj), 5) # now we should have 5 header objects # do tx test tx_hash = block_json_obj['tx'][0]['txid'] json_string = http_get_call( url.hostname, url.port, '/rest/tx/' + tx_hash + self.FORMAT_SEPARATOR + "json") json_obj = json.loads(json_string) assert_equal(json_obj['txid'], tx_hash) # check hex format response hex_string = http_get_call( url.hostname, url.port, '/rest/tx/' + tx_hash + self.FORMAT_SEPARATOR + "hex", True) assert_equal(hex_string.status, 200) assert_greater_than(int(response.getheader('content-length')), 10) # check block tx details # let's make 3 tx and mine them on node 1 txs = [] txs.append(self.nodes[0].sendtoaddress(self.nodes[2].getnewaddress(), 1)) txs.append(self.nodes[0].sendtoaddress(self.nodes[2].getnewaddress(), 1)) txs.append(self.nodes[0].sendtoaddress(self.nodes[2].getnewaddress(), 1)) self.sync_all() # check that there are exactly 3 transactions in the TX memory pool before generating the block json_string = http_get_call( url.hostname, url.port, '/rest/mempool/info' + self.FORMAT_SEPARATOR + 'json') json_obj = json.loads(json_string) assert_equal(json_obj['size'], 3) # the size of the memory pool should be greater than 3x ~100 bytes assert_greater_than(json_obj['bytes'], 300) # check that there are our submitted transactions in the TX memory pool json_string = http_get_call( url.hostname, url.port, '/rest/mempool/contents' + self.FORMAT_SEPARATOR + 'json') json_obj = json.loads(json_string) for tx in txs: assert_equal(tx in json_obj, True) # now mine the transactions newblockhash = self.nodes[1].generate(1) self.sync_all() # check if the 3 tx show up in the new block json_string = http_get_call( url.hostname, url.port, '/rest/block/' + newblockhash[0] + self.FORMAT_SEPARATOR + 'json') json_obj = json.loads(json_string) for tx in json_obj['tx']: if not 'coinbase' in tx['vin'][0]: # exclude coinbase assert_equal(tx['txid'] in txs, True) # check the same but without tx details json_string = http_get_call( url.hostname, url.port, '/rest/block/notxdetails/' + newblockhash[0] + self.FORMAT_SEPARATOR + 'json') json_obj = json.loads(json_string) for tx in txs: assert_equal(tx in json_obj['tx'], True) # test rest bestblock bb_hash = self.nodes[0].getbestblockhash() json_string = http_get_call(url.hostname, url.port, '/rest/chaininfo.json') json_obj = json.loads(json_string) assert_equal(json_obj['bestblockhash'], bb_hash)
def run_test (self): self.log.info("Mining blocks...") self.nodes[0].generate(1) self.nodes[1].generate(1) timestamp = self.nodes[1].getblock(self.nodes[1].getbestblockhash())['mediantime'] node0_address1 = self.nodes[0].getaddressinfo(self.nodes[0].getnewaddress()) #Check only one address assert_equal(node0_address1['ismine'], True) #Node 1 sync test assert_equal(self.nodes[1].getblockcount(),1) #Address Test - before import address_info = self.nodes[1].getaddressinfo(node0_address1['address']) assert_equal(address_info['iswatchonly'], False) assert_equal(address_info['ismine'], False) # RPC importmulti ----------------------------------------------- # Nestcoin Address self.log.info("Should import an address") address = self.nodes[0].getaddressinfo(self.nodes[0].getnewaddress()) result = self.nodes[1].importmulti([{ "scriptPubKey": { "address": address['address'] }, "timestamp": "now", }]) assert_equal(result[0]['success'], True) address_assert = self.nodes[1].getaddressinfo(address['address']) assert_equal(address_assert['iswatchonly'], True) assert_equal(address_assert['ismine'], False) assert_equal(address_assert['timestamp'], timestamp) watchonly_address = address['address'] watchonly_timestamp = timestamp self.log.info("Should not import an invalid address") result = self.nodes[1].importmulti([{ "scriptPubKey": { "address": "not valid address", }, "timestamp": "now", }]) assert_equal(result[0]['success'], False) assert_equal(result[0]['error']['code'], -5) assert_equal(result[0]['error']['message'], 'Invalid address') # ScriptPubKey + internal self.log.info("Should import a scriptPubKey with internal flag") address = self.nodes[0].getaddressinfo(self.nodes[0].getnewaddress()) result = self.nodes[1].importmulti([{ "scriptPubKey": address['scriptPubKey'], "timestamp": "now", "internal": True }]) assert_equal(result[0]['success'], True) address_assert = self.nodes[1].getaddressinfo(address['address']) assert_equal(address_assert['iswatchonly'], True) assert_equal(address_assert['ismine'], False) assert_equal(address_assert['timestamp'], timestamp) # ScriptPubKey + !internal self.log.info("Should not import a scriptPubKey without internal flag") address = self.nodes[0].getaddressinfo(self.nodes[0].getnewaddress()) result = self.nodes[1].importmulti([{ "scriptPubKey": address['scriptPubKey'], "timestamp": "now", }]) assert_equal(result[0]['success'], False) assert_equal(result[0]['error']['code'], -8) assert_equal(result[0]['error']['message'], 'Internal must be set for hex scriptPubKey') address_assert = self.nodes[1].getaddressinfo(address['address']) assert_equal(address_assert['iswatchonly'], False) assert_equal(address_assert['ismine'], False) assert_equal('timestamp' in address_assert, False) # Address + Public key + !Internal self.log.info("Should import an address with public key") address = self.nodes[0].getaddressinfo(self.nodes[0].getnewaddress()) result = self.nodes[1].importmulti([{ "scriptPubKey": { "address": address['address'] }, "timestamp": "now", "pubkeys": [ address['pubkey'] ] }]) assert_equal(result[0]['success'], True) address_assert = self.nodes[1].getaddressinfo(address['address']) assert_equal(address_assert['iswatchonly'], True) assert_equal(address_assert['ismine'], False) assert_equal(address_assert['timestamp'], timestamp) # ScriptPubKey + Public key + internal self.log.info("Should import a scriptPubKey with internal and with public key") address = self.nodes[0].getaddressinfo(self.nodes[0].getnewaddress()) request = [{ "scriptPubKey": address['scriptPubKey'], "timestamp": "now", "pubkeys": [ address['pubkey'] ], "internal": True }] result = self.nodes[1].importmulti(request) assert_equal(result[0]['success'], True) address_assert = self.nodes[1].getaddressinfo(address['address']) assert_equal(address_assert['iswatchonly'], True) assert_equal(address_assert['ismine'], False) assert_equal(address_assert['timestamp'], timestamp) # ScriptPubKey + Public key + !internal self.log.info("Should not import a scriptPubKey without internal and with public key") address = self.nodes[0].getaddressinfo(self.nodes[0].getnewaddress()) request = [{ "scriptPubKey": address['scriptPubKey'], "timestamp": "now", "pubkeys": [ address['pubkey'] ] }] result = self.nodes[1].importmulti(request) assert_equal(result[0]['success'], False) assert_equal(result[0]['error']['code'], -8) assert_equal(result[0]['error']['message'], 'Internal must be set for hex scriptPubKey') address_assert = self.nodes[1].getaddressinfo(address['address']) assert_equal(address_assert['iswatchonly'], False) assert_equal(address_assert['ismine'], False) assert_equal('timestamp' in address_assert, False) # Address + Private key + !watchonly self.log.info("Should import an address with private key") address = self.nodes[0].getaddressinfo(self.nodes[0].getnewaddress()) result = self.nodes[1].importmulti([{ "scriptPubKey": { "address": address['address'] }, "timestamp": "now", "keys": [ self.nodes[0].dumpprivkey(address['address']) ] }]) assert_equal(result[0]['success'], True) address_assert = self.nodes[1].getaddressinfo(address['address']) assert_equal(address_assert['iswatchonly'], False) assert_equal(address_assert['ismine'], True) assert_equal(address_assert['timestamp'], timestamp) self.log.info("Should not import an address with private key if is already imported") result = self.nodes[1].importmulti([{ "scriptPubKey": { "address": address['address'] }, "timestamp": "now", "keys": [ self.nodes[0].dumpprivkey(address['address']) ] }]) assert_equal(result[0]['success'], False) assert_equal(result[0]['error']['code'], -4) assert_equal(result[0]['error']['message'], 'The wallet already contains the private key for this address or script') # Address + Private key + watchonly self.log.info("Should not import an address with private key and with watchonly") address = self.nodes[0].getaddressinfo(self.nodes[0].getnewaddress()) result = self.nodes[1].importmulti([{ "scriptPubKey": { "address": address['address'] }, "timestamp": "now", "keys": [ self.nodes[0].dumpprivkey(address['address']) ], "watchonly": True }]) assert_equal(result[0]['success'], False) assert_equal(result[0]['error']['code'], -8) assert_equal(result[0]['error']['message'], 'Incompatibility found between watchonly and keys') address_assert = self.nodes[1].getaddressinfo(address['address']) assert_equal(address_assert['iswatchonly'], False) assert_equal(address_assert['ismine'], False) assert_equal('timestamp' in address_assert, False) # ScriptPubKey + Private key + internal self.log.info("Should import a scriptPubKey with internal and with private key") address = self.nodes[0].getaddressinfo(self.nodes[0].getnewaddress()) result = self.nodes[1].importmulti([{ "scriptPubKey": address['scriptPubKey'], "timestamp": "now", "keys": [ self.nodes[0].dumpprivkey(address['address']) ], "internal": True }]) assert_equal(result[0]['success'], True) address_assert = self.nodes[1].getaddressinfo(address['address']) assert_equal(address_assert['iswatchonly'], False) assert_equal(address_assert['ismine'], True) assert_equal(address_assert['timestamp'], timestamp) # ScriptPubKey + Private key + !internal self.log.info("Should not import a scriptPubKey without internal and with private key") address = self.nodes[0].getaddressinfo(self.nodes[0].getnewaddress()) result = self.nodes[1].importmulti([{ "scriptPubKey": address['scriptPubKey'], "timestamp": "now", "keys": [ self.nodes[0].dumpprivkey(address['address']) ] }]) assert_equal(result[0]['success'], False) assert_equal(result[0]['error']['code'], -8) assert_equal(result[0]['error']['message'], 'Internal must be set for hex scriptPubKey') address_assert = self.nodes[1].getaddressinfo(address['address']) assert_equal(address_assert['iswatchonly'], False) assert_equal(address_assert['ismine'], False) assert_equal('timestamp' in address_assert, False) # P2SH address sig_address_1 = self.nodes[0].getaddressinfo(self.nodes[0].getnewaddress()) sig_address_2 = self.nodes[0].getaddressinfo(self.nodes[0].getnewaddress()) sig_address_3 = self.nodes[0].getaddressinfo(self.nodes[0].getnewaddress()) multi_sig_script = self.nodes[0].createmultisig(2, [sig_address_1['pubkey'], sig_address_2['pubkey'], sig_address_3['pubkey']]) self.nodes[1].generate(100) self.nodes[1].sendtoaddress(multi_sig_script['address'], 10.00) self.nodes[1].generate(1) timestamp = self.nodes[1].getblock(self.nodes[1].getbestblockhash())['mediantime'] self.log.info("Should import a p2sh") result = self.nodes[1].importmulti([{ "scriptPubKey": { "address": multi_sig_script['address'] }, "timestamp": "now", }]) assert_equal(result[0]['success'], True) address_assert = self.nodes[1].getaddressinfo(multi_sig_script['address']) assert_equal(address_assert['isscript'], True) assert_equal(address_assert['iswatchonly'], True) assert_equal(address_assert['timestamp'], timestamp) p2shunspent = self.nodes[1].listunspent(0,999999, [multi_sig_script['address']])[0] assert_equal(p2shunspent['spendable'], False) assert_equal(p2shunspent['solvable'], False) # P2SH + Redeem script sig_address_1 = self.nodes[0].getaddressinfo(self.nodes[0].getnewaddress()) sig_address_2 = self.nodes[0].getaddressinfo(self.nodes[0].getnewaddress()) sig_address_3 = self.nodes[0].getaddressinfo(self.nodes[0].getnewaddress()) multi_sig_script = self.nodes[0].createmultisig(2, [sig_address_1['pubkey'], sig_address_2['pubkey'], sig_address_3['pubkey']]) self.nodes[1].generate(100) self.nodes[1].sendtoaddress(multi_sig_script['address'], 10.00) self.nodes[1].generate(1) timestamp = self.nodes[1].getblock(self.nodes[1].getbestblockhash())['mediantime'] self.log.info("Should import a p2sh with respective redeem script") result = self.nodes[1].importmulti([{ "scriptPubKey": { "address": multi_sig_script['address'] }, "timestamp": "now", "redeemscript": multi_sig_script['redeemScript'] }]) assert_equal(result[0]['success'], True) address_assert = self.nodes[1].getaddressinfo(multi_sig_script['address']) assert_equal(address_assert['timestamp'], timestamp) p2shunspent = self.nodes[1].listunspent(0,999999, [multi_sig_script['address']])[0] assert_equal(p2shunspent['spendable'], False) assert_equal(p2shunspent['solvable'], True) # P2SH + Redeem script + Private Keys + !Watchonly sig_address_1 = self.nodes[0].getaddressinfo(self.nodes[0].getnewaddress()) sig_address_2 = self.nodes[0].getaddressinfo(self.nodes[0].getnewaddress()) sig_address_3 = self.nodes[0].getaddressinfo(self.nodes[0].getnewaddress()) multi_sig_script = self.nodes[0].createmultisig(2, [sig_address_1['pubkey'], sig_address_2['pubkey'], sig_address_3['pubkey']]) self.nodes[1].generate(100) self.nodes[1].sendtoaddress(multi_sig_script['address'], 10.00) self.nodes[1].generate(1) timestamp = self.nodes[1].getblock(self.nodes[1].getbestblockhash())['mediantime'] self.log.info("Should import a p2sh with respective redeem script and private keys") result = self.nodes[1].importmulti([{ "scriptPubKey": { "address": multi_sig_script['address'] }, "timestamp": "now", "redeemscript": multi_sig_script['redeemScript'], "keys": [ self.nodes[0].dumpprivkey(sig_address_1['address']), self.nodes[0].dumpprivkey(sig_address_2['address'])] }]) assert_equal(result[0]['success'], True) address_assert = self.nodes[1].getaddressinfo(multi_sig_script['address']) assert_equal(address_assert['timestamp'], timestamp) p2shunspent = self.nodes[1].listunspent(0,999999, [multi_sig_script['address']])[0] assert_equal(p2shunspent['spendable'], False) assert_equal(p2shunspent['solvable'], True) # P2SH + Redeem script + Private Keys + Watchonly sig_address_1 = self.nodes[0].getaddressinfo(self.nodes[0].getnewaddress()) sig_address_2 = self.nodes[0].getaddressinfo(self.nodes[0].getnewaddress()) sig_address_3 = self.nodes[0].getaddressinfo(self.nodes[0].getnewaddress()) multi_sig_script = self.nodes[0].createmultisig(2, [sig_address_1['pubkey'], sig_address_2['pubkey'], sig_address_3['pubkey']]) self.nodes[1].generate(100) self.nodes[1].sendtoaddress(multi_sig_script['address'], 10.00) self.nodes[1].generate(1) timestamp = self.nodes[1].getblock(self.nodes[1].getbestblockhash())['mediantime'] self.log.info("Should import a p2sh with respective redeem script and private keys") result = self.nodes[1].importmulti([{ "scriptPubKey": { "address": multi_sig_script['address'] }, "timestamp": "now", "redeemscript": multi_sig_script['redeemScript'], "keys": [ self.nodes[0].dumpprivkey(sig_address_1['address']), self.nodes[0].dumpprivkey(sig_address_2['address'])], "watchonly": True }]) assert_equal(result[0]['success'], False) assert_equal(result[0]['error']['code'], -8) assert_equal(result[0]['error']['message'], 'Incompatibility found between watchonly and keys') # Address + Public key + !Internal + Wrong pubkey self.log.info("Should not import an address with a wrong public key") address = self.nodes[0].getaddressinfo(self.nodes[0].getnewaddress()) address2 = self.nodes[0].getaddressinfo(self.nodes[0].getnewaddress()) result = self.nodes[1].importmulti([{ "scriptPubKey": { "address": address['address'] }, "timestamp": "now", "pubkeys": [ address2['pubkey'] ] }]) assert_equal(result[0]['success'], False) assert_equal(result[0]['error']['code'], -5) assert_equal(result[0]['error']['message'], 'Consistency check failed') address_assert = self.nodes[1].getaddressinfo(address['address']) assert_equal(address_assert['iswatchonly'], False) assert_equal(address_assert['ismine'], False) assert_equal('timestamp' in address_assert, False) # ScriptPubKey + Public key + internal + Wrong pubkey self.log.info("Should not import a scriptPubKey with internal and with a wrong public key") address = self.nodes[0].getaddressinfo(self.nodes[0].getnewaddress()) address2 = self.nodes[0].getaddressinfo(self.nodes[0].getnewaddress()) request = [{ "scriptPubKey": address['scriptPubKey'], "timestamp": "now", "pubkeys": [ address2['pubkey'] ], "internal": True }] result = self.nodes[1].importmulti(request) assert_equal(result[0]['success'], False) assert_equal(result[0]['error']['code'], -5) assert_equal(result[0]['error']['message'], 'Consistency check failed') address_assert = self.nodes[1].getaddressinfo(address['address']) assert_equal(address_assert['iswatchonly'], False) assert_equal(address_assert['ismine'], False) assert_equal('timestamp' in address_assert, False) # Address + Private key + !watchonly + Wrong private key self.log.info("Should not import an address with a wrong private key") address = self.nodes[0].getaddressinfo(self.nodes[0].getnewaddress()) address2 = self.nodes[0].getaddressinfo(self.nodes[0].getnewaddress()) result = self.nodes[1].importmulti([{ "scriptPubKey": { "address": address['address'] }, "timestamp": "now", "keys": [ self.nodes[0].dumpprivkey(address2['address']) ] }]) assert_equal(result[0]['success'], False) assert_equal(result[0]['error']['code'], -5) assert_equal(result[0]['error']['message'], 'Consistency check failed') address_assert = self.nodes[1].getaddressinfo(address['address']) assert_equal(address_assert['iswatchonly'], False) assert_equal(address_assert['ismine'], False) assert_equal('timestamp' in address_assert, False) # ScriptPubKey + Private key + internal + Wrong private key self.log.info("Should not import a scriptPubKey with internal and with a wrong private key") address = self.nodes[0].getaddressinfo(self.nodes[0].getnewaddress()) address2 = self.nodes[0].getaddressinfo(self.nodes[0].getnewaddress()) result = self.nodes[1].importmulti([{ "scriptPubKey": address['scriptPubKey'], "timestamp": "now", "keys": [ self.nodes[0].dumpprivkey(address2['address']) ], "internal": True }]) assert_equal(result[0]['success'], False) assert_equal(result[0]['error']['code'], -5) assert_equal(result[0]['error']['message'], 'Consistency check failed') address_assert = self.nodes[1].getaddressinfo(address['address']) assert_equal(address_assert['iswatchonly'], False) assert_equal(address_assert['ismine'], False) assert_equal('timestamp' in address_assert, False) # Importing existing watch only address with new timestamp should replace saved timestamp. assert_greater_than(timestamp, watchonly_timestamp) self.log.info("Should replace previously saved watch only timestamp.") result = self.nodes[1].importmulti([{ "scriptPubKey": { "address": watchonly_address, }, "timestamp": "now", }]) assert_equal(result[0]['success'], True) address_assert = self.nodes[1].getaddressinfo(watchonly_address) assert_equal(address_assert['iswatchonly'], True) assert_equal(address_assert['ismine'], False) assert_equal(address_assert['timestamp'], timestamp) watchonly_timestamp = timestamp # restart nodes to check for proper serialization/deserialization of watch only address self.stop_nodes() self.start_nodes() address_assert = self.nodes[1].getaddressinfo(watchonly_address) assert_equal(address_assert['iswatchonly'], True) assert_equal(address_assert['ismine'], False) assert_equal(address_assert['timestamp'], watchonly_timestamp) # Bad or missing timestamps self.log.info("Should throw on invalid or missing timestamp values") assert_raises_rpc_error(-3, 'Missing required timestamp field for key', self.nodes[1].importmulti, [{ "scriptPubKey": address['scriptPubKey'], }]) assert_raises_rpc_error(-3, 'Expected number or "now" timestamp value for key. got type string', self.nodes[1].importmulti, [{ "scriptPubKey": address['scriptPubKey'], "timestamp": "", }])
def run_test(self): q = 73829871667027927151400291810255409637272593023945445234219354687881008052707 pow2 = 2**256 self.description = "Covers the 'Wrapped Serials Attack' scenario." self.init_test() INITAL_MINED_BLOCKS = 351 # Blocks mined before minting MORE_MINED_BLOCKS = 31 # Blocks mined after minting (before spending) DENOM_TO_USE = 1000 # zc denomination used for double spending attack K_BITSIZE = 128 # bitsize of the range for random K NUM_OF_K = 5 # number of wrapping serials to try # 1) Start mining blocks self.log.info("Mining %d first blocks..." % INITAL_MINED_BLOCKS) self.node.generate(INITAL_MINED_BLOCKS) sleep(2) # 2) Mint zerocoins self.log.info("Minting %d-denom zCWCs..." % DENOM_TO_USE) balance = self.node.getbalance("*", 100) assert_greater_than(balance, DENOM_TO_USE) total_mints = 0 while balance > DENOM_TO_USE: try: self.node.mintzerocoin(DENOM_TO_USE) except JSONRPCException: break sleep(1) total_mints += 1 self.node.generate(1) sleep(1) if total_mints % 5 == 0: self.log.info("Minted %d coins" % total_mints) if total_mints >= 20: break balance = self.node.getbalance("*", 100) sleep(2) # 3) Mine more blocks and collect the mint self.log.info("Mining %d more blocks..." % MORE_MINED_BLOCKS) self.node.generate(MORE_MINED_BLOCKS) sleep(2) mint = self.node.listmintedzerocoins(True, True)[0] # 4) Get the raw zerocoin data exported_zerocoins = self.node.exportzerocoins(False) zc = [x for x in exported_zerocoins if mint["serial hash"] == x["id"]] if len(zc) == 0: raise AssertionError("mint not found") # 5) Spend the minted coin (mine two more blocks) self.log.info("Spending the minted coin with serial %s and mining two more blocks..." % zc[0]["s"]) txid = self.node.spendzerocoinmints([mint["serial hash"]])['txid'] self.log.info("Spent on tx %s" % txid) self.node.generate(2) sleep(2) # 6) create the new serials new_serials = [] for i in range(NUM_OF_K): K = random.getrandbits(K_BITSIZE) new_serials.append(hex(int(zc[0]["s"], 16) + K*q*pow2)[2:]) randomness = zc[0]["r"] privkey = zc[0]["k"] # 7) Spend the new zerocoins for serial in new_serials: self.log.info("Spending the wrapping serial %s" % serial) tx = None try: tx = self.node.spendrawzerocoin(serial, randomness, DENOM_TO_USE, privkey) except JSONRPCException as e: exc_msg = str(e) if exc_msg == "CoinSpend: failed check (-4)": self.log.info("GOOD: Transaction did not verify") else: raise e if tx is not None: self.log.warning("Tx is: %s" % tx) raise AssertionError("TEST FAILED") self.log.info("%s PASSED" % self.__class__.__name__)
def run_test(self): self.log.info("Mining blocks...") self.nodes[0].generate(1) self.nodes[1].generate(1) timestamp = self.nodes[1].getblock( self.nodes[1].getbestblockhash())['mediantime'] node0_address1 = self.nodes[0].getaddressinfo( self.nodes[0].getnewaddress()) # Check only one address assert_equal(node0_address1['ismine'], True) # Node 1 sync test assert_equal(self.nodes[1].getblockcount(), 1) # Address Test - before import address_info = self.nodes[1].getaddressinfo(node0_address1['address']) assert_equal(address_info['iswatchonly'], False) assert_equal(address_info['ismine'], False) # RPC importmulti ----------------------------------------------- # Bitcoin Address (implicit non-internal) self.log.info("Should import an address") key = get_key(self.nodes[0]) self.test_importmulti( { "scriptPubKey": { "address": key.p2pkh_addr }, "timestamp": "now" }, success=True) test_address(self.nodes[1], key.p2pkh_addr, iswatchonly=True, ismine=False, timestamp=timestamp, ischange=False) watchonly_address = key.p2pkh_addr watchonly_timestamp = timestamp self.log.info("Should not import an invalid address") self.test_importmulti( { "scriptPubKey": { "address": "not valid address" }, "timestamp": "now" }, success=False, error_code=-5, error_message='Invalid address \"not valid address\"') # ScriptPubKey + internal self.log.info("Should import a scriptPubKey with internal flag") key = get_key(self.nodes[0]) self.test_importmulti( { "scriptPubKey": key.p2pkh_script, "timestamp": "now", "internal": True }, success=True) test_address(self.nodes[1], key.p2pkh_addr, iswatchonly=True, ismine=False, timestamp=timestamp, ischange=True) # ScriptPubKey + internal + label self.log.info( "Should not allow a label to be specified when internal is true") key = get_key(self.nodes[0]) self.test_importmulti( { "scriptPubKey": key.p2pkh_script, "timestamp": "now", "internal": True, "label": "Example label" }, success=False, error_code=-8, error_message='Internal addresses should not have a label') # Nonstandard scriptPubKey + !internal self.log.info( "Should not import a nonstandard scriptPubKey without internal flag" ) nonstandardScriptPubKey = key.p2pkh_script + CScript([OP_NOP]).hex() key = get_key(self.nodes[0]) self.test_importmulti( { "scriptPubKey": nonstandardScriptPubKey, "timestamp": "now" }, success=False, error_code=-8, error_message= 'Internal must be set to true for nonstandard scriptPubKey imports.' ) test_address(self.nodes[1], key.p2pkh_addr, iswatchonly=False, ismine=False, timestamp=None) # Address + Public key + !Internal(explicit) self.log.info("Should import an address with public key") key = get_key(self.nodes[0]) self.test_importmulti( { "scriptPubKey": { "address": key.p2pkh_addr }, "timestamp": "now", "pubkeys": [key.pubkey], "internal": False }, success=True, warnings=[ "Some private keys are missing, outputs will be considered watchonly. If this is intentional, specify the watchonly flag." ]) test_address(self.nodes[1], key.p2pkh_addr, iswatchonly=True, ismine=False, timestamp=timestamp) # ScriptPubKey + Public key + internal self.log.info( "Should import a scriptPubKey with internal and with public key") key = get_key(self.nodes[0]) self.test_importmulti( { "scriptPubKey": key.p2pkh_script, "timestamp": "now", "pubkeys": [key.pubkey], "internal": True }, success=True, warnings=[ "Some private keys are missing, outputs will be considered watchonly. If this is intentional, specify the watchonly flag." ]) test_address(self.nodes[1], key.p2pkh_addr, iswatchonly=True, ismine=False, timestamp=timestamp) # Nonstandard scriptPubKey + Public key + !internal self.log.info( "Should not import a nonstandard scriptPubKey without internal and with public key" ) key = get_key(self.nodes[0]) self.test_importmulti( { "scriptPubKey": nonstandardScriptPubKey, "timestamp": "now", "pubkeys": [key.pubkey] }, success=False, error_code=-8, error_message= 'Internal must be set to true for nonstandard scriptPubKey imports.' ) test_address(self.nodes[1], key.p2pkh_addr, iswatchonly=False, ismine=False, timestamp=None) # Address + Private key + !watchonly self.log.info("Should import an address with private key") key = get_key(self.nodes[0]) self.test_importmulti( { "scriptPubKey": { "address": key.p2pkh_addr }, "timestamp": "now", "keys": [key.privkey] }, success=True) test_address(self.nodes[1], key.p2pkh_addr, iswatchonly=False, ismine=True, timestamp=timestamp) self.log.info( "Should not import an address with private key if is already imported" ) self.test_importmulti( { "scriptPubKey": { "address": key.p2pkh_addr }, "timestamp": "now", "keys": [key.privkey] }, success=False, error_code=-4, error_message= 'The wallet already contains the private key for this address or script ("' + key.p2pkh_script + '")') # Address + Private key + watchonly self.log.info( "Should import an address with private key and with watchonly") key = get_key(self.nodes[0]) self.test_importmulti( { "scriptPubKey": { "address": key.p2pkh_addr }, "timestamp": "now", "keys": [key.privkey], "watchonly": True }, success=True, warnings=[ "All private keys are provided, outputs will be considered spendable. If this is intentional, do not specify the watchonly flag." ]) test_address(self.nodes[1], key.p2pkh_addr, iswatchonly=False, ismine=True, timestamp=timestamp) # ScriptPubKey + Private key + internal self.log.info( "Should import a scriptPubKey with internal and with private key") key = get_key(self.nodes[0]) self.test_importmulti( { "scriptPubKey": key.p2pkh_script, "timestamp": "now", "keys": [key.privkey], "internal": True }, success=True) test_address(self.nodes[1], key.p2pkh_addr, iswatchonly=False, ismine=True, timestamp=timestamp) # Nonstandard scriptPubKey + Private key + !internal self.log.info( "Should not import a nonstandard scriptPubKey without internal and with private key" ) key = get_key(self.nodes[0]) self.test_importmulti( { "scriptPubKey": nonstandardScriptPubKey, "timestamp": "now", "keys": [key.privkey] }, success=False, error_code=-8, error_message= 'Internal must be set to true for nonstandard scriptPubKey imports.' ) test_address(self.nodes[1], key.p2pkh_addr, iswatchonly=False, ismine=False, timestamp=None) # P2SH address multisig = get_multisig(self.nodes[0]) self.nodes[1].generate(100) self.nodes[1].sendtoaddress(multisig.p2sh_addr, 10.00) self.nodes[1].generate(1) timestamp = self.nodes[1].getblock( self.nodes[1].getbestblockhash())['mediantime'] self.log.info("Should import a p2sh") self.test_importmulti( { "scriptPubKey": { "address": multisig.p2sh_addr }, "timestamp": "now" }, success=True) test_address(self.nodes[1], multisig.p2sh_addr, isscript=True, iswatchonly=True, timestamp=timestamp) p2shunspent = self.nodes[1].listunspent(0, 999999, [multisig.p2sh_addr])[0] assert_equal(p2shunspent['spendable'], False) assert_equal(p2shunspent['solvable'], False) # P2SH + Redeem script multisig = get_multisig(self.nodes[0]) self.nodes[1].generate(100) self.nodes[1].sendtoaddress(multisig.p2sh_addr, 10.00) self.nodes[1].generate(1) timestamp = self.nodes[1].getblock( self.nodes[1].getbestblockhash())['mediantime'] self.log.info("Should import a p2sh with respective redeem script") self.test_importmulti( { "scriptPubKey": { "address": multisig.p2sh_addr }, "timestamp": "now", "redeemscript": multisig.redeem_script }, success=True, warnings=[ "Some private keys are missing, outputs will be considered watchonly. If this is intentional, specify the watchonly flag." ]) test_address(self.nodes[1], multisig.p2sh_addr, timestamp=timestamp, iswatchonly=True, ismine=False, solvable=True) p2shunspent = self.nodes[1].listunspent(0, 999999, [multisig.p2sh_addr])[0] assert_equal(p2shunspent['spendable'], False) assert_equal(p2shunspent['solvable'], True) # P2SH + Redeem script + Private Keys + !Watchonly multisig = get_multisig(self.nodes[0]) self.nodes[1].generate(100) self.nodes[1].sendtoaddress(multisig.p2sh_addr, 10.00) self.nodes[1].generate(1) timestamp = self.nodes[1].getblock( self.nodes[1].getbestblockhash())['mediantime'] self.log.info( "Should import a p2sh with respective redeem script and private keys" ) self.test_importmulti( { "scriptPubKey": { "address": multisig.p2sh_addr }, "timestamp": "now", "redeemscript": multisig.redeem_script, "keys": multisig.privkeys[0:2] }, success=True, warnings=[ "Some private keys are missing, outputs will be considered watchonly. If this is intentional, specify the watchonly flag." ]) test_address(self.nodes[1], multisig.p2sh_addr, timestamp=timestamp, ismine=False, iswatchonly=True, solvable=True) p2shunspent = self.nodes[1].listunspent(0, 999999, [multisig.p2sh_addr])[0] assert_equal(p2shunspent['spendable'], False) assert_equal(p2shunspent['solvable'], True) # P2SH + Redeem script + Private Keys + Watchonly multisig = get_multisig(self.nodes[0]) self.nodes[1].generate(100) self.nodes[1].sendtoaddress(multisig.p2sh_addr, 10.00) self.nodes[1].generate(1) timestamp = self.nodes[1].getblock( self.nodes[1].getbestblockhash())['mediantime'] self.log.info( "Should import a p2sh with respective redeem script and private keys" ) self.test_importmulti( { "scriptPubKey": { "address": multisig.p2sh_addr }, "timestamp": "now", "redeemscript": multisig.redeem_script, "keys": multisig.privkeys[0:2], "watchonly": True }, success=True) test_address(self.nodes[1], multisig.p2sh_addr, iswatchonly=True, ismine=False, solvable=True, timestamp=timestamp) # Address + Public key + !Internal + Wrong pubkey self.log.info( "Should not import an address with the wrong public key as non-solvable" ) key = get_key(self.nodes[0]) wrong_key = get_key(self.nodes[0]).pubkey self.test_importmulti( { "scriptPubKey": { "address": key.p2pkh_addr }, "timestamp": "now", "pubkeys": [wrong_key] }, success=True, warnings=[ "Importing as non-solvable: some required keys are missing. If this is intentional, don't provide any keys, pubkeys, witnessscript, or redeemscript.", "Some private keys are missing, outputs will be considered watchonly. If this is intentional, specify the watchonly flag." ]) test_address(self.nodes[1], key.p2pkh_addr, iswatchonly=True, ismine=False, solvable=False, timestamp=timestamp) # ScriptPubKey + Public key + internal + Wrong pubkey self.log.info( "Should import a scriptPubKey with internal and with a wrong public key as non-solvable" ) key = get_key(self.nodes[0]) wrong_key = get_key(self.nodes[0]).pubkey self.test_importmulti( { "scriptPubKey": key.p2pkh_script, "timestamp": "now", "pubkeys": [wrong_key], "internal": True }, success=True, warnings=[ "Importing as non-solvable: some required keys are missing. If this is intentional, don't provide any keys, pubkeys, witnessscript, or redeemscript.", "Some private keys are missing, outputs will be considered watchonly. If this is intentional, specify the watchonly flag." ]) test_address(self.nodes[1], key.p2pkh_addr, iswatchonly=True, ismine=False, solvable=False, timestamp=timestamp) # Address + Private key + !watchonly + Wrong private key self.log.info( "Should import an address with a wrong private key as non-solvable" ) key = get_key(self.nodes[0]) wrong_privkey = get_key(self.nodes[0]).privkey self.test_importmulti( { "scriptPubKey": { "address": key.p2pkh_addr }, "timestamp": "now", "keys": [wrong_privkey] }, success=True, warnings=[ "Importing as non-solvable: some required keys are missing. If this is intentional, don't provide any keys, pubkeys, witnessscript, or redeemscript.", "Some private keys are missing, outputs will be considered watchonly. If this is intentional, specify the watchonly flag." ]) test_address(self.nodes[1], key.p2pkh_addr, iswatchonly=True, ismine=False, solvable=False, timestamp=timestamp) # ScriptPubKey + Private key + internal + Wrong private key self.log.info( "Should import a scriptPubKey with internal and with a wrong private key as non-solvable" ) key = get_key(self.nodes[0]) wrong_privkey = get_key(self.nodes[0]).privkey self.test_importmulti( { "scriptPubKey": key.p2pkh_script, "timestamp": "now", "keys": [wrong_privkey], "internal": True }, success=True, warnings=[ "Importing as non-solvable: some required keys are missing. If this is intentional, don't provide any keys, pubkeys, witnessscript, or redeemscript.", "Some private keys are missing, outputs will be considered watchonly. If this is intentional, specify the watchonly flag." ]) test_address(self.nodes[1], key.p2pkh_addr, iswatchonly=True, ismine=False, solvable=False, timestamp=timestamp) # Importing existing watch only address with new timestamp should replace saved timestamp. assert_greater_than(timestamp, watchonly_timestamp) self.log.info("Should replace previously saved watch only timestamp.") self.test_importmulti( { "scriptPubKey": { "address": watchonly_address }, "timestamp": "now" }, success=True) test_address(self.nodes[1], watchonly_address, iswatchonly=True, ismine=False, timestamp=timestamp) watchonly_timestamp = timestamp # restart nodes to check for proper serialization/deserialization of watch only address self.stop_nodes() self.start_nodes() test_address(self.nodes[1], watchonly_address, iswatchonly=True, ismine=False, timestamp=watchonly_timestamp) # Bad or missing timestamps self.log.info("Should throw on invalid or missing timestamp values") assert_raises_rpc_error(-3, 'Missing required timestamp field for key', self.nodes[1].importmulti, [{ "scriptPubKey": key.p2pkh_script }]) assert_raises_rpc_error( -3, 'Expected number or "now" timestamp value for key. got type string', self.nodes[1].importmulti, [{ "scriptPubKey": key.p2pkh_script, "timestamp": "" }]) # Import P2WPKH address as watch only self.log.info("Should import a P2WPKH address as watch only") key = get_key(self.nodes[0]) self.test_importmulti( { "scriptPubKey": { "address": key.p2wpkh_addr }, "timestamp": "now" }, success=True) test_address(self.nodes[1], key.p2wpkh_addr, iswatchonly=True, solvable=False) # Import P2WPKH address with public key but no private key self.log.info( "Should import a P2WPKH address and public key as solvable but not spendable" ) key = get_key(self.nodes[0]) self.test_importmulti( { "scriptPubKey": { "address": key.p2wpkh_addr }, "timestamp": "now", "pubkeys": [key.pubkey] }, success=True, warnings=[ "Some private keys are missing, outputs will be considered watchonly. If this is intentional, specify the watchonly flag." ]) test_address(self.nodes[1], key.p2wpkh_addr, ismine=False, solvable=True) # Import P2WPKH address with key and check it is spendable self.log.info("Should import a P2WPKH address with key") key = get_key(self.nodes[0]) self.test_importmulti( { "scriptPubKey": { "address": key.p2wpkh_addr }, "timestamp": "now", "keys": [key.privkey] }, success=True) test_address(self.nodes[1], key.p2wpkh_addr, iswatchonly=False, ismine=True) # P2WSH multisig address without scripts or keys multisig = get_multisig(self.nodes[0]) self.log.info( "Should import a p2wsh multisig as watch only without respective redeem script and private keys" ) self.test_importmulti( { "scriptPubKey": { "address": multisig.p2wsh_addr }, "timestamp": "now" }, success=True) test_address(self.nodes[1], multisig.p2sh_addr, solvable=False) # Same P2WSH multisig address as above, but now with witnessscript + private keys self.log.info( "Should import a p2wsh with respective witness script and private keys" ) self.test_importmulti( { "scriptPubKey": { "address": multisig.p2wsh_addr }, "timestamp": "now", "witnessscript": multisig.redeem_script, "keys": multisig.privkeys }, success=True) test_address(self.nodes[1], multisig.p2sh_addr, solvable=True, ismine=True, sigsrequired=2) # P2SH-P2WPKH address with no redeemscript or public or private key key = get_key(self.nodes[0]) self.log.info( "Should import a p2sh-p2wpkh without redeem script or keys") self.test_importmulti( { "scriptPubKey": { "address": key.p2sh_p2wpkh_addr }, "timestamp": "now" }, success=True) test_address(self.nodes[1], key.p2sh_p2wpkh_addr, solvable=False, ismine=False) # P2SH-P2WPKH address + redeemscript + public key with no private key self.log.info( "Should import a p2sh-p2wpkh with respective redeem script and pubkey as solvable" ) self.test_importmulti( { "scriptPubKey": { "address": key.p2sh_p2wpkh_addr }, "timestamp": "now", "redeemscript": key.p2sh_p2wpkh_redeem_script, "pubkeys": [key.pubkey] }, success=True, warnings=[ "Some private keys are missing, outputs will be considered watchonly. If this is intentional, specify the watchonly flag." ]) test_address(self.nodes[1], key.p2sh_p2wpkh_addr, solvable=True, ismine=False) # P2SH-P2WPKH address + redeemscript + private key key = get_key(self.nodes[0]) self.log.info( "Should import a p2sh-p2wpkh with respective redeem script and private keys" ) self.test_importmulti( { "scriptPubKey": { "address": key.p2sh_p2wpkh_addr }, "timestamp": "now", "redeemscript": key.p2sh_p2wpkh_redeem_script, "keys": [key.privkey] }, success=True) test_address(self.nodes[1], key.p2sh_p2wpkh_addr, solvable=True, ismine=True) # P2SH-P2WSH multisig + redeemscript with no private key multisig = get_multisig(self.nodes[0]) self.log.info( "Should import a p2sh-p2wsh with respective redeem script but no private key" ) self.test_importmulti( { "scriptPubKey": { "address": multisig.p2sh_p2wsh_addr }, "timestamp": "now", "redeemscript": multisig.p2wsh_script, "witnessscript": multisig.redeem_script }, success=True, warnings=[ "Some private keys are missing, outputs will be considered watchonly. If this is intentional, specify the watchonly flag." ]) test_address(self.nodes[1], multisig.p2sh_p2wsh_addr, solvable=True, ismine=False) # Test importing of a P2SH-P2WPKH address via descriptor + private key key = get_key(self.nodes[0]) self.log.info( "Should not import a p2sh-p2wpkh address from descriptor without checksum and private key" ) self.test_importmulti( { "desc": "sh(wpkh(" + key.pubkey + "))", "timestamp": "now", "label": "Descriptor import test", "keys": [key.privkey] }, success=False, error_code=-5, error_message="Missing checksum") # Test importing of a P2SH-P2WPKH address via descriptor + private key key = get_key(self.nodes[0]) self.log.info( "Should import a p2sh-p2wpkh address from descriptor and private key" ) self.test_importmulti( { "desc": descsum_create("sh(wpkh(" + key.pubkey + "))"), "timestamp": "now", "label": "Descriptor import test", "keys": [key.privkey] }, success=True) test_address(self.nodes[1], key.p2sh_p2wpkh_addr, solvable=True, ismine=True, label="Descriptor import test") # Test ranged descriptor fails if range is not specified xpriv = "tprv8ZgxMBicQKsPeuVhWwi6wuMQGfPKi9Li5GtX35jVNknACgqe3CY4g5xgkfDDJcmtF7o1QnxWDRYw4H5P26PXq7sbcUkEqeR4fg3Kxp2tigg" addresses = [ "dU9yhJXisr7hhgr8N4kEM6sK53cskLTejf", "dDU2c5RmAvhJHVsBtPzLN5wX9RWfGzbPpL" ] # hdkeypath=m/0'/0'/0' and 1' addresses += [ "chirt1qrd3n235cj2czsfmsuvqqpr3lu6lg0ju7p53clv", "chirt1qfqeppuvj0ww98r6qghmdkj70tv8qpchex4xulc" ] # wpkh subscripts corresponding to the above addresses desc = "sh(wpkh(" + xpriv + "/0'/0'/*'" + "))" self.log.info( "Ranged descriptor import should fail without a specified range") self.test_importmulti( { "desc": descsum_create(desc), "timestamp": "now" }, success=False, error_code=-8, error_message='Descriptor is ranged, please specify the range') # Test importing of a ranged descriptor with xpriv self.log.info( "Should import the ranged descriptor with specified range as solvable" ) self.test_importmulti( { "desc": descsum_create(desc), "timestamp": "now", "range": 1 }, success=True) for address in addresses: test_address(self.nodes[1], address, solvable=True, ismine=True) self.test_importmulti( { "desc": descsum_create(desc), "timestamp": "now", "range": -1 }, success=False, error_code=-8, error_message='End of range is too high') self.test_importmulti( { "desc": descsum_create(desc), "timestamp": "now", "range": [-1, 10] }, success=False, error_code=-8, error_message='Range should be greater or equal than 0') self.test_importmulti( { "desc": descsum_create(desc), "timestamp": "now", "range": [(2 << 31 + 1) - 1000000, (2 << 31 + 1)] }, success=False, error_code=-8, error_message='End of range is too high') self.test_importmulti( { "desc": descsum_create(desc), "timestamp": "now", "range": [2, 1] }, success=False, error_code=-8, error_message= 'Range specified as [begin,end] must not have begin after end') self.test_importmulti( { "desc": descsum_create(desc), "timestamp": "now", "range": [0, 1000001] }, success=False, error_code=-8, error_message='Range is too large') # Test importing a descriptor containing a WIF private key wif_priv = "b8RLWdcXsjutSbZaXnBwENJpdJaRqPE7bSBWDsMsXtfXPcrpU6fh" address = "dFsftZSN2GdvGGuafvZhbqt3ZmsoR8dLHq" desc = "sh(wpkh(" + wif_priv + "))" self.log.info( "Should import a descriptor with a WIF private key as spendable") self.test_importmulti( { "desc": descsum_create(desc), "timestamp": "now" }, success=True) test_address(self.nodes[1], address, solvable=True, ismine=True) # dump the private key to ensure it matches what was imported privkey = self.nodes[1].dumpprivkey(address) assert_equal(privkey, wif_priv) # Test importing of a P2PKH address via descriptor key = get_key(self.nodes[0]) self.log.info("Should import a p2pkh address from descriptor") self.test_importmulti( { "desc": descsum_create("pkh(" + key.pubkey + ")"), "timestamp": "now", "label": "Descriptor import test" }, True, warnings=[ "Some private keys are missing, outputs will be considered watchonly. If this is intentional, specify the watchonly flag." ]) test_address(self.nodes[1], key.p2pkh_addr, solvable=True, ismine=False, label="Descriptor import test") # Test import fails if both desc and scriptPubKey are provided key = get_key(self.nodes[0]) self.log.info( "Import should fail if both scriptPubKey and desc are provided") self.test_importmulti( { "desc": descsum_create("pkh(" + key.pubkey + ")"), "scriptPubKey": { "address": key.p2pkh_addr }, "timestamp": "now" }, success=False, error_code=-8, error_message= 'Both a descriptor and a scriptPubKey should not be provided.') # Test import fails if neither desc nor scriptPubKey are present key = get_key(self.nodes[0]) self.log.info( "Import should fail if neither a descriptor nor a scriptPubKey are provided" ) self.test_importmulti( {"timestamp": "now"}, success=False, error_code=-8, error_message= 'Either a descriptor or scriptPubKey must be provided.') # Test importing of a multisig via descriptor key1 = get_key(self.nodes[0]) key2 = get_key(self.nodes[0]) self.log.info("Should import a 1-of-2 bare multisig from descriptor") self.test_importmulti( { "desc": descsum_create("multi(1," + key1.pubkey + "," + key2.pubkey + ")"), "timestamp": "now" }, success=True, warnings=[ "Some private keys are missing, outputs will be considered watchonly. If this is intentional, specify the watchonly flag." ]) self.log.info( "Should not treat individual keys from the imported bare multisig as watchonly" ) test_address(self.nodes[1], key1.p2pkh_addr, ismine=False, iswatchonly=False) # Import pubkeys with key origin info self.log.info( "Addresses should have hd keypath and master key id after import with key origin" ) pub_addr = self.nodes[1].getnewaddress() pub_addr = self.nodes[1].getnewaddress() info = self.nodes[1].getaddressinfo(pub_addr) pub = info['pubkey'] pub_keypath = info['hdkeypath'] pub_fpr = info['hdmasterfingerprint'] result = self.nodes[0].importmulti([{ 'desc': descsum_create("wpkh([" + pub_fpr + pub_keypath[1:] + "]" + pub + ")"), "timestamp": "now", }]) assert result[0]['success'] pub_import_info = self.nodes[0].getaddressinfo(pub_addr) assert_equal(pub_import_info['hdmasterfingerprint'], pub_fpr) assert_equal(pub_import_info['pubkey'], pub) assert_equal(pub_import_info['hdkeypath'], pub_keypath) # Import privkeys with key origin info priv_addr = self.nodes[1].getnewaddress() info = self.nodes[1].getaddressinfo(priv_addr) priv = self.nodes[1].dumpprivkey(priv_addr) priv_keypath = info['hdkeypath'] priv_fpr = info['hdmasterfingerprint'] result = self.nodes[0].importmulti([{ 'desc': descsum_create("wpkh([" + priv_fpr + priv_keypath[1:] + "]" + priv + ")"), "timestamp": "now", }]) assert result[0]['success'] priv_import_info = self.nodes[0].getaddressinfo(priv_addr) assert_equal(priv_import_info['hdmasterfingerprint'], priv_fpr) assert_equal(priv_import_info['hdkeypath'], priv_keypath) # Make sure the key origin info are still there after a restart self.stop_nodes() self.start_nodes() import_info = self.nodes[0].getaddressinfo(pub_addr) assert_equal(import_info['hdmasterfingerprint'], pub_fpr) assert_equal(import_info['hdkeypath'], pub_keypath) import_info = self.nodes[0].getaddressinfo(priv_addr) assert_equal(import_info['hdmasterfingerprint'], priv_fpr) assert_equal(import_info['hdkeypath'], priv_keypath) # Check legacy import does not import key origin info self.log.info("Legacy imports don't have key origin info") pub_addr = self.nodes[1].getnewaddress() info = self.nodes[1].getaddressinfo(pub_addr) pub = info['pubkey'] result = self.nodes[0].importmulti([{ 'scriptPubKey': { 'address': pub_addr }, 'pubkeys': [pub], "timestamp": "now", }]) assert result[0]['success'] pub_import_info = self.nodes[0].getaddressinfo(pub_addr) assert_equal(pub_import_info['pubkey'], pub) assert 'hdmasterfingerprint' not in pub_import_info assert 'hdkeypath' not in pub_import_info # Import some public keys to the keypool of a no privkey wallet self.log.info("Adding pubkey to keypool of disableprivkey wallet") self.nodes[1].createwallet(wallet_name="noprivkeys", disable_private_keys=True) wrpc = self.nodes[1].get_wallet_rpc("noprivkeys") addr1 = self.nodes[0].getnewaddress() addr2 = self.nodes[0].getnewaddress() pub1 = self.nodes[0].getaddressinfo(addr1)['pubkey'] pub2 = self.nodes[0].getaddressinfo(addr2)['pubkey'] result = wrpc.importmulti([{ 'desc': descsum_create('wpkh(' + pub1 + ')'), 'keypool': True, "timestamp": "now", }, { 'desc': descsum_create('wpkh(' + pub2 + ')'), 'keypool': True, "timestamp": "now", }]) assert result[0]['success'] assert result[1]['success'] assert_equal(wrpc.getwalletinfo()["keypoolsize"], 2) newaddr1 = wrpc.getnewaddress() assert_equal(addr1, newaddr1) newaddr2 = wrpc.getnewaddress() assert_equal(addr2, newaddr2) # Import some public keys to the internal keypool of a no privkey wallet self.log.info( "Adding pubkey to internal keypool of disableprivkey wallet") addr1 = self.nodes[0].getnewaddress() addr2 = self.nodes[0].getnewaddress() pub1 = self.nodes[0].getaddressinfo(addr1)['pubkey'] pub2 = self.nodes[0].getaddressinfo(addr2)['pubkey'] result = wrpc.importmulti([{ 'desc': descsum_create('wpkh(' + pub1 + ')'), 'keypool': True, 'internal': True, "timestamp": "now", }, { 'desc': descsum_create('wpkh(' + pub2 + ')'), 'keypool': True, 'internal': True, "timestamp": "now", }]) assert result[0]['success'] assert result[1]['success'] assert_equal(wrpc.getwalletinfo()["keypoolsize_hd_internal"], 2) newaddr1 = wrpc.getrawchangeaddress() assert_equal(addr1, newaddr1) newaddr2 = wrpc.getrawchangeaddress() assert_equal(addr2, newaddr2) # Import a multisig and make sure the keys don't go into the keypool self.log.info( 'Imported scripts with pubkeys should not have their pubkeys go into the keypool' ) addr1 = self.nodes[0].getnewaddress() addr2 = self.nodes[0].getnewaddress() pub1 = self.nodes[0].getaddressinfo(addr1)['pubkey'] pub2 = self.nodes[0].getaddressinfo(addr2)['pubkey'] result = wrpc.importmulti([{ 'desc': descsum_create('wsh(multi(2,' + pub1 + ',' + pub2 + '))'), 'keypool': True, "timestamp": "now", }]) assert result[0]['success'] assert_equal(wrpc.getwalletinfo()["keypoolsize"], 0) # Cannot import those pubkeys to keypool of wallet with privkeys self.log.info( "Pubkeys cannot be added to the keypool of a wallet with private keys" ) wrpc = self.nodes[1].get_wallet_rpc("") assert wrpc.getwalletinfo()['private_keys_enabled'] result = wrpc.importmulti([{ 'desc': descsum_create('wpkh(' + pub1 + ')'), 'keypool': True, "timestamp": "now", }]) assert_equal(result[0]['error']['code'], -8) assert_equal( result[0]['error']['message'], "Keys can only be imported to the keypool when private keys are disabled" ) # Make sure ranged imports import keys in order self.log.info('Key ranges should be imported in order') wrpc = self.nodes[1].get_wallet_rpc("noprivkeys") assert_equal(wrpc.getwalletinfo()["keypoolsize"], 0) assert_equal(wrpc.getwalletinfo()["private_keys_enabled"], False) xpub = "tpubDAXcJ7s7ZwicqjprRaEWdPoHKrCS215qxGYxpusRLLmJuT69ZSicuGdSfyvyKpvUNYBW1s2U3NSrT6vrCYB9e6nZUEvrqnwXPF8ArTCRXMY" addresses = [ 'chirt1qtmp74ayg7p24uslctssvjm06q5phz4yrhskhyn', # m/0'/0'/0 'chirt1q8vprchan07gzagd5e6v9wd7azyucksq2h5s9pc', # m/0'/0'/1 'chirt1qtuqdtha7zmqgcrr26n2rqxztv5y8rafjsf3rgr', # m/0'/0'/2 'chirt1qau64272ymawq26t90md6an0ps99qkrse9t49zs', # m/0'/0'/3 'chirt1qsg97266hrh6cpmutqen8s4s962aryy77rdpkls', # m/0'/0'/4 ] result = wrpc.importmulti([{ 'desc': descsum_create('wpkh([80002067/0h/0h]' + xpub + '/*)'), 'keypool': True, 'timestamp': 'now', 'range': [0, 4], }]) for i in range(0, 5): addr = wrpc.getnewaddress('', 'bech32') assert_equal(addr, addresses[i])
def run_test(self): # Mine 101 blocks on node5 to bring nodes out of IBD and make sure that # no coinbases are maturing for the nodes-under-test during the test self.nodes[5].generate(101) sync_blocks(self.nodes) uncompressed_1 = "0496b538e853519c726a2c91e61ec11600ae1390813a627c66fb8be7947be63c52da7589379515d4e0a604f8141781e62294721166bf621e73a82cbf2342c858ee" uncompressed_2 = "047211a824f55b505228e4c3d5194c1fcfaa15a456abdf37f9b9d97a4040afc073dee6c89064984f03385237d92167c13e236446b417ab79a0fcae412ae3316b77" compressed_1 = "0296b538e853519c726a2c91e61ec11600ae1390813a627c66fb8be7947be63c52" compressed_2 = "037211a824f55b505228e4c3d5194c1fcfaa15a456abdf37f9b9d97a4040afc073" # addmultisigaddress with at least 1 uncompressed key should return a legacy address. for node in range(4): self.test_address( node, self.nodes[node].addmultisigaddress( 2, [uncompressed_1, uncompressed_2])['address'], True, 'legacy') self.test_address( node, self.nodes[node].addmultisigaddress( 2, [compressed_1, uncompressed_2])['address'], True, 'legacy') self.test_address( node, self.nodes[node].addmultisigaddress( 2, [uncompressed_1, compressed_2])['address'], True, 'legacy') # addmultisigaddress with all compressed keys should return the appropriate address type (even when the keys are not ours). self.test_address( 0, self.nodes[0].addmultisigaddress( 2, [compressed_1, compressed_2])['address'], True, 'legacy') self.test_address( 1, self.nodes[1].addmultisigaddress( 2, [compressed_1, compressed_2])['address'], True, 'p2sh-segwit') self.test_address( 2, self.nodes[2].addmultisigaddress( 2, [compressed_1, compressed_2])['address'], True, 'p2sh-segwit') self.test_address( 3, self.nodes[3].addmultisigaddress( 2, [compressed_1, compressed_2])['address'], True, 'bech32') for explicit_type, multisig, from_node in itertools.product( [False, True], [False, True], range(4)): address_type = None if explicit_type and not multisig: if from_node == 1: address_type = 'bech32' elif from_node == 0 or from_node == 3: address_type = 'p2sh-segwit' else: address_type = 'legacy' self.log.info( "Sending from node {} ({}) with{} multisig using {}".format( from_node, self.extra_args[from_node], "" if multisig else "out", "default" if address_type is None else address_type)) old_balances = self.get_balances() self.log.debug("Old balances are {}".format(old_balances)) to_send = (old_balances[from_node] / 101).quantize( Decimal("0.00000001")) sends = {} self.log.debug("Prepare sends") for n, to_node in enumerate(range(from_node, from_node + 4)): to_node %= 4 change = False if not multisig: if from_node == to_node: # When sending non-multisig to self, use getrawchangeaddress address = self.nodes[to_node].getrawchangeaddress( address_type=address_type) change = True else: address = self.nodes[to_node].getnewaddress( address_type=address_type) else: addr1 = self.nodes[to_node].getnewaddress() addr2 = self.nodes[to_node].getnewaddress() address = self.nodes[to_node].addmultisigaddress( 2, [addr1, addr2])['address'] # Do some sanity checking on the created address if address_type is not None: typ = address_type elif to_node == 0: typ = 'legacy' elif to_node == 1 or (to_node == 2 and not change): typ = 'p2sh-segwit' else: typ = 'bech32' self.test_address(to_node, address, multisig, typ) # Output entry sends[address] = to_send * 10 * (1 + n) self.log.debug("Sending: {}".format(sends)) self.nodes[from_node].sendmany("", sends) sync_mempools(self.nodes) unconf_balances = self.get_balances(False) self.log.debug( "Check unconfirmed balances: {}".format(unconf_balances)) assert_equal(unconf_balances[from_node], 0) for n, to_node in enumerate(range(from_node + 1, from_node + 4)): to_node %= 4 assert_equal(unconf_balances[to_node], to_send * 10 * (2 + n)) # node5 collects fee and block subsidy to keep accounting simple self.nodes[5].generate(1) sync_blocks(self.nodes) new_balances = self.get_balances() self.log.debug("Check new balances: {}".format(new_balances)) # We don't know what fee was set, so we can only check bounds on the balance of the sending node assert_greater_than(new_balances[from_node], to_send * 10) assert_greater_than(to_send * 11, new_balances[from_node]) for n, to_node in enumerate(range(from_node + 1, from_node + 4)): to_node %= 4 assert_equal(new_balances[to_node], old_balances[to_node] + to_send * 10 * (2 + n)) # Get one p2sh/segwit address from node2 and two bech32 addresses from node3: to_address_p2sh = self.nodes[2].getnewaddress() to_address_bech32_1 = self.nodes[3].getnewaddress() to_address_bech32_2 = self.nodes[3].getnewaddress() # Fund node 4: self.nodes[5].sendtoaddress(self.nodes[4].getnewaddress(), Decimal("1")) self.nodes[5].generate(1) sync_blocks(self.nodes) assert_equal(self.nodes[4].getbalance(), 1) self.log.info( "Nodes with addresstype=legacy never use a P2WPKH change output") self.test_change_output_type(0, [to_address_bech32_1], 'legacy') self.log.info( "Nodes with addresstype=p2sh-segwit only use a P2WPKH change output if any destination address is bech32:" ) self.test_change_output_type(1, [to_address_p2sh], 'p2sh-segwit') self.test_change_output_type(1, [to_address_bech32_1], 'bech32') self.test_change_output_type(1, [to_address_p2sh, to_address_bech32_1], 'bech32') self.test_change_output_type( 1, [to_address_bech32_1, to_address_bech32_2], 'bech32') self.log.info( "Nodes with change_type=bech32 always use a P2WPKH change output:") self.test_change_output_type(2, [to_address_bech32_1], 'bech32') self.test_change_output_type(2, [to_address_p2sh], 'bech32') self.log.info( "Nodes with addresstype=bech32 always use a P2WPKH change output (unless changetype is set otherwise):" ) self.test_change_output_type(3, [to_address_bech32_1], 'bech32') self.test_change_output_type(3, [to_address_p2sh], 'bech32') self.log.info( 'getrawchangeaddress defaults to addresstype if -changetype is not set and argument is absent' ) self.test_address(3, self.nodes[3].getrawchangeaddress(), multisig=False, typ='bech32') self.log.info('test invalid address type arguments') assert_raises_rpc_error(-5, "Unknown address type ''", self.nodes[3].addmultisigaddress, 2, [compressed_1, compressed_2], None, '') assert_raises_rpc_error(-5, "Unknown address type ''", self.nodes[3].getnewaddress, None, '') assert_raises_rpc_error(-5, "Unknown address type ''", self.nodes[3].getrawchangeaddress, '') assert_raises_rpc_error(-5, "Unknown address type 'bech23'", self.nodes[3].getrawchangeaddress, 'bech23') self.log.info( "Nodes with changetype=p2sh-segwit never use a P2WPKH change output" ) self.test_change_output_type(4, [to_address_bech32_1], 'p2sh-segwit') self.test_address(4, self.nodes[4].getrawchangeaddress(), multisig=False, typ='p2sh-segwit') self.log.info("Except for getrawchangeaddress if specified:") self.test_address(4, self.nodes[4].getrawchangeaddress(), multisig=False, typ='p2sh-segwit') self.test_address(4, self.nodes[4].getrawchangeaddress('bech32'), multisig=False, typ='bech32')
def run_test(self): self.log.info("Mining 500 blocks...") self.nodes[0].generate(500) self.sync_all() assert_equal(self.nodes[1].getblockcount(), 500) assert_equal(self.nodes[1].getbalance(), 0) # Create and send two transactions tx1_in = self.nodes[0].listunspent().pop() tx1_out = tx1_in["amount"] - Decimal("0.01") tx1 = self.nodes[0].createrawtransaction( [tx1_in], {self.nodes[1].getnewaddress(): tx1_out}) txid1 = self.nodes[0].sendrawtransaction( self.nodes[0].signrawtransaction(tx1)["hex"]) tx2_in = self.nodes[0].listunspent().pop() tx2_out = tx2_in["amount"] - Decimal("0.01") tx2 = self.nodes[0].createrawtransaction( [tx2_in], {self.nodes[1].getnewaddress(): tx2_out}) txid2 = self.nodes[0].sendrawtransaction( self.nodes[0].signrawtransaction(tx2)["hex"]) # Try to get proof for one of the trasaction - should fail because transaction is not yet in a block assert_raises_rpc_error(-5, "Transaction not yet in block", self.nodes[0].getmerkleproof, txid1) # Mine a new block self.log.info("Mining 501st block...") self.nodes[0].generate(1) self.sync_all() height_of_block_501 = self.nodes[1].getblockcount() # Check some negative tests on verifymerkleproof assert_raises_rpc_error(-8, "\"flags\" must be a numeric value", self.nodes[0].verifymerkleproof, {'flags': '2'}) assert_raises_rpc_error( -8, "verifymerkleproof only supports \"flags\" with value 2", self.nodes[0].verifymerkleproof, {'flags': 1}) assert_raises_rpc_error( -8, "\"nodes\" must be a Json array", self.nodes[0].verifymerkleproof, { 'flags': 2, 'index': 4, 'txOrId': 'abcdef1234567890abcdef1234567890abcdef1234567890abcdef1234567890', 'target': { 'merkleroot': 'abcdef1234567890abcdef1234567890abcdef1234567890abcdef1234567890' }, 'nodes': '*' }) assert_raises_rpc_error( -8, "\"node\" must be a \"hash\" or \"*\"", self.nodes[0].verifymerkleproof, { 'flags': 2, 'index': 4, 'txOrId': 'abcdef1234567890abcdef1234567890abcdef1234567890abcdef1234567890', 'target': { 'merkleroot': 'abcdef1234567890abcdef1234567890abcdef1234567890abcdef1234567890' }, 'nodes': [2] }) assert_raises_rpc_error( -8, "node must be of length 64 (not 10)", self.nodes[0].verifymerkleproof, { 'flags': 2, 'index': 4, 'txOrId': 'abcdef1234567890abcdef1234567890abcdef1234567890abcdef1234567890', 'target': { 'merkleroot': 'abcdef1234567890abcdef1234567890abcdef1234567890abcdef1234567890' }, 'nodes': ['*', 'abcdef1234'] }) # Get proof for 1st and 2nd transaction and verify that calculated roots are the same as block's merkle root hash_of_block_501 = self.nodes[0].getblockhash(height_of_block_501) self.verify_merkle_proof(txid1, hash_of_block_501, 0) self.verify_merkle_proof(txid2, hash_of_block_501, 0) # Create and send 3rd transaction tx_spent = self.nodes[1].listunspent().pop() tx3_out = tx_spent["amount"] - Decimal("0.01") tx3 = self.nodes[1].createrawtransaction( [tx_spent], {self.nodes[0].getnewaddress(): tx3_out}) txid3 = self.nodes[0].sendrawtransaction( self.nodes[1].signrawtransaction(tx3)["hex"]) # Mine a new block self.log.info("Mining 502nd block...") self.nodes[0].generate(1) self.sync_all() # Get id of spent and unspent transaction txid_spent = tx_spent["txid"] txid_unspent = txid1 if txid_spent != txid1 else txid2 # We can't find the block if transaction was spent because -txindex is not set on node[0] assert_raises_rpc_error(-5, "Transaction not yet in block", self.nodes[0].getmerkleproof, txid_spent) # We can get the proof if we specify proper block hash assert self.nodes[0].verifymerkleproof(self.nodes[0].getmerkleproof( txid_spent, hash_of_block_501)) # We can't get the proof if we specify a non-existent block assert_raises_rpc_error(-5, "Block not found", self.nodes[0].getmerkleproof, txid_spent, "1234567890abcdef1234567890abcdef") # We can get the proof if the transaction is unspent self.verify_merkle_proof(txid_unspent, hash_of_block_501, 0) # We can get a proof of a spent transaction without block hash if node runs with -txindex (nodes[1] in this case) self.verify_merkle_proof(txid_spent, hash_of_block_501, 1) # Restart nodes self.log.info("Restarting nodes...") self.stop_nodes() self.start_nodes(self.extra_args) # Repeat tests after nodes restart self.verify_merkle_proof(txid_unspent, hash_of_block_501, 0) self.verify_merkle_proof(txid_spent, hash_of_block_501, 1) hash_of_block_502 = self.nodes[0].getblockhash(height_of_block_501 + 1) self.verify_merkle_proof(txid3, hash_of_block_502, 0) # Create more blocks to get utxos self.log.info("Mining additional 1500 blocks...") self.nodes[0].generate(1500) sync_blocks(self.nodes[0:1]) # Use all utxos and create more Merkle Trees # We create blocks with max 400 transactions (~25 kB for biggest Merkle Tree) self.log.info( "Mining blocks with random transactions using all utxos...") utxos = self.nodes[0].listunspent() calculated_merkle_tree_disk_size = 0 verifyData = {} while len(utxos) > 0: # Choose random number of transactions send_transactions = random.randint(1, 400) if len(utxos) < send_transactions: send_transactions = len(utxos) # Send transactions for i in range(send_transactions): tx_in = utxos.pop() tx_out = tx_in["amount"] - Decimal("0.01") tx = self.nodes[0].createrawtransaction( [tx_in], {self.nodes[1].getnewaddress(): tx_out}) txid = self.nodes[0].sendrawtransaction( self.nodes[0].signrawtransaction(tx)["hex"]) # Mine a block self.nodes[0].generate(1) sync_blocks(self.nodes[0:1]) # Verify proofs of some random transactions in each block hash_of_this_block = self.nodes[0].getblockhash( self.nodes[0].getblockcount()) transactions_of_this_block = self.nodes[0].getblock( hash_of_this_block, True)["tx"] calculated_merkle_tree_disk_size += self.merkle_tree_size( len(transactions_of_this_block)) verifyData[hash_of_this_block] = transactions_of_this_block # Verify merkle proofs of all transactions in all blocks self.verify_stored_data(verifyData, 0) # Data files checks number_of_data_files = 0 disk_size = 0 node0_data_dir = os.path.join(self.options.tmpdir, "node0", "regtest", "merkle", "") for data_file in os.listdir(node0_data_dir): data_file_name = node0_data_dir + data_file if os.path.isfile(data_file_name): data_file_size = os.path.getsize(data_file_name) # No file should be bigger than 30 kB since no Merkle Tree takes more than 25 kB assert_greater_than(30 * 1024, data_file_size) disk_size += data_file_size number_of_data_files += 1 # Verify that Merkle Tree disk size is at least the size of Merkle Trees we just stored assert_greater_than(disk_size, calculated_merkle_tree_disk_size) # Number of data files should be at least calculated_merkle_tree_disk_size/preferred_file_size assert_greater_than(number_of_data_files, calculated_merkle_tree_disk_size / (30 * 1024)) # Delete index to test recreation of index when node is started again self.log.info("Restarting nodes to remove Merkle Trees index...") self.stop_nodes() node0_index_dir = os.path.join(node0_data_dir, "index", "") shutil.rmtree(node0_index_dir) self.start_nodes(self.extra_args) # Repeat merkle proof checks self.verify_stored_data(verifyData, 0) # Since index was recreated from data files, requesting existing merkle trees shouldn't create any new data new_disk_size = 0 for data_file in os.listdir(node0_data_dir): data_file_name = node0_data_dir + data_file if os.path.isfile(data_file_name): new_disk_size += os.path.getsize(data_file_name) assert_equal(disk_size, new_disk_size)
def run_test(self): # Create and fund a raw tx for sending 10 BTC psbtx1 = self.nodes[0].walletcreatefundedpsbt( [], {self.nodes[2].getnewaddress(): 10})['psbt'] # If inputs are specified, do not automatically add more: utxo1 = self.nodes[0].listunspent()[0] assert_raises_rpc_error(-4, "Insufficient funds", self.nodes[0].walletcreatefundedpsbt, [{ "txid": utxo1['txid'], "vout": utxo1['vout'] }], {self.nodes[2].getnewaddress(): 90}) psbtx1 = self.nodes[0].walletcreatefundedpsbt( [{ "txid": utxo1['txid'], "vout": utxo1['vout'] }], {self.nodes[2].getnewaddress(): 90}, 0, {"add_inputs": True})['psbt'] assert_equal(len(self.nodes[0].decodepsbt(psbtx1)['tx']['vin']), 2) # Node 1 should not be able to add anything to it but still return the psbtx same as before psbtx = self.nodes[1].walletprocesspsbt(psbtx1)['psbt'] assert_equal(psbtx1, psbtx) # Sign the transaction and send signed_tx = self.nodes[0].walletprocesspsbt(psbtx)['psbt'] final_tx = self.nodes[0].finalizepsbt(signed_tx)['hex'] self.nodes[0].sendrawtransaction(final_tx) # Get pubkeys pubkey0 = self.nodes[0].getaddressinfo( self.nodes[0].getnewaddress())['pubkey'] pubkey1 = self.nodes[1].getaddressinfo( self.nodes[1].getnewaddress())['pubkey'] pubkey2 = self.nodes[2].getaddressinfo( self.nodes[2].getnewaddress())['pubkey'] # Setup watchonly wallets self.nodes[2].createwallet(wallet_name='wmulti', disable_private_keys=True) wmulti = self.nodes[2].get_wallet_rpc('wmulti') # Create all the addresses p2sh = wmulti.addmultisigaddress(2, [pubkey0, pubkey1, pubkey2], "", "legacy")['address'] p2wsh = wmulti.addmultisigaddress(2, [pubkey0, pubkey1, pubkey2], "", "bech32")['address'] p2sh_p2wsh = wmulti.addmultisigaddress(2, [pubkey0, pubkey1, pubkey2], "", "p2sh-segwit")['address'] if not self.options.descriptors: wmulti.importaddress(p2sh) wmulti.importaddress(p2wsh) wmulti.importaddress(p2sh_p2wsh) p2wpkh = self.nodes[1].getnewaddress("", "bech32") p2pkh = self.nodes[1].getnewaddress("", "legacy") p2sh_p2wpkh = self.nodes[1].getnewaddress("", "p2sh-segwit") # fund those addresses rawtx = self.nodes[0].createrawtransaction( [], { p2sh: 10, p2wsh: 10, p2wpkh: 10, p2sh_p2wsh: 10, p2sh_p2wpkh: 10, p2pkh: 10 }) rawtx = self.nodes[0].fundrawtransaction(rawtx, {"changePosition": 3}) signed_tx = self.nodes[0].signrawtransactionwithwallet( rawtx['hex'])['hex'] txid = self.nodes[0].sendrawtransaction(signed_tx) self.nodes[0].generate(6) self.sync_all() # Find the output pos p2sh_pos = -1 p2wsh_pos = -1 p2wpkh_pos = -1 p2pkh_pos = -1 p2sh_p2wsh_pos = -1 p2sh_p2wpkh_pos = -1 decoded = self.nodes[0].decoderawtransaction(signed_tx) for out in decoded['vout']: if out['scriptPubKey']['addresses'][0] == p2sh: p2sh_pos = out['n'] elif out['scriptPubKey']['addresses'][0] == p2wsh: p2wsh_pos = out['n'] elif out['scriptPubKey']['addresses'][0] == p2wpkh: p2wpkh_pos = out['n'] elif out['scriptPubKey']['addresses'][0] == p2sh_p2wsh: p2sh_p2wsh_pos = out['n'] elif out['scriptPubKey']['addresses'][0] == p2sh_p2wpkh: p2sh_p2wpkh_pos = out['n'] elif out['scriptPubKey']['addresses'][0] == p2pkh: p2pkh_pos = out['n'] # spend single key from node 1 created_psbt = self.nodes[1].walletcreatefundedpsbt( [{ "txid": txid, "vout": p2wpkh_pos }, { "txid": txid, "vout": p2sh_p2wpkh_pos }, { "txid": txid, "vout": p2pkh_pos }], {self.nodes[1].getnewaddress(): 29.99}) walletprocesspsbt_out = self.nodes[1].walletprocesspsbt( created_psbt['psbt']) # Make sure it has both types of UTXOs decoded = self.nodes[1].decodepsbt(walletprocesspsbt_out['psbt']) assert 'non_witness_utxo' in decoded['inputs'][0] assert 'witness_utxo' in decoded['inputs'][0] # Check decodepsbt fee calculation (input values shall only be counted once per UTXO) assert_equal(decoded['fee'], created_psbt['fee']) assert_equal(walletprocesspsbt_out['complete'], True) self.nodes[1].sendrawtransaction(self.nodes[1].finalizepsbt( walletprocesspsbt_out['psbt'])['hex']) # feeRate of 0.1 BTC / KB produces a total fee slightly below -maxtxfee (~0.05280000): res = self.nodes[1].walletcreatefundedpsbt( [{ "txid": txid, "vout": p2wpkh_pos }, { "txid": txid, "vout": p2sh_p2wpkh_pos }, { "txid": txid, "vout": p2pkh_pos }], {self.nodes[1].getnewaddress(): 29.99}, 0, { "feeRate": 0.1, "add_inputs": True }) assert_approx(res["fee"], 0.055, 0.005) # feeRate of 10 BTC / KB produces a total fee well above -maxtxfee # previously this was silently capped at -maxtxfee assert_raises_rpc_error(-4, "Fee exceeds maximum configured by -maxtxfee", self.nodes[1].walletcreatefundedpsbt, [{ "txid": txid, "vout": p2wpkh_pos }, { "txid": txid, "vout": p2sh_p2wpkh_pos }, { "txid": txid, "vout": p2pkh_pos }], {self.nodes[1].getnewaddress(): 29.99}, 0, { "feeRate": 10, "add_inputs": True }) assert_raises_rpc_error(-4, "Fee exceeds maximum configured by -maxtxfee", self.nodes[1].walletcreatefundedpsbt, [{ "txid": txid, "vout": p2wpkh_pos }, { "txid": txid, "vout": p2sh_p2wpkh_pos }, { "txid": txid, "vout": p2pkh_pos }], {self.nodes[1].getnewaddress(): 1}, 0, { "feeRate": 10, "add_inputs": False }) # partially sign multisig things with node 1 psbtx = wmulti.walletcreatefundedpsbt( inputs=[{ "txid": txid, "vout": p2wsh_pos }, { "txid": txid, "vout": p2sh_pos }, { "txid": txid, "vout": p2sh_p2wsh_pos }], outputs={self.nodes[1].getnewaddress(): 29.99}, options={'changeAddress': self.nodes[1].getrawchangeaddress()})['psbt'] walletprocesspsbt_out = self.nodes[1].walletprocesspsbt(psbtx) psbtx = walletprocesspsbt_out['psbt'] assert_equal(walletprocesspsbt_out['complete'], False) # Unload wmulti, we don't need it anymore wmulti.unloadwallet() # partially sign with node 2. This should be complete and sendable walletprocesspsbt_out = self.nodes[2].walletprocesspsbt(psbtx) assert_equal(walletprocesspsbt_out['complete'], True) self.nodes[2].sendrawtransaction(self.nodes[2].finalizepsbt( walletprocesspsbt_out['psbt'])['hex']) # check that walletprocesspsbt fails to decode a non-psbt rawtx = self.nodes[1].createrawtransaction( [{ "txid": txid, "vout": p2wpkh_pos }], {self.nodes[1].getnewaddress(): 9.99}) assert_raises_rpc_error(-22, "TX decode failed", self.nodes[1].walletprocesspsbt, rawtx) # Convert a non-psbt to psbt and make sure we can decode it rawtx = self.nodes[0].createrawtransaction( [], {self.nodes[1].getnewaddress(): 10}) rawtx = self.nodes[0].fundrawtransaction(rawtx) new_psbt = self.nodes[0].converttopsbt(rawtx['hex']) self.nodes[0].decodepsbt(new_psbt) # Make sure that a non-psbt with signatures cannot be converted # Error could be either "TX decode failed" (segwit inputs causes parsing to fail) or "Inputs must not have scriptSigs and scriptWitnesses" # We must set iswitness=True because the serialized transaction has inputs and is therefore a witness transaction signedtx = self.nodes[0].signrawtransactionwithwallet(rawtx['hex']) assert_raises_rpc_error(-22, "", self.nodes[0].converttopsbt, hexstring=signedtx['hex'], iswitness=True) assert_raises_rpc_error(-22, "", self.nodes[0].converttopsbt, hexstring=signedtx['hex'], permitsigdata=False, iswitness=True) # Unless we allow it to convert and strip signatures self.nodes[0].converttopsbt(signedtx['hex'], True) # Explicitly allow converting non-empty txs new_psbt = self.nodes[0].converttopsbt(rawtx['hex']) self.nodes[0].decodepsbt(new_psbt) # Create outputs to nodes 1 and 2 node1_addr = self.nodes[1].getnewaddress() node2_addr = self.nodes[2].getnewaddress() txid1 = self.nodes[0].sendtoaddress(node1_addr, 13) txid2 = self.nodes[0].sendtoaddress(node2_addr, 13) blockhash = self.nodes[0].generate(6)[0] self.sync_all() vout1 = find_output(self.nodes[1], txid1, 13, blockhash=blockhash) vout2 = find_output(self.nodes[2], txid2, 13, blockhash=blockhash) # Create a psbt spending outputs from nodes 1 and 2 psbt_orig = self.nodes[0].createpsbt( [{ "txid": txid1, "vout": vout1 }, { "txid": txid2, "vout": vout2 }], {self.nodes[0].getnewaddress(): 25.999}) # Update psbts, should only have data for one input and not the other psbt1 = self.nodes[1].walletprocesspsbt(psbt_orig, False, "ALL")['psbt'] psbt1_decoded = self.nodes[0].decodepsbt(psbt1) assert psbt1_decoded['inputs'][0] and not psbt1_decoded['inputs'][1] # Check that BIP32 path was added assert "bip32_derivs" in psbt1_decoded['inputs'][0] psbt2 = self.nodes[2].walletprocesspsbt(psbt_orig, False, "ALL", False)['psbt'] psbt2_decoded = self.nodes[0].decodepsbt(psbt2) assert not psbt2_decoded['inputs'][0] and psbt2_decoded['inputs'][1] # Check that BIP32 paths were not added assert "bip32_derivs" not in psbt2_decoded['inputs'][1] # Sign PSBTs (workaround issue #18039) psbt1 = self.nodes[1].walletprocesspsbt(psbt_orig)['psbt'] psbt2 = self.nodes[2].walletprocesspsbt(psbt_orig)['psbt'] # Combine, finalize, and send the psbts combined = self.nodes[0].combinepsbt([psbt1, psbt2]) finalized = self.nodes[0].finalizepsbt(combined)['hex'] self.nodes[0].sendrawtransaction(finalized) self.nodes[0].generate(6) self.sync_all() # Test additional args in walletcreatepsbt # Make sure both pre-included and funded inputs # have the correct sequence numbers based on # replaceable arg block_height = self.nodes[0].getblockcount() unspent = self.nodes[0].listunspent()[0] psbtx_info = self.nodes[0].walletcreatefundedpsbt( [{ "txid": unspent["txid"], "vout": unspent["vout"] }], [{ self.nodes[2].getnewaddress(): unspent["amount"] + 1 }], block_height + 2, { "replaceable": False, "add_inputs": True }, False) decoded_psbt = self.nodes[0].decodepsbt(psbtx_info["psbt"]) for tx_in, psbt_in in zip(decoded_psbt["tx"]["vin"], decoded_psbt["inputs"]): assert_greater_than(tx_in["sequence"], MAX_BIP125_RBF_SEQUENCE) assert "bip32_derivs" not in psbt_in assert_equal(decoded_psbt["tx"]["locktime"], block_height + 2) # Same construction with only locktime set and RBF explicitly enabled psbtx_info = self.nodes[0].walletcreatefundedpsbt( [{ "txid": unspent["txid"], "vout": unspent["vout"] }], [{ self.nodes[2].getnewaddress(): unspent["amount"] + 1 }], block_height, { "replaceable": True, "add_inputs": True }, True) decoded_psbt = self.nodes[0].decodepsbt(psbtx_info["psbt"]) for tx_in, psbt_in in zip(decoded_psbt["tx"]["vin"], decoded_psbt["inputs"]): assert_equal(tx_in["sequence"], MAX_BIP125_RBF_SEQUENCE) assert "bip32_derivs" in psbt_in assert_equal(decoded_psbt["tx"]["locktime"], block_height) # Same construction without optional arguments psbtx_info = self.nodes[0].walletcreatefundedpsbt( [], [{ self.nodes[2].getnewaddress(): unspent["amount"] + 1 }]) decoded_psbt = self.nodes[0].decodepsbt(psbtx_info["psbt"]) for tx_in, psbt_in in zip(decoded_psbt["tx"]["vin"], decoded_psbt["inputs"]): assert_equal(tx_in["sequence"], MAX_BIP125_RBF_SEQUENCE) assert "bip32_derivs" in psbt_in assert_equal(decoded_psbt["tx"]["locktime"], 0) # Same construction without optional arguments, for a node with -walletrbf=0 unspent1 = self.nodes[1].listunspent()[0] psbtx_info = self.nodes[1].walletcreatefundedpsbt( [{ "txid": unspent1["txid"], "vout": unspent1["vout"] }], [{ self.nodes[2].getnewaddress(): unspent1["amount"] + 1 }], block_height, {"add_inputs": True}) decoded_psbt = self.nodes[1].decodepsbt(psbtx_info["psbt"]) for tx_in, psbt_in in zip(decoded_psbt["tx"]["vin"], decoded_psbt["inputs"]): assert_greater_than(tx_in["sequence"], MAX_BIP125_RBF_SEQUENCE) assert "bip32_derivs" in psbt_in # Make sure change address wallet does not have P2SH innerscript access to results in success # when attempting BnB coin selection self.nodes[0].walletcreatefundedpsbt( [], [{ self.nodes[2].getnewaddress(): unspent["amount"] + 1 }], block_height + 2, {"changeAddress": self.nodes[1].getnewaddress()}, False) # Regression test for 14473 (mishandling of already-signed witness transaction): psbtx_info = self.nodes[0].walletcreatefundedpsbt( [{ "txid": unspent["txid"], "vout": unspent["vout"] }], [{ self.nodes[2].getnewaddress(): unspent["amount"] + 1 }], 0, {"add_inputs": True}) complete_psbt = self.nodes[0].walletprocesspsbt(psbtx_info["psbt"]) double_processed_psbt = self.nodes[0].walletprocesspsbt( complete_psbt["psbt"]) assert_equal(complete_psbt, double_processed_psbt) # We don't care about the decode result, but decoding must succeed. self.nodes[0].decodepsbt(double_processed_psbt["psbt"]) # BIP 174 Test Vectors # Check that unknown values are just passed through unknown_psbt = "cHNidP8BAD8CAAAAAf//////////////////////////////////////////AAAAAAD/////AQAAAAAAAAAAA2oBAAAAAAAACg8BAgMEBQYHCAkPAQIDBAUGBwgJCgsMDQ4PAAA=" unknown_out = self.nodes[0].walletprocesspsbt(unknown_psbt)['psbt'] assert_equal(unknown_psbt, unknown_out) # Open the data file with open(os.path.join(os.path.dirname(os.path.realpath(__file__)), 'data/rpc_psbt.json'), encoding='utf-8') as f: d = json.load(f) invalids = d['invalid'] valids = d['valid'] creators = d['creator'] signers = d['signer'] combiners = d['combiner'] finalizers = d['finalizer'] extractors = d['extractor'] # Invalid PSBTs for invalid in invalids: assert_raises_rpc_error(-22, "TX decode failed", self.nodes[0].decodepsbt, invalid) # Valid PSBTs for valid in valids: self.nodes[0].decodepsbt(valid) # Creator Tests for creator in creators: created_tx = self.nodes[0].createpsbt(creator['inputs'], creator['outputs']) assert_equal(created_tx, creator['result']) # Signer tests for i, signer in enumerate(signers): self.nodes[2].createwallet(wallet_name="wallet{}".format(i)) wrpc = self.nodes[2].get_wallet_rpc("wallet{}".format(i)) for key in signer['privkeys']: wrpc.importprivkey(key) signed_tx = wrpc.walletprocesspsbt(signer['psbt'])['psbt'] assert_equal(signed_tx, signer['result']) # Combiner test for combiner in combiners: combined = self.nodes[2].combinepsbt(combiner['combine']) assert_equal(combined, combiner['result']) # Empty combiner test assert_raises_rpc_error(-8, "Parameter 'txs' cannot be empty", self.nodes[0].combinepsbt, []) # Finalizer test for finalizer in finalizers: finalized = self.nodes[2].finalizepsbt(finalizer['finalize'], False)['psbt'] assert_equal(finalized, finalizer['result']) # Extractor test for extractor in extractors: extracted = self.nodes[2].finalizepsbt(extractor['extract'], True)['hex'] assert_equal(extracted, extractor['result']) # Unload extra wallets for i, signer in enumerate(signers): self.nodes[2].unloadwallet("wallet{}".format(i)) # TODO: Re-enable this for segwit v1 # self.test_utxo_conversion() # Test that psbts with p2pkh outputs are created properly p2pkh = self.nodes[0].getnewaddress(address_type='legacy') psbt = self.nodes[1].walletcreatefundedpsbt([], [{ p2pkh: 1 }], 0, {"includeWatching": True}, True) self.nodes[0].decodepsbt(psbt['psbt']) # Test decoding error: invalid base64 assert_raises_rpc_error(-22, "TX decode failed invalid base64", self.nodes[0].decodepsbt, ";definitely not base64;") # Send to all types of addresses addr1 = self.nodes[1].getnewaddress("", "bech32") txid1 = self.nodes[0].sendtoaddress(addr1, 11) vout1 = find_output(self.nodes[0], txid1, 11) addr2 = self.nodes[1].getnewaddress("", "legacy") txid2 = self.nodes[0].sendtoaddress(addr2, 11) vout2 = find_output(self.nodes[0], txid2, 11) addr3 = self.nodes[1].getnewaddress("", "p2sh-segwit") txid3 = self.nodes[0].sendtoaddress(addr3, 11) vout3 = find_output(self.nodes[0], txid3, 11) self.sync_all() def test_psbt_input_keys(psbt_input, keys): """Check that the psbt input has only the expected keys.""" assert_equal(set(keys), set(psbt_input.keys())) # Create a PSBT. None of the inputs are filled initially psbt = self.nodes[1].createpsbt([{ "txid": txid1, "vout": vout1 }, { "txid": txid2, "vout": vout2 }, { "txid": txid3, "vout": vout3 }], {self.nodes[0].getnewaddress(): 32.999}) decoded = self.nodes[1].decodepsbt(psbt) test_psbt_input_keys(decoded['inputs'][0], []) test_psbt_input_keys(decoded['inputs'][1], []) test_psbt_input_keys(decoded['inputs'][2], []) # Update a PSBT with UTXOs from the node # Bech32 inputs should be filled with witness UTXO. Other inputs should not be filled because they are non-witness updated = self.nodes[1].utxoupdatepsbt(psbt) decoded = self.nodes[1].decodepsbt(updated) test_psbt_input_keys(decoded['inputs'][0], ['witness_utxo']) test_psbt_input_keys(decoded['inputs'][1], []) test_psbt_input_keys(decoded['inputs'][2], []) # Try again, now while providing descriptors, making P2SH-segwit work, and causing bip32_derivs and redeem_script to be filled in descs = [ self.nodes[1].getaddressinfo(addr)['desc'] for addr in [addr1, addr2, addr3] ] updated = self.nodes[1].utxoupdatepsbt(psbt=psbt, descriptors=descs) decoded = self.nodes[1].decodepsbt(updated) test_psbt_input_keys(decoded['inputs'][0], ['witness_utxo', 'bip32_derivs']) test_psbt_input_keys(decoded['inputs'][1], []) test_psbt_input_keys(decoded['inputs'][2], ['witness_utxo', 'bip32_derivs', 'redeem_script']) # Two PSBTs with a common input should not be joinable psbt1 = self.nodes[1].createpsbt( [{ "txid": txid1, "vout": vout1 }], {self.nodes[0].getnewaddress(): Decimal('10.999')}) assert_raises_rpc_error(-8, "exists in multiple PSBTs", self.nodes[1].joinpsbts, [psbt1, updated]) # Join two distinct PSBTs addr4 = self.nodes[1].getnewaddress("", "p2sh-segwit") txid4 = self.nodes[0].sendtoaddress(addr4, 5) vout4 = find_output(self.nodes[0], txid4, 5) self.nodes[0].generate(6) self.sync_all() psbt2 = self.nodes[1].createpsbt( [{ "txid": txid4, "vout": vout4 }], {self.nodes[0].getnewaddress(): Decimal('4.999')}) psbt2 = self.nodes[1].walletprocesspsbt(psbt2)['psbt'] psbt2_decoded = self.nodes[0].decodepsbt(psbt2) assert "final_scriptwitness" in psbt2_decoded['inputs'][ 0] and "final_scriptSig" in psbt2_decoded['inputs'][0] joined = self.nodes[0].joinpsbts([psbt, psbt2]) joined_decoded = self.nodes[0].decodepsbt(joined) assert len(joined_decoded['inputs']) == 4 and len( joined_decoded['outputs'] ) == 2 and "final_scriptwitness" not in joined_decoded['inputs'][ 3] and "final_scriptSig" not in joined_decoded['inputs'][3] # Check that joining shuffles the inputs and outputs # 10 attempts should be enough to get a shuffled join shuffled = False for i in range(0, 10): shuffled_joined = self.nodes[0].joinpsbts([psbt, psbt2]) shuffled |= joined != shuffled_joined if shuffled: break assert shuffled # Newly created PSBT needs UTXOs and updating addr = self.nodes[1].getnewaddress("", "p2sh-segwit") txid = self.nodes[0].sendtoaddress(addr, 7) addrinfo = self.nodes[1].getaddressinfo(addr) blockhash = self.nodes[0].generate(6)[0] self.sync_all() vout = find_output(self.nodes[0], txid, 7, blockhash=blockhash) psbt = self.nodes[1].createpsbt( [{ "txid": txid, "vout": vout }], {self.nodes[0].getnewaddress("", "p2sh-segwit"): Decimal('6.999')}) analyzed = self.nodes[0].analyzepsbt(psbt) assert not analyzed['inputs'][0]['has_utxo'] and not analyzed[ 'inputs'][0]['is_final'] and analyzed['inputs'][0][ 'next'] == 'updater' and analyzed['next'] == 'updater' # After update with wallet, only needs signing updated = self.nodes[1].walletprocesspsbt(psbt, False, 'ALL', True)['psbt'] analyzed = self.nodes[0].analyzepsbt(updated) assert analyzed['inputs'][0][ 'has_utxo'] and not analyzed['inputs'][0]['is_final'] and analyzed[ 'inputs'][0]['next'] == 'signer' and analyzed[ 'next'] == 'signer' and analyzed['inputs'][0]['missing'][ 'signatures'][0] == addrinfo['embedded'][ 'witness_program'] # Check fee and size things assert analyzed['fee'] == Decimal( '0.001') and analyzed['estimated_vsize'] == 134 and analyzed[ 'estimated_feerate'] == Decimal('0.00746268') # After signing and finalizing, needs extracting signed = self.nodes[1].walletprocesspsbt(updated)['psbt'] analyzed = self.nodes[0].analyzepsbt(signed) assert analyzed['inputs'][0]['has_utxo'] and analyzed['inputs'][0][ 'is_final'] and analyzed['next'] == 'extractor' self.log.info( "PSBT spending unspendable outputs should have error message and Creator as next" ) analysis = self.nodes[0].analyzepsbt( 'cHNidP8BAJoCAAAAAljoeiG1ba8MI76OcHBFbDNvfLqlyHV5JPVFiHuyq911AAAAAAD/////g40EJ9DsZQpoqka7CwmK6kQiwHGyyng1Kgd5WdB86h0BAAAAAP////8CcKrwCAAAAAAWAEHYXCtx0AYLCcmIauuBXlCZHdoSTQDh9QUAAAAAFv8/wADXYP/7//////8JxOh0LR2HAI8AAAAAAAEBIADC6wsAAAAAF2oUt/X69ELjeX2nTof+fZ10l+OyAokDAQcJAwEHEAABAACAAAEBIADC6wsAAAAAF2oUt/X69ELjeX2nTof+fZ10l+OyAokDAQcJAwEHENkMak8AAAAA' ) assert_equal(analysis['next'], 'creator') assert_equal(analysis['error'], 'PSBT is not valid. Input 0 spends unspendable output') self.log.info( "PSBT with invalid values should have error message and Creator as next" ) analysis = self.nodes[0].analyzepsbt( 'cHNidP8BAHECAAAAAfA00BFgAm6tp86RowwH6BMImQNL5zXUcTT97XoLGz0BAAAAAAD/////AgD5ApUAAAAAFgAUKNw0x8HRctAgmvoevm4u1SbN7XL87QKVAAAAABYAFPck4gF7iL4NL4wtfRAKgQbghiTUAAAAAAABAR8AgIFq49AHABYAFJUDtxf2PHo641HEOBOAIvFMNTr2AAAA' ) assert_equal(analysis['next'], 'creator') assert_equal(analysis['error'], 'PSBT is not valid. Input 0 has invalid value') self.log.info( "PSBT with signed, but not finalized, inputs should have Finalizer as next" ) analysis = self.nodes[0].analyzepsbt( 'cHNidP8BAHECAAAAAZYezcxdnbXoQCmrD79t/LzDgtUo9ERqixk8wgioAobrAAAAAAD9////AlDDAAAAAAAAFgAUy/UxxZuzZswcmFnN/E9DGSiHLUsuGPUFAAAAABYAFLsH5o0R38wXx+X2cCosTMCZnQ4baAAAAAABAR8A4fUFAAAAABYAFOBI2h5thf3+Lflb2LGCsVSZwsltIgIC/i4dtVARCRWtROG0HHoGcaVklzJUcwo5homgGkSNAnJHMEQCIGx7zKcMIGr7cEES9BR4Kdt/pzPTK3fKWcGyCJXb7MVnAiALOBgqlMH4GbC1HDh/HmylmO54fyEy4lKde7/BT/PWxwEBAwQBAAAAIgYC/i4dtVARCRWtROG0HHoGcaVklzJUcwo5homgGkSNAnIYDwVpQ1QAAIABAACAAAAAgAAAAAAAAAAAAAAiAgL+CIiB59NSCssOJRGiMYQK1chahgAaaJpIXE41Cyir+xgPBWlDVAAAgAEAAIAAAACAAQAAAAAAAAAA' ) assert_equal(analysis['next'], 'finalizer') analysis = self.nodes[0].analyzepsbt( 'cHNidP8BAHECAAAAAfA00BFgAm6tp86RowwH6BMImQNL5zXUcTT97XoLGz0BAAAAAAD/////AgCAgWrj0AcAFgAUKNw0x8HRctAgmvoevm4u1SbN7XL87QKVAAAAABYAFPck4gF7iL4NL4wtfRAKgQbghiTUAAAAAAABAR8A8gUqAQAAABYAFJUDtxf2PHo641HEOBOAIvFMNTr2AAAA' ) assert_equal(analysis['next'], 'creator') assert_equal(analysis['error'], 'PSBT is not valid. Output amount invalid') analysis = self.nodes[0].analyzepsbt( 'cHNidP8BAJoCAAAAAkvEW8NnDtdNtDpsmze+Ht2LH35IJcKv00jKAlUs21RrAwAAAAD/////S8Rbw2cO1020OmybN74e3Ysffkglwq/TSMoCVSzbVGsBAAAAAP7///8CwLYClQAAAAAWABSNJKzjaUb3uOxixsvh1GGE3fW7zQD5ApUAAAAAFgAUKNw0x8HRctAgmvoevm4u1SbN7XIAAAAAAAEAnQIAAAACczMa321tVHuN4GKWKRncycI22aX3uXgwSFUKM2orjRsBAAAAAP7///9zMxrfbW1Ue43gYpYpGdzJwjbZpfe5eDBIVQozaiuNGwAAAAAA/v///wIA+QKVAAAAABl2qRT9zXUVA8Ls5iVqynLHe5/vSe1XyYisQM0ClQAAAAAWABRmWQUcjSjghQ8/uH4Bn/zkakwLtAAAAAAAAQEfQM0ClQAAAAAWABRmWQUcjSjghQ8/uH4Bn/zkakwLtAAAAA==' ) assert_equal(analysis['next'], 'creator') assert_equal(analysis['error'], 'PSBT is not valid. Input 0 specifies invalid prevout') assert_raises_rpc_error( -25, 'Inputs missing or spent', self.nodes[0].walletprocesspsbt, 'cHNidP8BAJoCAAAAAkvEW8NnDtdNtDpsmze+Ht2LH35IJcKv00jKAlUs21RrAwAAAAD/////S8Rbw2cO1020OmybN74e3Ysffkglwq/TSMoCVSzbVGsBAAAAAP7///8CwLYClQAAAAAWABSNJKzjaUb3uOxixsvh1GGE3fW7zQD5ApUAAAAAFgAUKNw0x8HRctAgmvoevm4u1SbN7XIAAAAAAAEAnQIAAAACczMa321tVHuN4GKWKRncycI22aX3uXgwSFUKM2orjRsBAAAAAP7///9zMxrfbW1Ue43gYpYpGdzJwjbZpfe5eDBIVQozaiuNGwAAAAAA/v///wIA+QKVAAAAABl2qRT9zXUVA8Ls5iVqynLHe5/vSe1XyYisQM0ClQAAAAAWABRmWQUcjSjghQ8/uH4Bn/zkakwLtAAAAAAAAQEfQM0ClQAAAAAWABRmWQUcjSjghQ8/uH4Bn/zkakwLtAAAAA==' )
# Node 0 shields to Node 3, a coinbase utxo of value 10.0 less fee 0.00010000 zsendamount = Decimal('10.0') - Decimal('0.0001') recipients = [] recipients.append({"address": zaddr3, "amount": zsendamount}) myopid = self.nodes[0].z_sendmany(taddr0, recipients) txid_shielded = wait_and_assert_operationid_status( self.nodes[0], myopid) # Mine the first Overwinter block self.sync_all() self.nodes[0].generate(1) self.sync_all() bci = self.nodes[0].getblockchaininfo() # size_on_disk should be > 0 assert_greater_than(bci['size_on_disk'], 0) assert_equal(bci['consensus']['chaintip'], '5ba81b19') assert_equal(bci['consensus']['nextblock'], '5ba81b19') assert_equal(bci['upgrades']['5ba81b19']['status'], 'active') # Verify balance assert_equal(self.nodes[1].z_getbalance(taddr1), Decimal('1.0')) assert_equal(self.nodes[3].getbalance(), Decimal('0.4999')) assert_equal(self.nodes[3].z_getbalance(zaddr3), zsendamount) # Verify transaction version is 3 (intended for Overwinter) result = self.nodes[0].getrawtransaction(txid_transparent, 1) assert_equal(result["version"], 3) assert_equal(result["overwintered"], True) assert_equal(result["versiongroupid"], "03c48270")
def run_test(self): passphrase = "WalletPassphrase" passphrase2 = "SecondWalletPassphrase" # Make sure the wallet isn't encrypted first address = self.nodes[0].getnewaddress() privkey = self.nodes[0].dumpprivkey(address) assert_equal(privkey[:1], "c") assert_equal(len(privkey), 52) assert_raises_rpc_error( -15, "Error: running with an unencrypted wallet, but walletpassphrase was called", self.nodes[0].walletpassphrase, 'ff', 1) assert_raises_rpc_error( -15, "Error: running with an unencrypted wallet, but walletpassphrasechange was called.", self.nodes[0].walletpassphrasechange, 'ff', 'ff') # Encrypt the wallet assert_raises_rpc_error(-8, "passphrase can not be empty", self.nodes[0].encryptwallet, '') self.nodes[0].encryptwallet(passphrase) # Test that the wallet is encrypted assert_raises_rpc_error( -13, "Please enter the wallet passphrase with walletpassphrase first", self.nodes[0].dumpprivkey, address) assert_raises_rpc_error( -15, "Error: running with an encrypted wallet, but encryptwallet was called.", self.nodes[0].encryptwallet, 'ff') assert_raises_rpc_error(-8, "passphrase can not be empty", self.nodes[0].walletpassphrase, '', 1) assert_raises_rpc_error(-8, "passphrase can not be empty", self.nodes[0].walletpassphrasechange, '', 'ff') # Check that walletpassphrase works self.nodes[0].walletpassphrase(passphrase, 2) assert_equal(privkey, self.nodes[0].dumpprivkey(address)) # Check that the timeout is right time.sleep(2) assert_raises_rpc_error( -13, "Please enter the wallet passphrase with walletpassphrase first", self.nodes[0].dumpprivkey, address) # Test wrong passphrase assert_raises_rpc_error(-14, "wallet passphrase entered was incorrect", self.nodes[0].walletpassphrase, passphrase + "wrong", 10) # Test walletlock self.nodes[0].walletpassphrase(passphrase, 84600) assert_equal(privkey, self.nodes[0].dumpprivkey(address)) self.nodes[0].walletlock() assert_raises_rpc_error( -13, "Please enter the wallet passphrase with walletpassphrase first", self.nodes[0].dumpprivkey, address) # Test passphrase changes self.nodes[0].walletpassphrasechange(passphrase, passphrase2) assert_raises_rpc_error(-14, "wallet passphrase entered was incorrect", self.nodes[0].walletpassphrase, passphrase, 10) self.nodes[0].walletpassphrase(passphrase2, 10) assert_equal(privkey, self.nodes[0].dumpprivkey(address)) self.nodes[0].walletlock() # Test timeout bounds assert_raises_rpc_error(-8, "Timeout cannot be negative.", self.nodes[0].walletpassphrase, passphrase2, -10) # Check the timeout # Check a time less than the limit MAX_VALUE = 100000000 expected_time = int(time.time()) + MAX_VALUE - 600 self.nodes[0].walletpassphrase(passphrase2, MAX_VALUE - 600) actual_time = self.nodes[0].getwalletinfo()['unlocked_until'] assert_greater_than_or_equal(actual_time, expected_time) assert_greater_than(expected_time + 5, actual_time) # 5 second buffer # Check a time greater than the limit expected_time = int(time.time()) + MAX_VALUE - 1 self.nodes[0].walletpassphrase(passphrase2, MAX_VALUE + 1000) actual_time = self.nodes[0].getwalletinfo()['unlocked_until'] assert_greater_than_or_equal(actual_time, expected_time) assert_greater_than(expected_time + 5, actual_time) # 5 second buffer
def nameHistoryWrapper (name, *opt): res = self.node.name_history (name, *opt) assert_greater_than (len (res), 0) return res[-1]
def test_watchonly_psbt(self, peer_node, rbf_node, dest_address): self.log.info( 'Test that PSBT is returned for bumpfee in watchonly wallets') priv_rec_desc = "wpkh([00000001/84'/1'/0']tprv8ZgxMBicQKsPd7Uf69XL1XwhmjHopUGep8GuEiJDZmbQz6o58LninorQAfcKZWARbtRtfnLcJ5MQ2AtHcQJCCRUcMRvmDUjyEmNUWwx8UbK/0/*)#rweraev0" pub_rec_desc = rbf_node.getdescriptorinfo(priv_rec_desc)["descriptor"] priv_change_desc = "wpkh([00000001/84'/1'/0']tprv8ZgxMBicQKsPd7Uf69XL1XwhmjHopUGep8GuEiJDZmbQz6o58LninorQAfcKZWARbtRtfnLcJ5MQ2AtHcQJCCRUcMRvmDUjyEmNUWwx8UbK/1/*)#j6uzqvuh" pub_change_desc = rbf_node.getdescriptorinfo( priv_change_desc)["descriptor"] # Create a wallet with private keys that can sign PSBTs rbf_node.createwallet(wallet_name="signer", disable_private_keys=False, blank=True) signer = rbf_node.get_wallet_rpc("signer") assert signer.getwalletinfo()['private_keys_enabled'] reqs = [ { "desc": priv_rec_desc, "timestamp": 0, "range": [0, 1], "internal": False, "keypool": False # Keys can only be imported to the keypool when private keys are disabled }, { "desc": priv_change_desc, "timestamp": 0, "range": [0, 0], "internal": True, "keypool": False } ] if self.options.descriptors: result = signer.importdescriptors(reqs) else: result = signer.importmulti(reqs) assert_equal(result, [{'success': True}, {'success': True}]) # Create another wallet with just the public keys, which creates PSBTs rbf_node.createwallet(wallet_name="watcher", disable_private_keys=True, blank=True) watcher = rbf_node.get_wallet_rpc("watcher") assert not watcher.getwalletinfo()['private_keys_enabled'] reqs = [{ "desc": pub_rec_desc, "timestamp": 0, "range": [0, 10], "internal": False, "keypool": True, "watchonly": True, "active": True, }, { "desc": pub_change_desc, "timestamp": 0, "range": [0, 10], "internal": True, "keypool": True, "watchonly": True, "active": True, }] if self.options.descriptors: result = watcher.importdescriptors(reqs) else: result = watcher.importmulti(reqs) assert_equal(result, [{'success': True}, {'success': True}]) funding_address1 = watcher.getnewaddress(address_type='bech32') funding_address2 = watcher.getnewaddress(address_type='bech32') peer_node.sendmany("", {funding_address1: 0.001, funding_address2: 0.001}) peer_node.generate(1) self.sync_all() # Create single-input PSBT for transaction to be bumped psbt = watcher.walletcreatefundedpsbt([], {dest_address: 0.0005}, 0, {"fee_rate": 1}, True)['psbt'] psbt_signed = signer.walletprocesspsbt(psbt=psbt, sign=True, sighashtype="ALL", bip32derivs=True) psbt_final = watcher.finalizepsbt(psbt_signed["psbt"]) original_txid = watcher.sendrawtransaction(psbt_final["hex"]) assert_equal(len(watcher.decodepsbt(psbt)["tx"]["vin"]), 1) # bumpfee can't be used on watchonly wallets assert_raises_rpc_error( -4, "bumpfee is not available with wallets that have private keys disabled. Use psbtbumpfee instead.", watcher.bumpfee, original_txid) # Bump fee, obnoxiously high to add additional watchonly input bumped_psbt = watcher.psbtbumpfee(original_txid, {"fee_rate": HIGH}) assert_greater_than( len(watcher.decodepsbt(bumped_psbt['psbt'])["tx"]["vin"]), 1) assert "txid" not in bumped_psbt assert_equal(bumped_psbt["origfee"], -watcher.gettransaction(original_txid)["fee"]) assert not watcher.finalizepsbt(bumped_psbt["psbt"])["complete"] # Sign bumped transaction bumped_psbt_signed = signer.walletprocesspsbt(psbt=bumped_psbt["psbt"], sign=True, sighashtype="ALL", bip32derivs=True) bumped_psbt_final = watcher.finalizepsbt(bumped_psbt_signed["psbt"]) assert bumped_psbt_final["complete"] # Broadcast bumped transaction bumped_txid = watcher.sendrawtransaction(bumped_psbt_final["hex"]) assert bumped_txid in rbf_node.getrawmempool() assert original_txid not in rbf_node.getrawmempool() rbf_node.unloadwallet("watcher") rbf_node.unloadwallet("signer") self.clear_mempool()
def run_test(self): self.log.info( 'prepare some coins for multiple *rawtransaction commands') self.nodes[2].generate(1) self.sync_all() self.nodes[0].generate(101) self.sync_all() self.nodes[0].sendtoaddress(self.nodes[2].getnewaddress(), 1500000) self.nodes[0].sendtoaddress(self.nodes[2].getnewaddress(), 1000000) self.nodes[0].sendtoaddress(self.nodes[2].getnewaddress(), 5000000) self.sync_all() self.nodes[0].generate(5) self.sync_all() self.log.info( 'Test getrawtransaction on genesis block coinbase returns an error' ) block = self.nodes[0].getblock(self.nodes[0].getblockhash(0)) assert_raises_rpc_error( -5, "The genesis block coinbase is not considered an ordinary transaction", self.nodes[0].getrawtransaction, block['merkleroot']) self.log.info( 'Check parameter types and required parameters of createrawtransaction' ) # Test `createrawtransaction` required parameters assert_raises_rpc_error(-1, "createrawtransaction", self.nodes[0].createrawtransaction) assert_raises_rpc_error(-1, "createrawtransaction", self.nodes[0].createrawtransaction, []) # Test `createrawtransaction` invalid extra parameters assert_raises_rpc_error(-1, "createrawtransaction", self.nodes[0].createrawtransaction, [], {}, 0, 'foo') # Test `createrawtransaction` invalid `inputs` txid = '1d1d4e24ed99057e84c3f80fd8fbec79ed9e1acee37da269356ecea000000000' assert_raises_rpc_error(-3, "Expected type array", self.nodes[0].createrawtransaction, 'foo', {}) assert_raises_rpc_error(-1, "JSON value is not an object as expected", self.nodes[0].createrawtransaction, ['foo'], {}) assert_raises_rpc_error(-1, "JSON value is not a string as expected", self.nodes[0].createrawtransaction, [{}], {}) assert_raises_rpc_error( -8, "txid must be of length 64 (not 3, for 'foo')", self.nodes[0].createrawtransaction, [{ 'txid': 'foo' }], {}) assert_raises_rpc_error( -8, "txid must be hexadecimal string (not 'ZZZ7bb8b1697ea987f3b223ba7819250cae33efacb068d23dc24859824a77844')", self.nodes[0].createrawtransaction, [{ 'txid': 'ZZZ7bb8b1697ea987f3b223ba7819250cae33efacb068d23dc24859824a77844' }], {}) assert_raises_rpc_error(-8, "Invalid parameter, missing vout key", self.nodes[0].createrawtransaction, [{ 'txid': txid }], {}) assert_raises_rpc_error(-8, "Invalid parameter, vout must be a number", self.nodes[0].createrawtransaction, [{ 'txid': txid, 'vout': 'foo' }], {}) assert_raises_rpc_error(-8, "Invalid parameter, vout must be positive", self.nodes[0].createrawtransaction, [{ 'txid': txid, 'vout': -1 }], {}) assert_raises_rpc_error( -8, "Invalid parameter, sequence number is out of range", self.nodes[0].createrawtransaction, [{ 'txid': txid, 'vout': 0, 'sequence': -1 }], {}) # Test `createrawtransaction` invalid `outputs` address = self.nodes[0].getnewaddress() address2 = self.nodes[0].getnewaddress() assert_raises_rpc_error(-1, "JSON value is not an array as expected", self.nodes[0].createrawtransaction, [], 'foo') # Should not throw for backwards compatibility self.nodes[0].createrawtransaction(inputs=[], outputs={}) self.nodes[0].createrawtransaction(inputs=[], outputs=[]) assert_raises_rpc_error(-8, "Data must be hexadecimal string", self.nodes[0].createrawtransaction, [], {'data': 'foo'}) assert_raises_rpc_error(-5, "Invalid Bitcoin address", self.nodes[0].createrawtransaction, [], {'foo': 0}) assert_raises_rpc_error(-3, "Invalid amount", self.nodes[0].createrawtransaction, [], {address: 'foo'}) assert_raises_rpc_error(-3, "Amount out of range", self.nodes[0].createrawtransaction, [], {address: -1}) assert_raises_rpc_error( -8, "Invalid parameter, duplicated address: {}".format(address), self.nodes[0].createrawtransaction, [], multidict([(address, 1), (address, 1)])) assert_raises_rpc_error( -8, "Invalid parameter, duplicated address: {}".format(address), self.nodes[0].createrawtransaction, [], [{ address: 1 }, { address: 1 }]) assert_raises_rpc_error(-8, "Invalid parameter, duplicate key: data", self.nodes[0].createrawtransaction, [], [{ "data": 'aa' }, { "data": "bb" }]) assert_raises_rpc_error(-8, "Invalid parameter, duplicate key: data", self.nodes[0].createrawtransaction, [], multidict([("data", 'aa'), ("data", "bb")])) assert_raises_rpc_error( -8, "Invalid parameter, key-value pair must contain exactly one key", self.nodes[0].createrawtransaction, [], [{ 'a': 1, 'b': 2 }]) assert_raises_rpc_error( -8, "Invalid parameter, key-value pair not an object as expected", self.nodes[0].createrawtransaction, [], [['key-value pair1'], ['2']]) # Test `createrawtransaction` invalid `locktime` assert_raises_rpc_error(-3, "Expected type number", self.nodes[0].createrawtransaction, [], {}, 'foo') assert_raises_rpc_error(-8, "Invalid parameter, locktime out of range", self.nodes[0].createrawtransaction, [], {}, -1) assert_raises_rpc_error(-8, "Invalid parameter, locktime out of range", self.nodes[0].createrawtransaction, [], {}, 4294967296) self.log.info( 'Check that createrawtransaction accepts an array and object as outputs' ) tx = CTransaction() # One output tx.deserialize( BytesIO( hex_str_to_bytes(self.nodes[2].createrawtransaction( inputs=[{ 'txid': txid, 'vout': 9 }], outputs={address: 99})))) assert_equal(len(tx.vout), 1) assert_equal( tx.serialize().hex(), self.nodes[2].createrawtransaction(inputs=[{ 'txid': txid, 'vout': 9 }], outputs=[{ address: 99 }]), ) # Two outputs tx.deserialize( BytesIO( hex_str_to_bytes(self.nodes[2].createrawtransaction( inputs=[{ 'txid': txid, 'vout': 9 }], outputs=OrderedDict([(address, 99), (address2, 99)]))))) assert_equal(len(tx.vout), 2) assert_equal( tx.serialize().hex(), self.nodes[2].createrawtransaction(inputs=[{ 'txid': txid, 'vout': 9 }], outputs=[{ address: 99 }, { address2: 99 }]), ) # Multiple mixed outputs tx.deserialize( BytesIO( hex_str_to_bytes(self.nodes[2].createrawtransaction( inputs=[{ 'txid': txid, 'vout': 9 }], outputs=multidict([(address, 99), (address2, 99), ('data', '99')]))))) assert_equal(len(tx.vout), 3) assert_equal( tx.serialize().hex(), self.nodes[2].createrawtransaction(inputs=[{ 'txid': txid, 'vout': 9 }], outputs=[{ address: 99 }, { address2: 99 }, { 'data': '99' }]), ) for type in ["legacy"]: addr = self.nodes[0].getnewaddress("", type) addrinfo = self.nodes[0].getaddressinfo(addr) pubkey = addrinfo["scriptPubKey"] self.log.info( 'sendrawtransaction with missing prevtx info ({})'.format( type)) # Test `signrawtransactionwithwallet` invalid `prevtxs` inputs = [{'txid': txid, 'vout': 3, 'sequence': 1000}] outputs = {self.nodes[0].getnewaddress(): 1} rawtx = self.nodes[0].createrawtransaction(inputs, outputs) prevtx = dict(txid=txid, scriptPubKey=pubkey, vout=3, amount=1) succ = self.nodes[0].signrawtransactionwithwallet(rawtx, [prevtx]) assert succ["complete"] assert_raises_rpc_error(-8, "Missing amount", self.nodes[0].signrawtransactionwithwallet, rawtx, [{ "txid": txid, "scriptPubKey": pubkey, "vout": 3, }]) assert_raises_rpc_error(-3, "Missing vout", self.nodes[0].signrawtransactionwithwallet, rawtx, [{ "txid": txid, "scriptPubKey": pubkey, "amount": 1, }]) assert_raises_rpc_error(-3, "Missing txid", self.nodes[0].signrawtransactionwithwallet, rawtx, [{ "scriptPubKey": pubkey, "vout": 3, "amount": 1, }]) assert_raises_rpc_error(-3, "Missing scriptPubKey", self.nodes[0].signrawtransactionwithwallet, rawtx, [{ "txid": txid, "vout": 3, "amount": 1 }]) ######################################### # sendrawtransaction with missing input # ######################################### self.log.info('sendrawtransaction with missing input') # won't exists inputs = [{ 'txid': "1d1d4e24ed99057e84c3f80fd8fbec79ed9e1acee37da269356ecea000000000", 'vout': 1 }] outputs = {self.nodes[0].getnewaddress(): 4998000} rawtx = self.nodes[2].createrawtransaction(inputs, outputs) rawtx = pad_raw_tx(rawtx) rawtx = self.nodes[2].signrawtransactionwithwallet(rawtx) # This will raise an exception since there are missing inputs assert_raises_rpc_error(-25, "bad-txns-inputs-missingorspent", self.nodes[2].sendrawtransaction, rawtx['hex']) ##################################### # getrawtransaction with block hash # ##################################### # make a tx by sending then generate 2 blocks; block1 has the tx in it tx = self.nodes[2].sendtoaddress(self.nodes[1].getnewaddress(), 1000000) block1, block2 = self.nodes[2].generate(2) self.sync_all() # We should be able to get the raw transaction by providing the correct # block gottx = self.nodes[0].getrawtransaction(tx, True, block1) assert_equal(gottx['txid'], tx) assert_equal(gottx['in_active_chain'], True) # We should not have the 'in_active_chain' flag when we don't provide a # block gottx = self.nodes[0].getrawtransaction(tx, True) assert_equal(gottx['txid'], tx) assert 'in_active_chain' not in gottx # We should not get the tx if we provide an unrelated block assert_raises_rpc_error(-5, "No such transaction found", self.nodes[0].getrawtransaction, tx, True, block2) # An invalid block hash should raise the correct errors assert_raises_rpc_error(-1, "JSON value is not a string as expected", self.nodes[0].getrawtransaction, tx, True, True) assert_raises_rpc_error( -8, "parameter 3 must be of length 64 (not 6, for 'foobar')", self.nodes[0].getrawtransaction, tx, True, "foobar") assert_raises_rpc_error( -8, "parameter 3 must be of length 64 (not 8, for 'abcd1234')", self.nodes[0].getrawtransaction, tx, True, "abcd1234") assert_raises_rpc_error( -8, "parameter 3 must be hexadecimal string (not 'ZZZ0000000000000000000000000000000000000000000000000000000000000')", self.nodes[0].getrawtransaction, tx, True, "ZZZ0000000000000000000000000000000000000000000000000000000000000") assert_raises_rpc_error( -5, "Block hash not found", self.nodes[0].getrawtransaction, tx, True, "0000000000000000000000000000000000000000000000000000000000000000") # Undo the blocks and check in_active_chain self.nodes[0].invalidateblock(block1) gottx = self.nodes[0].getrawtransaction(txid=tx, verbose=True, blockhash=block1) assert_equal(gottx['in_active_chain'], False) self.nodes[0].reconsiderblock(block1) assert_equal(self.nodes[0].getbestblockhash(), block2) # # RAW TX MULTISIG TESTS # # # 2of2 test addr1 = self.nodes[2].getnewaddress() addr2 = self.nodes[2].getnewaddress() addr1Obj = self.nodes[2].getaddressinfo(addr1) addr2Obj = self.nodes[2].getaddressinfo(addr2) # Tests for createmultisig and addmultisigaddress assert_raises_rpc_error(-5, "Invalid public key", self.nodes[0].createmultisig, 1, ["01020304"]) # createmultisig can only take public keys self.nodes[0].createmultisig(2, [addr1Obj['pubkey'], addr2Obj['pubkey']]) # addmultisigaddress can take both pubkeys and addresses so long as # they are in the wallet, which is tested here. assert_raises_rpc_error(-5, "Invalid public key", self.nodes[0].createmultisig, 2, [addr1Obj['pubkey'], addr1]) mSigObj = self.nodes[2].addmultisigaddress( 2, [addr1Obj['pubkey'], addr1])['address'] # use balance deltas instead of absolute values bal = self.nodes[2].getbalance() # send 1.2 BCH to msig adr txId = self.nodes[0].sendtoaddress(mSigObj, 1200000) self.sync_all() self.nodes[0].generate(1) self.sync_all() # node2 has both keys of the 2of2 ms addr., tx should affect the # balance assert_equal(self.nodes[2].getbalance(), bal + Decimal('1200000.00')) # 2of3 test from different nodes bal = self.nodes[2].getbalance() addr1 = self.nodes[1].getnewaddress() addr2 = self.nodes[2].getnewaddress() addr3 = self.nodes[2].getnewaddress() addr1Obj = self.nodes[1].getaddressinfo(addr1) addr2Obj = self.nodes[2].getaddressinfo(addr2) addr3Obj = self.nodes[2].getaddressinfo(addr3) mSigObj = self.nodes[2].addmultisigaddress( 2, [addr1Obj['pubkey'], addr2Obj['pubkey'], addr3Obj['pubkey'] ])['address'] txId = self.nodes[0].sendtoaddress(mSigObj, 2200000) decTx = self.nodes[0].gettransaction(txId) rawTx = self.nodes[0].decoderawtransaction(decTx['hex']) self.sync_all() self.nodes[0].generate(1) self.sync_all() # THIS IS AN INCOMPLETE FEATURE # NODE2 HAS TWO OF THREE KEY AND THE FUNDS SHOULD BE SPENDABLE AND # COUNT AT BALANCE CALCULATION # for now, assume the funds of a 2of3 multisig tx are not marked as # spendable assert_equal(self.nodes[2].getbalance(), bal) txDetails = self.nodes[0].gettransaction(txId, True) rawTx = self.nodes[0].decoderawtransaction(txDetails['hex']) vout = next(o for o in rawTx['vout'] if o['value'] == Decimal('2200000.00')) bal = self.nodes[0].getbalance() inputs = [{ "txid": txId, "vout": vout['n'], "scriptPubKey": vout['scriptPubKey']['hex'], "amount": vout['value'], }] outputs = {self.nodes[0].getnewaddress(): 2190000} rawTx = self.nodes[2].createrawtransaction(inputs, outputs) rawTxPartialSigned = self.nodes[1].signrawtransactionwithwallet( rawTx, inputs) # node1 only has one key, can't comp. sign the tx assert_equal(rawTxPartialSigned['complete'], False) rawTxSigned = self.nodes[2].signrawtransactionwithwallet(rawTx, inputs) # node2 can sign the tx compl., own two of three keys assert_equal(rawTxSigned['complete'], True) self.nodes[2].sendrawtransaction(rawTxSigned['hex']) rawTx = self.nodes[0].decoderawtransaction(rawTxSigned['hex']) self.sync_all() self.nodes[0].generate(1) self.sync_all() assert_equal(self.nodes[0].getbalance(), bal + Decimal('50000000.00') + Decimal('2190000.00')) # block reward + tx rawTxBlock = self.nodes[0].getblock(self.nodes[0].getbestblockhash()) # 2of2 test for combining transactions bal = self.nodes[2].getbalance() addr1 = self.nodes[1].getnewaddress() addr2 = self.nodes[2].getnewaddress() addr1Obj = self.nodes[1].getaddressinfo(addr1) addr2Obj = self.nodes[2].getaddressinfo(addr2) self.nodes[1].addmultisigaddress( 2, [addr1Obj['pubkey'], addr2Obj['pubkey']])['address'] mSigObj = self.nodes[2].addmultisigaddress( 2, [addr1Obj['pubkey'], addr2Obj['pubkey']])['address'] mSigObjValid = self.nodes[2].getaddressinfo(mSigObj) txId = self.nodes[0].sendtoaddress(mSigObj, 2200000) decTx = self.nodes[0].gettransaction(txId) rawTx2 = self.nodes[0].decoderawtransaction(decTx['hex']) self.sync_all() self.nodes[0].generate(1) self.sync_all() # the funds of a 2of2 multisig tx should not be marked as spendable assert_equal(self.nodes[2].getbalance(), bal) txDetails = self.nodes[0].gettransaction(txId, True) rawTx2 = self.nodes[0].decoderawtransaction(txDetails['hex']) vout = next(o for o in rawTx2['vout'] if o['value'] == Decimal('2200000.00')) bal = self.nodes[0].getbalance() inputs = [{ "txid": txId, "vout": vout['n'], "scriptPubKey": vout['scriptPubKey']['hex'], "redeemScript": mSigObjValid['hex'], "amount": vout['value'] }] outputs = {self.nodes[0].getnewaddress(): 2190000} rawTx2 = self.nodes[2].createrawtransaction(inputs, outputs) rawTxPartialSigned1 = self.nodes[1].signrawtransactionwithwallet( rawTx2, inputs) self.log.debug(rawTxPartialSigned1) # node1 only has one key, can't comp. sign the tx assert_equal(rawTxPartialSigned1['complete'], False) rawTxPartialSigned2 = self.nodes[2].signrawtransactionwithwallet( rawTx2, inputs) self.log.debug(rawTxPartialSigned2) # node2 only has one key, can't comp. sign the tx assert_equal(rawTxPartialSigned2['complete'], False) rawTxComb = self.nodes[2].combinerawtransaction( [rawTxPartialSigned1['hex'], rawTxPartialSigned2['hex']]) self.log.debug(rawTxComb) self.nodes[2].sendrawtransaction(rawTxComb) rawTx2 = self.nodes[0].decoderawtransaction(rawTxComb) self.sync_all() self.nodes[0].generate(1) self.sync_all() assert_equal(self.nodes[0].getbalance(), bal + Decimal('50000000.00') + Decimal('2190000.00')) # block reward + tx # getrawtransaction tests # 1. valid parameters - only supply txid txId = rawTx["txid"] assert_equal(self.nodes[0].getrawtransaction(txId), rawTxSigned['hex']) # 2. valid parameters - supply txid and 0 for non-verbose assert_equal(self.nodes[0].getrawtransaction(txId, 0), rawTxSigned['hex']) # 3. valid parameters - supply txid and False for non-verbose assert_equal(self.nodes[0].getrawtransaction(txId, False), rawTxSigned['hex']) # 4. valid parameters - supply txid and 1 for verbose. # We only check the "hex" field of the output so we don't need to # update this test every time the output format changes. assert_equal(self.nodes[0].getrawtransaction(txId, 1)["hex"], rawTxSigned['hex']) # 5. valid parameters - supply txid and True for non-verbose assert_equal(self.nodes[0].getrawtransaction(txId, True)["hex"], rawTxSigned['hex']) # 6. invalid parameters - supply txid and string "Flase" assert_raises_rpc_error(-1, "not a boolean", self.nodes[0].getrawtransaction, txId, "Flase") # 7. invalid parameters - supply txid and empty array assert_raises_rpc_error(-1, "not a boolean", self.nodes[0].getrawtransaction, txId, []) # 8. invalid parameters - supply txid and empty dict assert_raises_rpc_error(-1, "not a boolean", self.nodes[0].getrawtransaction, txId, {}) # Sanity checks on verbose getrawtransaction output rawTxOutput = self.nodes[0].getrawtransaction(txId, True) assert_equal(rawTxOutput["hex"], rawTxSigned["hex"]) assert_equal(rawTxOutput["txid"], txId) assert_equal(rawTxOutput["hash"], txId) assert_greater_than(rawTxOutput["size"], 300) assert_equal(rawTxOutput["version"], 0x02) assert_equal(rawTxOutput["locktime"], 0) assert_equal(len(rawTxOutput["vin"]), 1) assert_equal(len(rawTxOutput["vout"]), 1) assert_equal(rawTxOutput["blockhash"], rawTxBlock["hash"]) assert_equal(rawTxOutput["confirmations"], 3) assert_equal(rawTxOutput["time"], rawTxBlock["time"]) assert_equal(rawTxOutput["blocktime"], rawTxBlock["time"]) inputs = [{ 'txid': "1d1d4e24ed99057e84c3f80fd8fbec79ed9e1acee37da269356ecea000000000", 'sequence': 1000 }] outputs = {self.nodes[0].getnewaddress(): 1} assert_raises_rpc_error(-8, 'Invalid parameter, missing vout key', self.nodes[0].createrawtransaction, inputs, outputs) inputs[0]['vout'] = "1" assert_raises_rpc_error(-8, 'Invalid parameter, vout must be a number', self.nodes[0].createrawtransaction, inputs, outputs) inputs[0]['vout'] = -1 assert_raises_rpc_error(-8, 'Invalid parameter, vout must be positive', self.nodes[0].createrawtransaction, inputs, outputs) inputs[0]['vout'] = 1 rawtx = self.nodes[0].createrawtransaction(inputs, outputs) decrawtx = self.nodes[0].decoderawtransaction(rawtx) assert_equal(decrawtx['vin'][0]['sequence'], 1000) # 9. invalid parameters - sequence number out of range inputs[0]['sequence'] = -1 assert_raises_rpc_error( -8, 'Invalid parameter, sequence number is out of range', self.nodes[0].createrawtransaction, inputs, outputs) # 10. invalid parameters - sequence number out of range inputs[0]['sequence'] = 4294967296 assert_raises_rpc_error( -8, 'Invalid parameter, sequence number is out of range', self.nodes[0].createrawtransaction, inputs, outputs) inputs[0]['sequence'] = 4294967294 rawtx = self.nodes[0].createrawtransaction(inputs, outputs) decrawtx = self.nodes[0].decoderawtransaction(rawtx) assert_equal(decrawtx['vin'][0]['sequence'], 4294967294) #################################### # TRANSACTION VERSION NUMBER TESTS # #################################### # Test the minimum transaction version number that fits in a signed # 32-bit integer. tx = CTransaction() tx.nVersion = -0x80000000 rawtx = ToHex(tx) decrawtx = self.nodes[0].decoderawtransaction(rawtx) assert_equal(decrawtx['version'], -0x80000000) # Test the maximum transaction version number that fits in a signed # 32-bit integer. tx = CTransaction() tx.nVersion = 0x7fffffff rawtx = ToHex(tx) decrawtx = self.nodes[0].decoderawtransaction(rawtx) assert_equal(decrawtx['version'], 0x7fffffff) self.log.info('sendrawtransaction/testmempoolaccept with maxfeerate') # Test a transaction with a small fee. txId = self.nodes[0].sendtoaddress(self.nodes[2].getnewaddress(), 1000000) rawTx = self.nodes[0].getrawtransaction(txId, True) vout = next(o for o in rawTx['vout'] if o['value'] == Decimal('1000000.00')) self.sync_all() inputs = [{"txid": txId, "vout": vout['n']}] # Fee 10,000 satoshis, (1 - (10000 sat * 0.00000001 BCH/sat)) = 0.9999 outputs = {self.nodes[0].getnewaddress(): Decimal("999900.00")} rawTx = self.nodes[2].createrawtransaction(inputs, outputs) rawTxSigned = self.nodes[2].signrawtransactionwithwallet(rawTx) assert_equal(rawTxSigned['complete'], True) # Fee 10,000 satoshis, ~200 b transaction, fee rate should land around 50 sat/byte = 0.00050000 BCH/kB # Thus, testmempoolaccept should reject testres = self.nodes[2].testmempoolaccept([rawTxSigned['hex']], 500.00)[0] assert_equal(testres['allowed'], False) assert_equal(testres['reject-reason'], 'absurdly-high-fee') # and sendrawtransaction should throw assert_raises_rpc_error(-26, "absurdly-high-fee", self.nodes[2].sendrawtransaction, rawTxSigned['hex'], 10.00) # and the following calls should both succeed testres = self.nodes[2].testmempoolaccept( rawtxs=[rawTxSigned['hex']])[0] assert_equal(testres['allowed'], True) self.nodes[2].sendrawtransaction(hexstring=rawTxSigned['hex']) # Test a transaction with a large fee. txId = self.nodes[0].sendtoaddress(self.nodes[2].getnewaddress(), 1000000) rawTx = self.nodes[0].getrawtransaction(txId, True) vout = next(o for o in rawTx['vout'] if o['value'] == Decimal('1000000.00')) self.sync_all() inputs = [{"txid": txId, "vout": vout['n']}] # Fee 2,000,000 satoshis, (1 - (2000000 sat * 0.00000001 BCH/sat)) = # 0.98 outputs = {self.nodes[0].getnewaddress(): Decimal("980000.00")} rawTx = self.nodes[2].createrawtransaction(inputs, outputs) rawTxSigned = self.nodes[2].signrawtransactionwithwallet(rawTx) assert_equal(rawTxSigned['complete'], True) # Fee 2,000,000 satoshis, ~100 b transaction, fee rate should land around 20,000 sat/byte = 0.20000000 BCH/kB # Thus, testmempoolaccept should reject testres = self.nodes[2].testmempoolaccept([rawTxSigned['hex']])[0] assert_equal(testres['allowed'], False) assert_equal(testres['reject-reason'], 'absurdly-high-fee') # and sendrawtransaction should throw assert_raises_rpc_error(-26, "absurdly-high-fee", self.nodes[2].sendrawtransaction, rawTxSigned['hex']) # and the following calls should both succeed testres = self.nodes[2].testmempoolaccept(rawtxs=[rawTxSigned['hex']], maxfeerate='200000.00')[0] assert_equal(testres['allowed'], True) self.nodes[2].sendrawtransaction(hexstring=rawTxSigned['hex'], maxfeerate='200000.00') ########################################## # Decoding weird scripts in transactions # ########################################## self.log.info('Decode correctly-formatted but weird transactions') tx = CTransaction() # empty self.nodes[0].decoderawtransaction(ToHex(tx)) # truncated push tx.vin.append(CTxIn(COutPoint(42, 0), b'\x4e\x00\x00')) tx.vin.append(CTxIn(COutPoint(42, 0), b'\x4c\x10TRUNC')) tx.vout.append(CTxOut(0, b'\x4e\x00\x00')) tx.vout.append(CTxOut(0, b'\x4c\x10TRUNC')) self.nodes[0].decoderawtransaction(ToHex(tx)) # giant pushes and long scripts tx.vin.append(CTxIn(COutPoint(42, 0), CScript([b'giant push' * 10000]))) tx.vout.append(CTxOut(0, CScript([b'giant push' * 10000]))) self.nodes[0].decoderawtransaction(ToHex(tx)) self.log.info('Refuse garbage after transaction') assert_raises_rpc_error(-22, 'TX decode failed', self.nodes[0].decoderawtransaction, ToHex(tx) + '00')
def run_test(self): self.log.info( "check if we can access a blockfilter when pruning is enabled but no blocks are actually pruned" ) self.sync_index(height=200) assert_greater_than( len(self.nodes[0].getblockfilter( self.nodes[0].getbestblockhash())['filter']), 0) # Mine two batches of blocks to avoid hitting NODE_NETWORK_LIMITED_MIN_BLOCKS disconnection self.nodes[0].generate(250) self.sync_all() self.nodes[0].generate(250) self.sync_all() self.sync_index(height=700) self.log.info("prune some blocks") pruneheight = self.nodes[0].pruneblockchain(400) # In upstream Bitcoin, the prune height is 250. For auxpow it is # different (but that doesn't affect this test) since pruning is done # on total block files, and auxpow blocks have a different size (so # that a different number of blocks fits into a whole file). assert_equal(pruneheight, 337) self.log.info( "check if we can access the tips blockfilter when we have pruned some blocks" ) assert_greater_than( len(self.nodes[0].getblockfilter( self.nodes[0].getbestblockhash())['filter']), 0) self.log.info( "check if we can access the blockfilter of a pruned block") assert_greater_than( len(self.nodes[0].getblockfilter( self.nodes[0].getblockhash(2))['filter']), 0) self.log.info("start node without blockfilterindex") self.restart_node(0, extra_args=["-fastprune", "-prune=1"]) self.log.info("make sure accessing the blockfilters throws an error") assert_raises_rpc_error(-1, "Index is not enabled for filtertype basic", self.nodes[0].getblockfilter, self.nodes[0].getblockhash(2)) self.nodes[0].generate(1000) self.log.info( "prune below the blockfilterindexes best block while blockfilters are disabled" ) pruneheight_new = self.nodes[0].pruneblockchain(1000) assert_greater_than(pruneheight_new, pruneheight) self.stop_node(0) self.log.info( "make sure we get an init error when starting the node again with block filters" ) with self.nodes[0].assert_debug_log([ "basic block filter index best block of the index goes beyond pruned data. Please disable the index or reindex (which will download the whole blockchain again)" ]): self.nodes[0].assert_start_raises_init_error( extra_args=["-fastprune", "-prune=1", "-blockfilterindex=1"]) self.log.info("make sure the node starts again with the -reindex arg") self.start_node(0, extra_args=[ "-fastprune", "-prune=1", "-blockfilterindex", "-reindex" ])
def test_option_subtract_fee_from_outputs(self): self.log.info("Test fundrawtxn subtractFeeFromOutputs option") # Make sure there is exactly one input so coin selection can't skew the result. assert_equal(len(self.nodes[3].listunspent(1)), 1) inputs = [] outputs = {self.nodes[2].getnewaddress(): 1} rawtx = self.nodes[3].createrawtransaction(inputs, outputs) # Test subtract fee from outputs with feeRate result = [ self.nodes[3].fundrawtransaction( rawtx), # uses self.min_relay_tx_fee (set by settxfee) self.nodes[3].fundrawtransaction( rawtx, {"subtractFeeFromOutputs": []}), # empty subtraction list self.nodes[3].fundrawtransaction( rawtx, {"subtractFeeFromOutputs": [0] }), # uses self.min_relay_tx_fee (set by settxfee) self.nodes[3].fundrawtransaction( rawtx, {"feeRate": 2 * self.min_relay_tx_fee}), self.nodes[3].fundrawtransaction( rawtx, { "feeRate": 2 * self.min_relay_tx_fee, "subtractFeeFromOutputs": [0] }), ] dec_tx = [ self.nodes[3].decoderawtransaction(tx_['hex']) for tx_ in result ] output = [ d['vout'][1 - r['changepos']]['value'] for d, r in zip(dec_tx, result) ] change = [ d['vout'][r['changepos']]['value'] for d, r in zip(dec_tx, result) ] assert_equal(result[0]['fee'], result[1]['fee'], result[2]['fee']) assert_equal(result[3]['fee'], result[4]['fee']) assert_equal(change[0], change[1]) assert_equal(output[0], output[1]) assert_equal(output[0], output[2] + result[2]['fee']) assert_equal(change[0] + result[0]['fee'], change[2]) assert_equal(output[3], output[4] + result[4]['fee']) assert_equal(change[3] + result[3]['fee'], change[4]) inputs = [] outputs = { self.nodes[2].getnewaddress(): value for value in (1.0, 1.1, 1.2, 1.3) } rawtx = self.nodes[3].createrawtransaction(inputs, outputs) result = [ self.nodes[3].fundrawtransaction(rawtx), # split the fee between outputs 0, 2, and 3, but not output 1 self.nodes[3].fundrawtransaction( rawtx, {"subtractFeeFromOutputs": [0, 2, 3]}) ] dec_tx = [ self.nodes[3].decoderawtransaction(result[0]['hex']), self.nodes[3].decoderawtransaction(result[1]['hex']) ] # Nested list of non-change output amounts for each transaction. output = [[ out['value'] for i, out in enumerate(d['vout']) if i != r['changepos'] ] for d, r in zip(dec_tx, result)] # List of differences in output amounts between normal and subtractFee transactions. share = [o0 - o1 for o0, o1 in zip(output[0], output[1])] # Output 1 is the same in both transactions. assert_equal(share[1], 0) # The other 3 outputs are smaller as a result of subtractFeeFromOutputs. assert_greater_than(share[0], 0) assert_greater_than(share[2], 0) assert_greater_than(share[3], 0) # Outputs 2 and 3 take the same share of the fee. assert_equal(share[2], share[3]) # Output 0 takes at least as much share of the fee, and no more than 2 # satoshis more, than outputs 2 and 3. assert_greater_than_or_equal(share[0], share[2]) assert_greater_than_or_equal(share[2] + Decimal(2e-8), share[0]) # The fee is the same in both transactions. assert_equal(result[0]['fee'], result[1]['fee']) # The total subtracted from the outputs is equal to the fee. assert_equal(share[0] + share[2] + share[3], result[0]['fee'])
def run_test(self): # Check that there's no UTXO on none of the nodes assert_equal(len(self.nodes[0].listunspent()), 0) assert_equal(len(self.nodes[1].listunspent()), 0) assert_equal(len(self.nodes[2].listunspent()), 0) self.log.info("Mining blocks...") self.nodes[0].generate(1) walletinfo = self.nodes[0].getwalletinfo() assert_equal(walletinfo['immature_balance'], 50) assert_equal(walletinfo['balance'], 0) self.sync_all([self.nodes[0:3]]) self.nodes[1].generate(101) self.sync_all([self.nodes[0:3]]) assert_equal(self.nodes[0].getbalance(), 50) assert_equal(self.nodes[1].getbalance(), 50) assert_equal(self.nodes[2].getbalance(), 0) # Check getbalance with different arguments assert_equal(self.nodes[0].getbalance("*"), 50) assert_equal(self.nodes[0].getbalance("*", 1), 50) assert_equal(self.nodes[0].getbalance("*", 1, True), 50) assert_equal(self.nodes[0].getbalance(minconf=1), 50) # first argument of getbalance must be excluded or set to "*" assert_raises_rpc_error(-32, "dummy first argument must be excluded or set to \"*\"", self.nodes[0].getbalance, "") # Check that only first and second nodes have UTXOs utxos = self.nodes[0].listunspent() assert_equal(len(utxos), 1) assert_equal(len(self.nodes[1].listunspent()), 1) assert_equal(len(self.nodes[2].listunspent()), 0) self.log.info("test gettxout") confirmed_txid, confirmed_index = utxos[0]["txid"], utxos[0]["vout"] # First, outputs that are unspent both in the chain and in the # mempool should appear with or without include_mempool txout = self.nodes[0].gettxout(txid=confirmed_txid, n=confirmed_index, include_mempool=False) assert_equal(txout['value'], 50) txout = self.nodes[0].gettxout(txid=confirmed_txid, n=confirmed_index, include_mempool=True) assert_equal(txout['value'], 50) # Send 21 BTC from 0 to 2 using sendtoaddress call. # Locked memory should increase to sign transactions self.log.info("test getmemoryinfo") memory_before = self.nodes[0].getmemoryinfo() self.nodes[0].sendtoaddress(self.nodes[2].getnewaddress(), 11) mempool_txid = self.nodes[0].sendtoaddress(self.nodes[2].getnewaddress(), 10) memory_after = self.nodes[0].getmemoryinfo() assert_greater_than(memory_after['locked']['used'], memory_before['locked']['used']) self.log.info("test gettxout (second part)") # utxo spent in mempool should be visible if you exclude mempool # but invisible if you include mempool txout = self.nodes[0].gettxout(confirmed_txid, confirmed_index, False) assert_equal(txout['value'], 50) txout = self.nodes[0].gettxout(confirmed_txid, confirmed_index, True) assert txout is None # new utxo from mempool should be invisible if you exclude mempool # but visible if you include mempool txout = self.nodes[0].gettxout(mempool_txid, 0, False) assert txout is None txout1 = self.nodes[0].gettxout(mempool_txid, 0, True) txout2 = self.nodes[0].gettxout(mempool_txid, 1, True) # note the mempool tx will have randomly assigned indices # but 10 will go to node2 and the rest will go to node0 balance = self.nodes[0].getbalance() assert_equal(set([txout1['value'], txout2['value']]), set([10, balance])) walletinfo = self.nodes[0].getwalletinfo() assert_equal(walletinfo['immature_balance'], 0) # Have node0 mine a block, thus it will collect its own fee. self.nodes[0].generate(1) self.sync_all([self.nodes[0:3]]) # Exercise locking of unspent outputs unspent_0 = self.nodes[2].listunspent()[0] unspent_0 = {"txid": unspent_0["txid"], "vout": unspent_0["vout"]} assert_raises_rpc_error(-8, "Invalid parameter, expected locked output", self.nodes[2].lockunspent, True, [unspent_0]) self.nodes[2].lockunspent(False, [unspent_0]) assert_raises_rpc_error(-8, "Invalid parameter, output already locked", self.nodes[2].lockunspent, False, [unspent_0]) assert_raises_rpc_error(-4, "Insufficient funds", self.nodes[2].sendtoaddress, self.nodes[2].getnewaddress(), 20) assert_equal([unspent_0], self.nodes[2].listlockunspent()) self.nodes[2].lockunspent(True, [unspent_0]) assert_equal(len(self.nodes[2].listlockunspent()), 0) assert_raises_rpc_error(-8, "txid must be of length 64 (not 34, for '0000000000000000000000000000000000')", self.nodes[2].lockunspent, False, [{"txid": "0000000000000000000000000000000000", "vout": 0}]) assert_raises_rpc_error(-8, "txid must be hexadecimal string (not 'ZZZ0000000000000000000000000000000000000000000000000000000000000')", self.nodes[2].lockunspent, False, [{"txid": "ZZZ0000000000000000000000000000000000000000000000000000000000000", "vout": 0}]) assert_raises_rpc_error(-8, "Invalid parameter, unknown transaction", self.nodes[2].lockunspent, False, [{"txid": "0000000000000000000000000000000000000000000000000000000000000000", "vout": 0}]) assert_raises_rpc_error(-8, "Invalid parameter, vout index out of bounds", self.nodes[2].lockunspent, False, [{"txid": unspent_0["txid"], "vout": 999}]) # An output should be unlocked when spent unspent_0 = self.nodes[1].listunspent()[0] self.nodes[1].lockunspent(False, [unspent_0]) tx = self.nodes[1].createrawtransaction([unspent_0], { self.nodes[1].getnewaddress() : 1 }) tx = self.nodes[1].fundrawtransaction(tx)['hex'] tx = self.nodes[1].signrawtransactionwithwallet(tx)["hex"] self.nodes[1].sendrawtransaction(tx) assert_equal(len(self.nodes[1].listlockunspent()), 0) # Have node1 generate 100 blocks (so node0 can recover the fee) self.nodes[1].generate(100) self.sync_all([self.nodes[0:3]]) # node0 should end up with 100 btc in block rewards plus fees, but # minus the 21 plus fees sent to node2 assert_equal(self.nodes[0].getbalance(), 100 - 21) assert_equal(self.nodes[2].getbalance(), 21) # Node0 should have two unspent outputs. # Create a couple of transactions to send them to node2, submit them through # node1, and make sure both node0 and node2 pick them up properly: node0utxos = self.nodes[0].listunspent(1) assert_equal(len(node0utxos), 2) # create both transactions txns_to_send = [] for utxo in node0utxos: inputs = [] outputs = {} inputs.append({"txid": utxo["txid"], "vout": utxo["vout"]}) outputs[self.nodes[2].getnewaddress()] = utxo["amount"] - 3 raw_tx = self.nodes[0].createrawtransaction(inputs, outputs) txns_to_send.append(self.nodes[0].signrawtransactionwithwallet(raw_tx)) # Have node 1 (miner) send the transactions self.nodes[1].sendrawtransaction(txns_to_send[0]["hex"], True) self.nodes[1].sendrawtransaction(txns_to_send[1]["hex"], True) # Have node1 mine a block to confirm transactions: self.nodes[1].generate(1) self.sync_all([self.nodes[0:3]]) assert_equal(self.nodes[0].getbalance(), 0) assert_equal(self.nodes[2].getbalance(), 94) # Verify that a spent output cannot be locked anymore spent_0 = {"txid": node0utxos[0]["txid"], "vout": node0utxos[0]["vout"]} assert_raises_rpc_error(-8, "Invalid parameter, expected unspent output", self.nodes[0].lockunspent, False, [spent_0]) # Send 10 BTC normal address = self.nodes[0].getnewaddress("test") fee_per_byte = Decimal('0.001') / 1000 self.nodes[2].settxfee(fee_per_byte * 1000) txid = self.nodes[2].sendtoaddress(address, 10, "", "", False) self.nodes[2].generate(1) self.sync_all([self.nodes[0:3]]) node_2_bal = self.check_fee_amount(self.nodes[2].getbalance(), Decimal('84'), fee_per_byte, self.get_vsize(self.nodes[2].getrawtransaction(txid))) assert_equal(self.nodes[0].getbalance(), Decimal('10')) # Send 10 BTC with subtract fee from amount txid = self.nodes[2].sendtoaddress(address, 10, "", "", True) self.nodes[2].generate(1) self.sync_all([self.nodes[0:3]]) node_2_bal -= Decimal('10') assert_equal(self.nodes[2].getbalance(), node_2_bal) node_0_bal = self.check_fee_amount(self.nodes[0].getbalance(), Decimal('20'), fee_per_byte, self.get_vsize(self.nodes[2].getrawtransaction(txid))) # Sendmany 10 BTC txid = self.nodes[2].sendmany('', {address: 10}, 0, "", []) self.nodes[2].generate(1) self.sync_all([self.nodes[0:3]]) node_0_bal += Decimal('10') node_2_bal = self.check_fee_amount(self.nodes[2].getbalance(), node_2_bal - Decimal('10'), fee_per_byte, self.get_vsize(self.nodes[2].getrawtransaction(txid))) assert_equal(self.nodes[0].getbalance(), node_0_bal) # Sendmany 10 BTC with subtract fee from amount txid = self.nodes[2].sendmany('', {address: 10}, 0, "", [address]) self.nodes[2].generate(1) self.sync_all([self.nodes[0:3]]) node_2_bal -= Decimal('10') assert_equal(self.nodes[2].getbalance(), node_2_bal) node_0_bal = self.check_fee_amount(self.nodes[0].getbalance(), node_0_bal + Decimal('10'), fee_per_byte, self.get_vsize(self.nodes[2].getrawtransaction(txid))) # Test ResendWalletTransactions: # Create a couple of transactions, then start up a fourth # node (nodes[3]) and ask nodes[0] to rebroadcast. # EXPECT: nodes[3] should have those transactions in its mempool. txid1 = self.nodes[0].sendtoaddress(self.nodes[1].getnewaddress(), 1) txid2 = self.nodes[1].sendtoaddress(self.nodes[0].getnewaddress(), 1) sync_mempools(self.nodes[0:2]) self.start_node(3) connect_nodes_bi(self.nodes, 0, 3) sync_blocks(self.nodes) relayed = self.nodes[0].resendwallettransactions() assert_equal(set(relayed), {txid1, txid2}) sync_mempools(self.nodes) assert(txid1 in self.nodes[3].getrawmempool()) # Exercise balance rpcs assert_equal(self.nodes[0].getwalletinfo()["unconfirmed_balance"], 1) assert_equal(self.nodes[0].getunconfirmedbalance(), 1) # check if we can list zero value tx as available coins # 1. create raw_tx # 2. hex-changed one output to 0.0 # 3. sign and send # 4. check if recipient (node0) can list the zero value tx usp = self.nodes[1].listunspent(query_options={'minimumAmount': '49.998'})[0] inputs = [{"txid": usp['txid'], "vout": usp['vout']}] outputs = {self.nodes[1].getnewaddress(): 49.998, self.nodes[0].getnewaddress(): 11.11} raw_tx = self.nodes[1].createrawtransaction(inputs, outputs).replace("c0833842", "00000000") # replace 11.11 with 0.0 (int32) signed_raw_tx = self.nodes[1].signrawtransactionwithwallet(raw_tx) decoded_raw_tx = self.nodes[1].decoderawtransaction(signed_raw_tx['hex']) zero_value_txid = decoded_raw_tx['txid'] self.nodes[1].sendrawtransaction(signed_raw_tx['hex']) self.sync_all() self.nodes[1].generate(1) # mine a block self.sync_all() unspent_txs = self.nodes[0].listunspent() # zero value tx must be in listunspents output found = False for uTx in unspent_txs: if uTx['txid'] == zero_value_txid: found = True assert_equal(uTx['amount'], Decimal('0')) assert(found) # do some -walletbroadcast tests self.stop_nodes() self.start_node(0, ["-walletbroadcast=0"]) self.start_node(1, ["-walletbroadcast=0"]) self.start_node(2, ["-walletbroadcast=0"]) connect_nodes_bi(self.nodes, 0, 1) connect_nodes_bi(self.nodes, 1, 2) connect_nodes_bi(self.nodes, 0, 2) self.sync_all([self.nodes[0:3]]) txid_not_broadcast = self.nodes[0].sendtoaddress(self.nodes[2].getnewaddress(), 2) tx_obj_not_broadcast = self.nodes[0].gettransaction(txid_not_broadcast) self.nodes[1].generate(1) # mine a block, tx should not be in there self.sync_all([self.nodes[0:3]]) assert_equal(self.nodes[2].getbalance(), node_2_bal) # should not be changed because tx was not broadcasted # now broadcast from another node, mine a block, sync, and check the balance self.nodes[1].sendrawtransaction(tx_obj_not_broadcast['hex']) self.nodes[1].generate(1) self.sync_all([self.nodes[0:3]]) node_2_bal += 2 tx_obj_not_broadcast = self.nodes[0].gettransaction(txid_not_broadcast) assert_equal(self.nodes[2].getbalance(), node_2_bal) # create another tx self.nodes[0].sendtoaddress(self.nodes[2].getnewaddress(), 2) # restart the nodes with -walletbroadcast=1 self.stop_nodes() self.start_node(0) self.start_node(1) self.start_node(2) connect_nodes_bi(self.nodes, 0, 1) connect_nodes_bi(self.nodes, 1, 2) connect_nodes_bi(self.nodes, 0, 2) sync_blocks(self.nodes[0:3]) self.nodes[0].generate(1) sync_blocks(self.nodes[0:3]) node_2_bal += 2 # tx should be added to balance because after restarting the nodes tx should be broadcast assert_equal(self.nodes[2].getbalance(), node_2_bal) # send a tx with value in a string (PR#6380 +) txid = self.nodes[0].sendtoaddress(self.nodes[2].getnewaddress(), "2") tx_obj = self.nodes[0].gettransaction(txid) assert_equal(tx_obj['amount'], Decimal('-2')) txid = self.nodes[0].sendtoaddress(self.nodes[2].getnewaddress(), "0.0001") tx_obj = self.nodes[0].gettransaction(txid) assert_equal(tx_obj['amount'], Decimal('-0.0001')) # check if JSON parser can handle scientific notation in strings txid = self.nodes[0].sendtoaddress(self.nodes[2].getnewaddress(), "1e-4") tx_obj = self.nodes[0].gettransaction(txid) assert_equal(tx_obj['amount'], Decimal('-0.0001')) # This will raise an exception because the amount type is wrong assert_raises_rpc_error(-3, "Invalid amount", self.nodes[0].sendtoaddress, self.nodes[2].getnewaddress(), "1f-4") # This will raise an exception since generate does not accept a string assert_raises_rpc_error(-1, "not an integer", self.nodes[0].generate, "2") # Import address and private key to check correct behavior of spendable unspents # 1. Send some coins to generate new UTXO address_to_import = self.nodes[2].getnewaddress() txid = self.nodes[0].sendtoaddress(address_to_import, 1) self.nodes[0].generate(1) self.sync_all([self.nodes[0:3]]) # 2. Import address from node2 to node1 self.nodes[1].importaddress(address_to_import) # 3. Validate that the imported address is watch-only on node1 assert(self.nodes[1].getaddressinfo(address_to_import)["iswatchonly"]) # 4. Check that the unspents after import are not spendable assert_array_result(self.nodes[1].listunspent(), {"address": address_to_import}, {"spendable": False}) # 5. Import private key of the previously imported address on node1 priv_key = self.nodes[2].dumpprivkey(address_to_import) self.nodes[1].importprivkey(priv_key) # 6. Check that the unspents are now spendable on node1 assert_array_result(self.nodes[1].listunspent(), {"address": address_to_import}, {"spendable": True}) # Mine a block from node0 to an address from node1 coinbase_addr = self.nodes[1].getnewaddress() block_hash = self.nodes[0].generatetoaddress(1, coinbase_addr)[0] coinbase_txid = self.nodes[0].getblock(block_hash)['tx'][0] self.sync_all([self.nodes[0:3]]) # Check that the txid and balance is found by node1 self.nodes[1].gettransaction(coinbase_txid) # check if wallet or blockchain maintenance changes the balance self.sync_all([self.nodes[0:3]]) blocks = self.nodes[0].generate(2) self.sync_all([self.nodes[0:3]]) balance_nodes = [self.nodes[i].getbalance() for i in range(3)] block_count = self.nodes[0].getblockcount() # Check modes: # - True: unicode escaped as \u.... # - False: unicode directly as UTF-8 for mode in [True, False]: self.nodes[0].rpc.ensure_ascii = mode # unicode check: Basic Multilingual Plane, Supplementary Plane respectively for label in [u'ббаБаА', u'№ Ё']: addr = self.nodes[0].getnewaddress() self.nodes[0].setlabel(addr, label) assert_equal(self.nodes[0].getaddressinfo(addr)['label'], label) assert(label in self.nodes[0].listlabels()) self.nodes[0].rpc.ensure_ascii = True # restore to default # maintenance tests maintenance = [ '-rescan', '-reindex', '-zapwallettxes=1', '-zapwallettxes=2', # disabled until issue is fixed: https://github.com/bitcoin/bitcoin/issues/7463 # '-salvagewallet', ] chainlimit = 6 for m in maintenance: self.log.info("check " + m) self.stop_nodes() # set lower ancestor limit for later self.start_node(0, [m, "-limitancestorcount=" + str(chainlimit)]) self.start_node(1, [m, "-limitancestorcount=" + str(chainlimit)]) self.start_node(2, [m, "-limitancestorcount=" + str(chainlimit)]) if m == '-reindex': # reindex will leave rpc warm up "early"; Wait for it to finish wait_until(lambda: [block_count] * 3 == [self.nodes[i].getblockcount() for i in range(3)]) assert_equal(balance_nodes, [self.nodes[i].getbalance() for i in range(3)]) # Exercise listsinceblock with the last two blocks coinbase_tx_1 = self.nodes[0].listsinceblock(blocks[0]) assert_equal(coinbase_tx_1["lastblock"], blocks[1]) assert_equal(len(coinbase_tx_1["transactions"]), 1) assert_equal(coinbase_tx_1["transactions"][0]["blockhash"], blocks[1]) assert_equal(len(self.nodes[0].listsinceblock(blocks[1])["transactions"]), 0) # ==Check that wallet prefers to use coins that don't exceed mempool limits ===== # Get all non-zero utxos together chain_addrs = [self.nodes[0].getnewaddress(), self.nodes[0].getnewaddress()] singletxid = self.nodes[0].sendtoaddress(chain_addrs[0], self.nodes[0].getbalance(), "", "", True) self.nodes[0].generate(1) node0_balance = self.nodes[0].getbalance() # Split into two chains rawtx = self.nodes[0].createrawtransaction([{"txid": singletxid, "vout": 0}], {chain_addrs[0]: node0_balance / 2 - Decimal('0.01'), chain_addrs[1]: node0_balance / 2 - Decimal('0.01')}) signedtx = self.nodes[0].signrawtransactionwithwallet(rawtx) singletxid = self.nodes[0].sendrawtransaction(signedtx["hex"]) self.nodes[0].generate(1) # Make a long chain of unconfirmed payments without hitting mempool limit # Each tx we make leaves only one output of change on a chain 1 longer # Since the amount to send is always much less than the outputs, we only ever need one output # So we should be able to generate exactly chainlimit txs for each original output sending_addr = self.nodes[1].getnewaddress() txid_list = [] for i in range(chainlimit * 2): txid_list.append(self.nodes[0].sendtoaddress(sending_addr, Decimal('0.0001'))) assert_equal(self.nodes[0].getmempoolinfo()['size'], chainlimit * 2) assert_equal(len(txid_list), chainlimit * 2) # Without walletrejectlongchains, we will still generate a txid # The tx will be stored in the wallet but not accepted to the mempool extra_txid = self.nodes[0].sendtoaddress(sending_addr, Decimal('0.0001')) assert(extra_txid not in self.nodes[0].getrawmempool()) assert(extra_txid in [tx["txid"] for tx in self.nodes[0].listtransactions()]) self.nodes[0].abandontransaction(extra_txid) total_txs = len(self.nodes[0].listtransactions("*", 99999)) # Try with walletrejectlongchains # Double chain limit but require combining inputs, so we pass SelectCoinsMinConf self.stop_node(0) self.start_node(0, extra_args=["-walletrejectlongchains", "-limitancestorcount=" + str(2 * chainlimit)]) # wait for loadmempool timeout = 10 while (timeout > 0 and len(self.nodes[0].getrawmempool()) < chainlimit * 2): time.sleep(0.5) timeout -= 0.5 assert_equal(len(self.nodes[0].getrawmempool()), chainlimit * 2) node0_balance = self.nodes[0].getbalance() # With walletrejectlongchains we will not create the tx and store it in our wallet. assert_raises_rpc_error(-4, "Transaction has too long of a mempool chain", self.nodes[0].sendtoaddress, sending_addr, node0_balance - Decimal('0.01')) # Verify nothing new in wallet assert_equal(total_txs, len(self.nodes[0].listtransactions("*", 99999))) # Test getaddressinfo. Note that these addresses are taken from disablewallet.py assert_raises_rpc_error(-5, "Invalid address", self.nodes[0].getaddressinfo, "3J98t1WpEZ73CNmQviecrnyiWrnqRhWNLy") address_info = self.nodes[0].getaddressinfo("mneYUmWYsuk7kySiURxCi3AGxrAqZxLgPZ") assert_equal(address_info['address'], "mneYUmWYsuk7kySiURxCi3AGxrAqZxLgPZ") assert_equal(address_info["scriptPubKey"], "76a9144e3854046c7bd1594ac904e4793b6a45b36dea0988ac") assert not address_info["ismine"] assert not address_info["iswatchonly"] assert not address_info["isscript"]
def run_test(self): self.log.info("Mining blocks...") self.nodes[0].generate(1) self.nodes[1].generate(1) timestamp = self.nodes[1].getblock(self.nodes[1].getbestblockhash())['mediantime'] node0_address1 = self.nodes[0].getaddressinfo(self.nodes[0].getnewaddress()) # Check only one address assert_equal(node0_address1['ismine'], True) # Node 1 sync test assert_equal(self.nodes[1].getblockcount(), 1) # Address Test - before import address_info = self.nodes[1].getaddressinfo(node0_address1['address']) assert_equal(address_info['iswatchonly'], False) assert_equal(address_info['ismine'], False) # RPC importmulti ----------------------------------------------- # Bitcoin Address (implicit non-internal) self.log.info("Should import an address") key = self.get_key() address = key.p2pkh_addr self.test_importmulti({"scriptPubKey": {"address": address}, "timestamp": "now"}, True) self.test_address(address, iswatchonly=True, ismine=False, timestamp=timestamp, ischange=False) watchonly_address = address watchonly_timestamp = timestamp self.log.info("Should not import an invalid address") self.test_importmulti({"scriptPubKey": {"address": "not valid address"}, "timestamp": "now"}, False, error_code=-5, error_message='Invalid address') # ScriptPubKey + internal self.log.info("Should import a scriptPubKey with internal flag") key = self.get_key() self.test_importmulti({"scriptPubKey": key.p2pkh_script, "timestamp": "now", "internal": True}, True) self.test_address(key.p2pkh_addr, iswatchonly=True, ismine=False, timestamp=timestamp, ischange=True) # ScriptPubKey + internal + label self.log.info("Should not allow a label to be specified when internal is true") key = self.get_key() self.test_importmulti({"scriptPubKey": key.p2pkh_script, "timestamp": "now", "internal": True, "label": "Example label"}, False, error_code=-8, error_message='Internal addresses should not have a label') # Nonstandard scriptPubKey + !internal self.log.info("Should not import a nonstandard scriptPubKey without internal flag") nonstandardScriptPubKey = key.p2pkh_script + bytes_to_hex_str(CScript([OP_NOP])) key = self.get_key() address = key.p2pkh_addr self.test_importmulti({"scriptPubKey": nonstandardScriptPubKey, "timestamp": "now"}, False, error_code=-8, error_message='Internal must be set to true for nonstandard scriptPubKey imports.') self.test_address(address, iswatchonly=False, ismine=False, timestamp=None) # Address + Public key + !Internal(explicit) self.log.info("Should import an address with public key") key = self.get_key() address = key.p2pkh_addr self.test_importmulti({"scriptPubKey": {"address": address}, "timestamp": "now", "pubkeys": [key.pubkey], "internal": False}, True) self.test_address(address, iswatchonly=True, ismine=False, timestamp=timestamp) # ScriptPubKey + Public key + internal self.log.info("Should import a scriptPubKey with internal and with public key") key = self.get_key() address = key.p2pkh_addr self.test_importmulti({"scriptPubKey": key.p2pkh_script, "timestamp": "now", "pubkeys": [key.pubkey], "internal": True}, True) self.test_address(address, iswatchonly=True, ismine=False, timestamp=timestamp) # Nonstandard scriptPubKey + Public key + !internal self.log.info("Should not import a nonstandard scriptPubKey without internal and with public key") key = self.get_key() address = key.p2pkh_addr self.test_importmulti({"scriptPubKey": nonstandardScriptPubKey, "timestamp": "now", "pubkeys": [key.pubkey]}, False, error_code=-8, error_message='Internal must be set to true for nonstandard scriptPubKey imports.') self.test_address(address, iswatchonly=False, ismine=False, timestamp=None) # Address + Private key + !watchonly self.log.info("Should import an address with private key") key = self.get_key() address = key.p2pkh_addr self.test_importmulti({"scriptPubKey": {"address": address}, "timestamp": "now", "keys": [key.privkey]}, True) self.test_address(address, iswatchonly=False, ismine=True, timestamp=timestamp) self.log.info("Should not import an address with private key if is already imported") self.test_importmulti({"scriptPubKey": {"address": address}, "timestamp": "now", "keys": [key.privkey]}, False, error_code=-4, error_message='The wallet already contains the private key for this address or script') # Address + Private key + watchonly self.log.info("Should not import an address with private key and with watchonly") key = self.get_key() address = key.p2pkh_addr self.test_importmulti({"scriptPubKey": {"address": address}, "timestamp": "now", "keys": [key.privkey], "watchonly": True}, False, error_code=-8, error_message='Watch-only addresses should not include private keys') self.test_address(address, iswatchonly=False, ismine=False, timestamp=None) # ScriptPubKey + Private key + internal self.log.info("Should import a scriptPubKey with internal and with private key") key = self.get_key() address = key.p2pkh_addr self.test_importmulti({"scriptPubKey": key.p2pkh_script, "timestamp": "now", "keys": [key.privkey], "internal": True}, True) self.test_address(address, iswatchonly=False, ismine=True, timestamp=timestamp) # Nonstandard scriptPubKey + Private key + !internal self.log.info("Should not import a nonstandard scriptPubKey without internal and with private key") key = self.get_key() address = key.p2pkh_addr self.test_importmulti({"scriptPubKey": nonstandardScriptPubKey, "timestamp": "now", "keys": [key.privkey]}, False, error_code=-8, error_message='Internal must be set to true for nonstandard scriptPubKey imports.') self.test_address(address, iswatchonly=False, ismine=False, timestamp=None) # P2SH address multisig = self.get_multisig() self.nodes[1].generate(100) self.nodes[1].sendtoaddress(multisig.p2sh_addr, 10.00) self.nodes[1].generate(1) timestamp = self.nodes[1].getblock(self.nodes[1].getbestblockhash())['mediantime'] self.log.info("Should import a p2sh") self.test_importmulti({"scriptPubKey": {"address": multisig.p2sh_addr}, "timestamp": "now"}, True) self.test_address(multisig.p2sh_addr, isscript=True, iswatchonly=True, timestamp=timestamp) p2shunspent = self.nodes[1].listunspent(0, 999999, [multisig.p2sh_addr])[0] assert_equal(p2shunspent['spendable'], False) assert_equal(p2shunspent['solvable'], False) # P2SH + Redeem script multisig = self.get_multisig() self.nodes[1].generate(100) self.nodes[1].sendtoaddress(multisig.p2sh_addr, 10.00) self.nodes[1].generate(1) timestamp = self.nodes[1].getblock(self.nodes[1].getbestblockhash())['mediantime'] self.log.info("Should import a p2sh with respective redeem script") self.test_importmulti({"scriptPubKey": {"address": multisig.p2sh_addr}, "timestamp": "now", "redeemscript": multisig.redeem_script}, True) self.test_address(multisig.p2sh_addr, timestamp=timestamp) p2shunspent = self.nodes[1].listunspent(0, 999999, [multisig.p2sh_addr])[0] assert_equal(p2shunspent['spendable'], False) assert_equal(p2shunspent['solvable'], True) # P2SH + Redeem script + Private Keys + !Watchonly multisig = self.get_multisig() self.nodes[1].generate(100) self.nodes[1].sendtoaddress(multisig.p2sh_addr, 10.00) self.nodes[1].generate(1) timestamp = self.nodes[1].getblock(self.nodes[1].getbestblockhash())['mediantime'] self.log.info("Should import a p2sh with respective redeem script and private keys") self.test_importmulti({"scriptPubKey": {"address": multisig.p2sh_addr}, "timestamp": "now", "redeemscript": multisig.redeem_script, "keys": multisig.privkeys[0:2]}, True) self.test_address(multisig.p2sh_addr, timestamp=timestamp) p2shunspent = self.nodes[1].listunspent(0, 999999, [multisig.p2sh_addr])[0] assert_equal(p2shunspent['spendable'], False) assert_equal(p2shunspent['solvable'], True) # P2SH + Redeem script + Private Keys + Watchonly multisig = self.get_multisig() self.nodes[1].generate(100) self.nodes[1].sendtoaddress(multisig.p2sh_addr, 10.00) self.nodes[1].generate(1) timestamp = self.nodes[1].getblock(self.nodes[1].getbestblockhash())['mediantime'] self.log.info("Should import a p2sh with respective redeem script and private keys") self.test_importmulti({"scriptPubKey": {"address": multisig.p2sh_addr}, "timestamp": "now", "redeemscript": multisig.redeem_script, "keys": multisig.privkeys[0:2], "watchonly": True}, False, error_code=-8, error_message='Watch-only addresses should not include private keys') # Address + Public key + !Internal + Wrong pubkey self.log.info("Should not import an address with a wrong public key") key = self.get_key() address = key.p2pkh_addr wrong_key = self.get_key().pubkey self.test_importmulti({"scriptPubKey": {"address": address}, "timestamp": "now", "pubkeys": [wrong_key]}, False, error_code=-5, error_message='Key does not match address destination') self.test_address(address, iswatchonly=False, ismine=False, timestamp=None) # ScriptPubKey + Public key + internal + Wrong pubkey self.log.info("Should not import a scriptPubKey with internal and with a wrong public key") key = self.get_key() address = key.p2pkh_addr wrong_key = self.get_key().pubkey self.test_importmulti({"scriptPubKey": key.p2pkh_script, "timestamp": "now", "pubkeys": [wrong_key], "internal": True}, False, error_code=-5, error_message='Key does not match address destination') self.test_address(address, iswatchonly=False, ismine=False, timestamp=None) # Address + Private key + !watchonly + Wrong private key self.log.info("Should not import an address with a wrong private key") key = self.get_key() address = key.p2pkh_addr wrong_privkey = self.get_key().privkey self.test_importmulti({"scriptPubKey": {"address": address}, "timestamp": "now", "keys": [wrong_privkey]}, False, error_code=-5, error_message='Key does not match address destination') self.test_address(address, iswatchonly=False, ismine=False, timestamp=None) # ScriptPubKey + Private key + internal + Wrong private key self.log.info("Should not import a scriptPubKey with internal and with a wrong private key") key = self.get_key() address = key.p2pkh_addr wrong_privkey = self.get_key().privkey self.test_importmulti({"scriptPubKey": key.p2pkh_script, "timestamp": "now", "keys": [wrong_privkey], "internal": True}, False, error_code=-5, error_message='Key does not match address destination') self.test_address(address, iswatchonly=False, ismine=False, timestamp=None) # Importing existing watch only address with new timestamp should replace saved timestamp. assert_greater_than(timestamp, watchonly_timestamp) self.log.info("Should replace previously saved watch only timestamp.") self.test_importmulti({"scriptPubKey": {"address": watchonly_address}, "timestamp": "now"}, True) self.test_address(watchonly_address, iswatchonly=True, ismine=False, timestamp=timestamp) watchonly_timestamp = timestamp # restart nodes to check for proper serialization/deserialization of watch only address self.stop_nodes() self.start_nodes() self.test_address(watchonly_address, iswatchonly=True, ismine=False, timestamp=watchonly_timestamp) # Bad or missing timestamps self.log.info("Should throw on invalid or missing timestamp values") assert_raises_rpc_error(-3, 'Missing required timestamp field for key', self.nodes[1].importmulti, [{"scriptPubKey": key.p2pkh_script}]) assert_raises_rpc_error(-3, 'Expected number or "now" timestamp value for key. got type string', self.nodes[1].importmulti, [{ "scriptPubKey": key.p2pkh_script, "timestamp": "" }]) # Import P2WPKH address as watch only self.log.info("Should import a P2WPKH address as watch only") key = self.get_key() address = key.p2wpkh_addr self.test_importmulti({"scriptPubKey": {"address": address}, "timestamp": "now"}, True) self.test_address(address, iswatchonly=True, solvable=False) # Import P2WPKH address with public key but no private key self.log.info("Should import a P2WPKH address and public key as solvable but not spendable") key = self.get_key() address = key.p2wpkh_addr self.test_importmulti({"scriptPubKey": {"address": address}, "timestamp": "now", "pubkeys": [key.pubkey]}, True) self.test_address(address, ismine=False, solvable=True) # Import P2WPKH address with key and check it is spendable self.log.info("Should import a P2WPKH address with key") key = self.get_key() address = key.p2wpkh_addr self.test_importmulti({"scriptPubKey": {"address": address}, "timestamp": "now", "keys": [key.privkey]}, True) self.test_address(address, iswatchonly=False, ismine=True) # P2WSH multisig address without scripts or keys multisig = self.get_multisig() self.log.info("Should import a p2wsh multisig as watch only without respective redeem script and private keys") self.test_importmulti({"scriptPubKey": {"address": multisig.p2wsh_addr}, "timestamp": "now"}, True) self.test_address(multisig.p2sh_addr, solvable=False) # Same P2WSH multisig address as above, but now with witnessscript + private keys self.log.info("Should import a p2wsh with respective witness script and private keys") self.test_importmulti({"scriptPubKey": {"address": multisig.p2wsh_addr}, "timestamp": "now", "witnessscript": multisig.redeem_script, "keys": multisig.privkeys}, True) self.test_address(multisig.p2sh_addr, solvable=True, ismine=True, sigsrequired=2) # P2SH-P2WPKH address with no redeemscript or public or private key key = self.get_key() address = key.p2sh_p2wpkh_addr self.log.info("Should import a p2sh-p2wpkh without redeem script or keys") self.test_importmulti({"scriptPubKey": {"address": address}, "timestamp": "now"}, True) self.test_address(address, solvable=False, ismine=False) # P2SH-P2WPKH address + redeemscript + public key with no private key self.log.info("Should import a p2sh-p2wpkh with respective redeem script and pubkey as solvable") self.test_importmulti({"scriptPubKey": {"address": address}, "timestamp": "now", "redeemscript": key.p2sh_p2wpkh_redeem_script, "pubkeys": [key.pubkey]}, True) self.test_address(address, solvable=True, ismine=False) # P2SH-P2WPKH address + redeemscript + private key key = self.get_key() address = key.p2sh_p2wpkh_addr self.log.info("Should import a p2sh-p2wpkh with respective redeem script and private keys") self.test_importmulti({"scriptPubKey": {"address": address}, "timestamp": "now", "redeemscript": key.p2sh_p2wpkh_redeem_script, "keys": [key.privkey]}, True) self.test_address(address, solvable=True, ismine=True) # P2SH-P2WSH multisig + redeemscript with no private key multisig = self.get_multisig() self.log.info("Should import a p2sh-p2wsh with respective redeem script but no private key") self.test_importmulti({"scriptPubKey": {"address": multisig.p2sh_p2wsh_addr}, "timestamp": "now", "redeemscript": multisig.p2wsh_script, "witnessscript": multisig.redeem_script}, True) self.test_address(address, solvable=True)
def run_test (self): self.log.info("Mining blocks...") self.nodes[0].generate(1) self.nodes[1].generate(1) timestamp = self.nodes[1].getblock(self.nodes[1].getbestblockhash())['mediantime'] node0_address1 = self.nodes[0].getaddressinfo(self.nodes[0].getnewaddress()) #Check only one address assert_equal(node0_address1['ismine'], True) #Node 1 sync test assert_equal(self.nodes[1].getblockcount(),1) #Address Test - before import address_info = self.nodes[1].getaddressinfo(node0_address1['address']) assert_equal(address_info['iswatchonly'], False) assert_equal(address_info['ismine'], False) # RPC importmulti ----------------------------------------------- # Fujicoin Address self.log.info("Should import an address") address = self.nodes[0].getaddressinfo(self.nodes[0].getnewaddress()) result = self.nodes[1].importmulti([{ "scriptPubKey": { "address": address['address'] }, "timestamp": "now", }]) assert_equal(result[0]['success'], True) address_assert = self.nodes[1].getaddressinfo(address['address']) assert_equal(address_assert['iswatchonly'], True) assert_equal(address_assert['ismine'], False) assert_equal(address_assert['timestamp'], timestamp) watchonly_address = address['address'] watchonly_timestamp = timestamp self.log.info("Should not import an invalid address") result = self.nodes[1].importmulti([{ "scriptPubKey": { "address": "not valid address", }, "timestamp": "now", }]) assert_equal(result[0]['success'], False) assert_equal(result[0]['error']['code'], -5) assert_equal(result[0]['error']['message'], 'Invalid address') # ScriptPubKey + internal self.log.info("Should import a scriptPubKey with internal flag") address = self.nodes[0].getaddressinfo(self.nodes[0].getnewaddress()) result = self.nodes[1].importmulti([{ "scriptPubKey": address['scriptPubKey'], "timestamp": "now", "internal": True }]) assert_equal(result[0]['success'], True) address_assert = self.nodes[1].getaddressinfo(address['address']) assert_equal(address_assert['iswatchonly'], True) assert_equal(address_assert['ismine'], False) assert_equal(address_assert['timestamp'], timestamp) # ScriptPubKey + !internal self.log.info("Should not import a scriptPubKey without internal flag") address = self.nodes[0].getaddressinfo(self.nodes[0].getnewaddress()) result = self.nodes[1].importmulti([{ "scriptPubKey": address['scriptPubKey'], "timestamp": "now", }]) assert_equal(result[0]['success'], False) assert_equal(result[0]['error']['code'], -8) assert_equal(result[0]['error']['message'], 'Internal must be set for hex scriptPubKey') address_assert = self.nodes[1].getaddressinfo(address['address']) assert_equal(address_assert['iswatchonly'], False) assert_equal(address_assert['ismine'], False) assert_equal('timestamp' in address_assert, False) # Address + Public key + !Internal self.log.info("Should import an address with public key") address = self.nodes[0].getaddressinfo(self.nodes[0].getnewaddress()) result = self.nodes[1].importmulti([{ "scriptPubKey": { "address": address['address'] }, "timestamp": "now", "pubkeys": [ address['pubkey'] ] }]) assert_equal(result[0]['success'], True) address_assert = self.nodes[1].getaddressinfo(address['address']) assert_equal(address_assert['iswatchonly'], True) assert_equal(address_assert['ismine'], False) assert_equal(address_assert['timestamp'], timestamp) # ScriptPubKey + Public key + internal self.log.info("Should import a scriptPubKey with internal and with public key") address = self.nodes[0].getaddressinfo(self.nodes[0].getnewaddress()) request = [{ "scriptPubKey": address['scriptPubKey'], "timestamp": "now", "pubkeys": [ address['pubkey'] ], "internal": True }] result = self.nodes[1].importmulti(request) assert_equal(result[0]['success'], True) address_assert = self.nodes[1].getaddressinfo(address['address']) assert_equal(address_assert['iswatchonly'], True) assert_equal(address_assert['ismine'], False) assert_equal(address_assert['timestamp'], timestamp) # ScriptPubKey + Public key + !internal self.log.info("Should not import a scriptPubKey without internal and with public key") address = self.nodes[0].getaddressinfo(self.nodes[0].getnewaddress()) request = [{ "scriptPubKey": address['scriptPubKey'], "timestamp": "now", "pubkeys": [ address['pubkey'] ] }] result = self.nodes[1].importmulti(request) assert_equal(result[0]['success'], False) assert_equal(result[0]['error']['code'], -8) assert_equal(result[0]['error']['message'], 'Internal must be set for hex scriptPubKey') address_assert = self.nodes[1].getaddressinfo(address['address']) assert_equal(address_assert['iswatchonly'], False) assert_equal(address_assert['ismine'], False) assert_equal('timestamp' in address_assert, False) # Address + Private key + !watchonly self.log.info("Should import an address with private key") address = self.nodes[0].getaddressinfo(self.nodes[0].getnewaddress()) result = self.nodes[1].importmulti([{ "scriptPubKey": { "address": address['address'] }, "timestamp": "now", "keys": [ self.nodes[0].dumpprivkey(address['address']) ] }]) assert_equal(result[0]['success'], True) address_assert = self.nodes[1].getaddressinfo(address['address']) assert_equal(address_assert['iswatchonly'], False) assert_equal(address_assert['ismine'], True) assert_equal(address_assert['timestamp'], timestamp) self.log.info("Should not import an address with private key if is already imported") result = self.nodes[1].importmulti([{ "scriptPubKey": { "address": address['address'] }, "timestamp": "now", "keys": [ self.nodes[0].dumpprivkey(address['address']) ] }]) assert_equal(result[0]['success'], False) assert_equal(result[0]['error']['code'], -4) assert_equal(result[0]['error']['message'], 'The wallet already contains the private key for this address or script') # Address + Private key + watchonly self.log.info("Should not import an address with private key and with watchonly") address = self.nodes[0].getaddressinfo(self.nodes[0].getnewaddress()) result = self.nodes[1].importmulti([{ "scriptPubKey": { "address": address['address'] }, "timestamp": "now", "keys": [ self.nodes[0].dumpprivkey(address['address']) ], "watchonly": True }]) assert_equal(result[0]['success'], False) assert_equal(result[0]['error']['code'], -8) assert_equal(result[0]['error']['message'], 'Incompatibility found between watchonly and keys') address_assert = self.nodes[1].getaddressinfo(address['address']) assert_equal(address_assert['iswatchonly'], False) assert_equal(address_assert['ismine'], False) assert_equal('timestamp' in address_assert, False) # ScriptPubKey + Private key + internal self.log.info("Should import a scriptPubKey with internal and with private key") address = self.nodes[0].getaddressinfo(self.nodes[0].getnewaddress()) result = self.nodes[1].importmulti([{ "scriptPubKey": address['scriptPubKey'], "timestamp": "now", "keys": [ self.nodes[0].dumpprivkey(address['address']) ], "internal": True }]) assert_equal(result[0]['success'], True) address_assert = self.nodes[1].getaddressinfo(address['address']) assert_equal(address_assert['iswatchonly'], False) assert_equal(address_assert['ismine'], True) assert_equal(address_assert['timestamp'], timestamp) # ScriptPubKey + Private key + !internal self.log.info("Should not import a scriptPubKey without internal and with private key") address = self.nodes[0].getaddressinfo(self.nodes[0].getnewaddress()) result = self.nodes[1].importmulti([{ "scriptPubKey": address['scriptPubKey'], "timestamp": "now", "keys": [ self.nodes[0].dumpprivkey(address['address']) ] }]) assert_equal(result[0]['success'], False) assert_equal(result[0]['error']['code'], -8) assert_equal(result[0]['error']['message'], 'Internal must be set for hex scriptPubKey') address_assert = self.nodes[1].getaddressinfo(address['address']) assert_equal(address_assert['iswatchonly'], False) assert_equal(address_assert['ismine'], False) assert_equal('timestamp' in address_assert, False) # P2SH address sig_address_1 = self.nodes[0].getaddressinfo(self.nodes[0].getnewaddress()) sig_address_2 = self.nodes[0].getaddressinfo(self.nodes[0].getnewaddress()) sig_address_3 = self.nodes[0].getaddressinfo(self.nodes[0].getnewaddress()) multi_sig_script = self.nodes[0].createmultisig(2, [sig_address_1['pubkey'], sig_address_2['pubkey'], sig_address_3['pubkey']]) self.nodes[1].generate(100) self.nodes[1].sendtoaddress(multi_sig_script['address'], 10.00) self.nodes[1].generate(1) timestamp = self.nodes[1].getblock(self.nodes[1].getbestblockhash())['mediantime'] self.log.info("Should import a p2sh") result = self.nodes[1].importmulti([{ "scriptPubKey": { "address": multi_sig_script['address'] }, "timestamp": "now", }]) assert_equal(result[0]['success'], True) address_assert = self.nodes[1].getaddressinfo(multi_sig_script['address']) assert_equal(address_assert['isscript'], True) assert_equal(address_assert['iswatchonly'], True) assert_equal(address_assert['timestamp'], timestamp) p2shunspent = self.nodes[1].listunspent(0,999999, [multi_sig_script['address']])[0] assert_equal(p2shunspent['spendable'], False) assert_equal(p2shunspent['solvable'], False) # P2SH + Redeem script sig_address_1 = self.nodes[0].getaddressinfo(self.nodes[0].getnewaddress()) sig_address_2 = self.nodes[0].getaddressinfo(self.nodes[0].getnewaddress()) sig_address_3 = self.nodes[0].getaddressinfo(self.nodes[0].getnewaddress()) multi_sig_script = self.nodes[0].createmultisig(2, [sig_address_1['pubkey'], sig_address_2['pubkey'], sig_address_3['pubkey']]) self.nodes[1].generate(100) self.nodes[1].sendtoaddress(multi_sig_script['address'], 10.00) self.nodes[1].generate(1) timestamp = self.nodes[1].getblock(self.nodes[1].getbestblockhash())['mediantime'] self.log.info("Should import a p2sh with respective redeem script") result = self.nodes[1].importmulti([{ "scriptPubKey": { "address": multi_sig_script['address'] }, "timestamp": "now", "redeemscript": multi_sig_script['redeemScript'] }]) assert_equal(result[0]['success'], True) address_assert = self.nodes[1].getaddressinfo(multi_sig_script['address']) assert_equal(address_assert['timestamp'], timestamp) p2shunspent = self.nodes[1].listunspent(0,999999, [multi_sig_script['address']])[0] assert_equal(p2shunspent['spendable'], False) assert_equal(p2shunspent['solvable'], True) # P2SH + Redeem script + Private Keys + !Watchonly sig_address_1 = self.nodes[0].getaddressinfo(self.nodes[0].getnewaddress()) sig_address_2 = self.nodes[0].getaddressinfo(self.nodes[0].getnewaddress()) sig_address_3 = self.nodes[0].getaddressinfo(self.nodes[0].getnewaddress()) multi_sig_script = self.nodes[0].createmultisig(2, [sig_address_1['pubkey'], sig_address_2['pubkey'], sig_address_3['pubkey']]) self.nodes[1].generate(100) self.nodes[1].sendtoaddress(multi_sig_script['address'], 10.00) self.nodes[1].generate(1) timestamp = self.nodes[1].getblock(self.nodes[1].getbestblockhash())['mediantime'] self.log.info("Should import a p2sh with respective redeem script and private keys") result = self.nodes[1].importmulti([{ "scriptPubKey": { "address": multi_sig_script['address'] }, "timestamp": "now", "redeemscript": multi_sig_script['redeemScript'], "keys": [ self.nodes[0].dumpprivkey(sig_address_1['address']), self.nodes[0].dumpprivkey(sig_address_2['address'])] }]) assert_equal(result[0]['success'], True) address_assert = self.nodes[1].getaddressinfo(multi_sig_script['address']) assert_equal(address_assert['timestamp'], timestamp) p2shunspent = self.nodes[1].listunspent(0,999999, [multi_sig_script['address']])[0] assert_equal(p2shunspent['spendable'], False) assert_equal(p2shunspent['solvable'], True) # P2SH + Redeem script + Private Keys + Watchonly sig_address_1 = self.nodes[0].getaddressinfo(self.nodes[0].getnewaddress()) sig_address_2 = self.nodes[0].getaddressinfo(self.nodes[0].getnewaddress()) sig_address_3 = self.nodes[0].getaddressinfo(self.nodes[0].getnewaddress()) multi_sig_script = self.nodes[0].createmultisig(2, [sig_address_1['pubkey'], sig_address_2['pubkey'], sig_address_3['pubkey']]) self.nodes[1].generate(100) self.nodes[1].sendtoaddress(multi_sig_script['address'], 10.00) self.nodes[1].generate(1) timestamp = self.nodes[1].getblock(self.nodes[1].getbestblockhash())['mediantime'] self.log.info("Should import a p2sh with respective redeem script and private keys") result = self.nodes[1].importmulti([{ "scriptPubKey": { "address": multi_sig_script['address'] }, "timestamp": "now", "redeemscript": multi_sig_script['redeemScript'], "keys": [ self.nodes[0].dumpprivkey(sig_address_1['address']), self.nodes[0].dumpprivkey(sig_address_2['address'])], "watchonly": True }]) assert_equal(result[0]['success'], False) assert_equal(result[0]['error']['code'], -8) assert_equal(result[0]['error']['message'], 'Incompatibility found between watchonly and keys') # Address + Public key + !Internal + Wrong pubkey self.log.info("Should not import an address with a wrong public key") address = self.nodes[0].getaddressinfo(self.nodes[0].getnewaddress()) address2 = self.nodes[0].getaddressinfo(self.nodes[0].getnewaddress()) result = self.nodes[1].importmulti([{ "scriptPubKey": { "address": address['address'] }, "timestamp": "now", "pubkeys": [ address2['pubkey'] ] }]) assert_equal(result[0]['success'], False) assert_equal(result[0]['error']['code'], -5) assert_equal(result[0]['error']['message'], 'Consistency check failed') address_assert = self.nodes[1].getaddressinfo(address['address']) assert_equal(address_assert['iswatchonly'], False) assert_equal(address_assert['ismine'], False) assert_equal('timestamp' in address_assert, False) # ScriptPubKey + Public key + internal + Wrong pubkey self.log.info("Should not import a scriptPubKey with internal and with a wrong public key") address = self.nodes[0].getaddressinfo(self.nodes[0].getnewaddress()) address2 = self.nodes[0].getaddressinfo(self.nodes[0].getnewaddress()) request = [{ "scriptPubKey": address['scriptPubKey'], "timestamp": "now", "pubkeys": [ address2['pubkey'] ], "internal": True }] result = self.nodes[1].importmulti(request) assert_equal(result[0]['success'], False) assert_equal(result[0]['error']['code'], -5) assert_equal(result[0]['error']['message'], 'Consistency check failed') address_assert = self.nodes[1].getaddressinfo(address['address']) assert_equal(address_assert['iswatchonly'], False) assert_equal(address_assert['ismine'], False) assert_equal('timestamp' in address_assert, False) # Address + Private key + !watchonly + Wrong private key self.log.info("Should not import an address with a wrong private key") address = self.nodes[0].getaddressinfo(self.nodes[0].getnewaddress()) address2 = self.nodes[0].getaddressinfo(self.nodes[0].getnewaddress()) result = self.nodes[1].importmulti([{ "scriptPubKey": { "address": address['address'] }, "timestamp": "now", "keys": [ self.nodes[0].dumpprivkey(address2['address']) ] }]) assert_equal(result[0]['success'], False) assert_equal(result[0]['error']['code'], -5) assert_equal(result[0]['error']['message'], 'Consistency check failed') address_assert = self.nodes[1].getaddressinfo(address['address']) assert_equal(address_assert['iswatchonly'], False) assert_equal(address_assert['ismine'], False) assert_equal('timestamp' in address_assert, False) # ScriptPubKey + Private key + internal + Wrong private key self.log.info("Should not import a scriptPubKey with internal and with a wrong private key") address = self.nodes[0].getaddressinfo(self.nodes[0].getnewaddress()) address2 = self.nodes[0].getaddressinfo(self.nodes[0].getnewaddress()) result = self.nodes[1].importmulti([{ "scriptPubKey": address['scriptPubKey'], "timestamp": "now", "keys": [ self.nodes[0].dumpprivkey(address2['address']) ], "internal": True }]) assert_equal(result[0]['success'], False) assert_equal(result[0]['error']['code'], -5) assert_equal(result[0]['error']['message'], 'Consistency check failed') address_assert = self.nodes[1].getaddressinfo(address['address']) assert_equal(address_assert['iswatchonly'], False) assert_equal(address_assert['ismine'], False) assert_equal('timestamp' in address_assert, False) # Importing existing watch only address with new timestamp should replace saved timestamp. assert_greater_than(timestamp, watchonly_timestamp) self.log.info("Should replace previously saved watch only timestamp.") result = self.nodes[1].importmulti([{ "scriptPubKey": { "address": watchonly_address, }, "timestamp": "now", }]) assert_equal(result[0]['success'], True) address_assert = self.nodes[1].getaddressinfo(watchonly_address) assert_equal(address_assert['iswatchonly'], True) assert_equal(address_assert['ismine'], False) assert_equal(address_assert['timestamp'], timestamp) watchonly_timestamp = timestamp # restart nodes to check for proper serialization/deserialization of watch only address self.stop_nodes() self.start_nodes() address_assert = self.nodes[1].getaddressinfo(watchonly_address) assert_equal(address_assert['iswatchonly'], True) assert_equal(address_assert['ismine'], False) assert_equal(address_assert['timestamp'], watchonly_timestamp) # Bad or missing timestamps self.log.info("Should throw on invalid or missing timestamp values") assert_raises_rpc_error(-3, 'Missing required timestamp field for key', self.nodes[1].importmulti, [{ "scriptPubKey": address['scriptPubKey'], }]) assert_raises_rpc_error(-3, 'Expected number or "now" timestamp value for key. got type string', self.nodes[1].importmulti, [{ "scriptPubKey": address['scriptPubKey'], "timestamp": "", }])
def _test_getblockchaininfo(self): self.log.info("Test getblockchaininfo") keys = [ 'bestblockhash', 'blocks', 'chain', 'chainwork', 'headers', 'initialblockdownload', 'mediantime', 'pruned', 'size_on_disk', 'softforks', 'verificationprogress', 'warnings', ] res = self.nodes[0].getblockchaininfo() # result should have these additional pruning keys if manual pruning is enabled assert_equal(sorted(res.keys()), sorted(['pruneheight', 'automatic_pruning'] + keys)) # size_on_disk should be > 0 assert_greater_than(res['size_on_disk'], 0) # pruneheight should be greater or equal to 0 assert_greater_than_or_equal(res['pruneheight'], 0) # check other pruning fields given that prune=1 assert res['pruned'] assert not res['automatic_pruning'] self.restart_node(0, ['-stopatheight=207']) res = self.nodes[0].getblockchaininfo() # should have exact keys assert_equal(sorted(res.keys()), keys) self.restart_node(0, ['-stopatheight=207', '-prune=550']) res = self.nodes[0].getblockchaininfo() # result should have these additional pruning keys if prune=550 assert_equal( sorted(res.keys()), sorted(['pruneheight', 'automatic_pruning', 'prune_target_size'] + keys)) # check related fields assert res['pruned'] assert_equal(res['pruneheight'], 0) assert res['automatic_pruning'] assert_equal(res['prune_target_size'], 576716800) assert_greater_than(res['size_on_disk'], 0) assert_equal( res['softforks'], { 'bip16': { 'type': 'buried', 'active': True, 'height': 0 }, 'bip34': { 'type': 'buried', 'active': False, 'height': 500 }, 'bip66': { 'type': 'buried', 'active': False, 'height': 1251 }, 'bip65': { 'type': 'buried', 'active': False, 'height': 1351 }, 'csv': { 'type': 'buried', 'active': False, 'height': 432 }, 'segwit': { 'type': 'buried', 'active': True, 'height': 0 }, })
def run_test(self): # Mine 101 blocks on node5 to bring nodes out of IBD and make sure that # no coinbases are maturing for the nodes-under-test during the test self.nodes[5].generate(101) sync_blocks(self.nodes) uncompressed_1 = "0496b538e853519c726a2c91e61ec11600ae1390813a627c66fb8be7947be63c52da7589379515d4e0a604f8141781e62294721166bf621e73a82cbf2342c858ee" uncompressed_2 = "047211a824f55b505228e4c3d5194c1fcfaa15a456abdf37f9b9d97a4040afc073dee6c89064984f03385237d92167c13e236446b417ab79a0fcae412ae3316b77" compressed_1 = "0296b538e853519c726a2c91e61ec11600ae1390813a627c66fb8be7947be63c52" compressed_2 = "037211a824f55b505228e4c3d5194c1fcfaa15a456abdf37f9b9d97a4040afc073" # addmultisigaddress with at least 1 uncompressed key should return a legacy address. for node in range(4): self.test_address(node, self.nodes[node].addmultisigaddress(2, [uncompressed_1, uncompressed_2])['address'], True, 'legacy') self.test_address(node, self.nodes[node].addmultisigaddress(2, [compressed_1, uncompressed_2])['address'], True, 'legacy') self.test_address(node, self.nodes[node].addmultisigaddress(2, [uncompressed_1, compressed_2])['address'], True, 'legacy') # addmultisigaddress with all compressed keys should return the appropriate address type (even when the keys are not ours). self.test_address(0, self.nodes[0].addmultisigaddress(2, [compressed_1, compressed_2])['address'], True, 'legacy') self.test_address(1, self.nodes[1].addmultisigaddress(2, [compressed_1, compressed_2])['address'], True, 'p2sh-segwit') self.test_address(2, self.nodes[2].addmultisigaddress(2, [compressed_1, compressed_2])['address'], True, 'p2sh-segwit') self.test_address(3, self.nodes[3].addmultisigaddress(2, [compressed_1, compressed_2])['address'], True, 'bech32') for explicit_type, multisig, from_node in itertools.product([False, True], [False, True], range(4)): address_type = None if explicit_type and not multisig: if from_node == 1: address_type = 'bech32' elif from_node == 0 or from_node == 3: address_type = 'p2sh-segwit' else: address_type = 'legacy' self.log.info("Sending from node {} ({}) with{} multisig using {}".format(from_node, self.extra_args[from_node], "" if multisig else "out", "default" if address_type is None else address_type)) old_balances = self.get_balances() self.log.debug("Old balances are {}".format(old_balances)) to_send = (old_balances[from_node] / 101).quantize(Decimal("0.00000001")) sends = {} addresses = {} self.log.debug("Prepare sends") for n, to_node in enumerate(range(from_node, from_node + 4)): to_node %= 4 change = False if not multisig: if from_node == to_node: # When sending non-multisig to self, use getrawchangeaddress address = self.nodes[to_node].getrawchangeaddress(address_type=address_type) change = True else: address = self.nodes[to_node].getnewaddress(address_type=address_type) else: addr1 = self.nodes[to_node].getnewaddress() addr2 = self.nodes[to_node].getnewaddress() address = self.nodes[to_node].addmultisigaddress(2, [addr1, addr2])['address'] # Do some sanity checking on the created address if address_type is not None: typ = address_type elif to_node == 0: typ = 'legacy' elif to_node == 1 or (to_node == 2 and not change): typ = 'p2sh-segwit' else: typ = 'bech32' self.test_address(to_node, address, multisig, typ) # Output entry sends[address] = to_send * 10 * (1 + n) addresses[to_node] = (address, typ) self.log.debug("Sending: {}".format(sends)) self.nodes[from_node].sendmany("", sends) sync_mempools(self.nodes) unconf_balances = self.get_balances(False) self.log.debug("Check unconfirmed balances: {}".format(unconf_balances)) assert_equal(unconf_balances[from_node], 0) for n, to_node in enumerate(range(from_node + 1, from_node + 4)): to_node %= 4 assert_equal(unconf_balances[to_node], to_send * 10 * (2 + n)) # node5 collects fee and block subsidy to keep accounting simple self.nodes[5].generate(1) sync_blocks(self.nodes) # Verify that the receiving wallet contains a UTXO with the expected address, and expected descriptor for n, to_node in enumerate(range(from_node, from_node + 4)): to_node %= 4 found = False for utxo in self.nodes[to_node].listunspent(): if utxo['address'] == addresses[to_node][0]: found = True self.test_desc(to_node, addresses[to_node][0], multisig, addresses[to_node][1], utxo) break assert found new_balances = self.get_balances() self.log.debug("Check new balances: {}".format(new_balances)) # We don't know what fee was set, so we can only check bounds on the balance of the sending node assert_greater_than(new_balances[from_node], to_send * 10) assert_greater_than(to_send * 11, new_balances[from_node]) for n, to_node in enumerate(range(from_node + 1, from_node + 4)): to_node %= 4 assert_equal(new_balances[to_node], old_balances[to_node] + to_send * 10 * (2 + n)) # Get one p2sh/segwit address from node2 and two bech32 addresses from node3: to_address_p2sh = self.nodes[2].getnewaddress() to_address_bech32_1 = self.nodes[3].getnewaddress() to_address_bech32_2 = self.nodes[3].getnewaddress() # Fund node 4: self.nodes[5].sendtoaddress(self.nodes[4].getnewaddress(), Decimal("1")) self.nodes[5].generate(1) sync_blocks(self.nodes) assert_equal(self.nodes[4].getbalance(), 1) self.log.info("Nodes with addresstype=legacy never use a P2WPKH change output") self.test_change_output_type(0, [to_address_bech32_1], 'legacy') self.log.info("Nodes with addresstype=p2sh-segwit only use a P2WPKH change output if any destination address is bech32:") self.test_change_output_type(1, [to_address_p2sh], 'p2sh-segwit') self.test_change_output_type(1, [to_address_bech32_1], 'bech32') self.test_change_output_type(1, [to_address_p2sh, to_address_bech32_1], 'bech32') self.test_change_output_type(1, [to_address_bech32_1, to_address_bech32_2], 'bech32') self.log.info("Nodes with change_type=bech32 always use a P2WPKH change output:") self.test_change_output_type(2, [to_address_bech32_1], 'bech32') self.test_change_output_type(2, [to_address_p2sh], 'bech32') self.log.info("Nodes with addresstype=bech32 always use a P2WPKH change output (unless changetype is set otherwise):") self.test_change_output_type(3, [to_address_bech32_1], 'bech32') self.test_change_output_type(3, [to_address_p2sh], 'bech32') self.log.info('getrawchangeaddress defaults to addresstype if -changetype is not set and argument is absent') self.test_address(3, self.nodes[3].getrawchangeaddress(), multisig=False, typ='bech32') self.log.info('test invalid address type arguments') assert_raises_rpc_error(-5, "Unknown address type ''", self.nodes[3].addmultisigaddress, 2, [compressed_1, compressed_2], None, '') assert_raises_rpc_error(-5, "Unknown address type ''", self.nodes[3].getnewaddress, None, '') assert_raises_rpc_error(-5, "Unknown address type ''", self.nodes[3].getrawchangeaddress, '') assert_raises_rpc_error(-5, "Unknown address type 'bech23'", self.nodes[3].getrawchangeaddress, 'bech23') self.log.info("Nodes with changetype=p2sh-segwit never use a P2WPKH change output") self.test_change_output_type(4, [to_address_bech32_1], 'p2sh-segwit') self.test_address(4, self.nodes[4].getrawchangeaddress(), multisig=False, typ='p2sh-segwit') self.log.info("Except for getrawchangeaddress if specified:") self.test_address(4, self.nodes[4].getrawchangeaddress(), multisig=False, typ='p2sh-segwit') self.test_address(4, self.nodes[4].getrawchangeaddress('bech32'), multisig=False, typ='bech32')
def run_test(self): passphrase = "WalletPassphrase" passphrase2 = "SecondWalletPassphrase" # Make sure the wallet isn't encrypted first address = self.nodes[0].getnewaddress() privkey = self.nodes[0].dumpprivkey(address) assert_equal(privkey[:1], "c") assert_equal(len(privkey), 52) # Encrypt the wallet self.nodes[0].node_encrypt_wallet(passphrase) self.start_node(0) # Test that the wallet is encrypted assert_raises_rpc_error( -13, "Please enter the wallet passphrase with walletpassphrase first", self.nodes[0].dumpprivkey, address) # Check that walletpassphrase works self.nodes[0].walletpassphrase(passphrase, 2) assert_equal(privkey, self.nodes[0].dumpprivkey(address)) # Check that the timeout is right time.sleep(2) assert_raises_rpc_error( -13, "Please enter the wallet passphrase with walletpassphrase first", self.nodes[0].dumpprivkey, address) # Test wrong passphrase assert_raises_rpc_error(-14, "wallet passphrase entered was incorrect", self.nodes[0].walletpassphrase, passphrase + "wrong", 10) # Test walletlock self.nodes[0].walletpassphrase(passphrase, 84600) assert_equal(privkey, self.nodes[0].dumpprivkey(address)) self.nodes[0].walletlock() assert_raises_rpc_error( -13, "Please enter the wallet passphrase with walletpassphrase first", self.nodes[0].dumpprivkey, address) # Test passphrase changes self.nodes[0].walletpassphrasechange(passphrase, passphrase2) assert_raises_rpc_error(-14, "wallet passphrase entered was incorrect", self.nodes[0].walletpassphrase, passphrase, 10) self.nodes[0].walletpassphrase(passphrase2, 10) assert_equal(privkey, self.nodes[0].dumpprivkey(address)) self.nodes[0].walletlock() # Test timeout bounds assert_raises_rpc_error(-8, "Timeout cannot be negative.", self.nodes[0].walletpassphrase, passphrase2, -10) # Check the timeout # Check a time less than the limit expected_time = int(time.time()) + (1 << 30) - 600 self.nodes[0].walletpassphrase(passphrase2, (1 << 30) - 600) actual_time = self.nodes[0].getwalletinfo()['unlocked_until'] assert_greater_than_or_equal(actual_time, expected_time) assert_greater_than(expected_time + 5, actual_time) # 5 second buffer # Check a time greater than the limit expected_time = int(time.time()) + (1 << 30) - 1 self.nodes[0].walletpassphrase(passphrase2, (1 << 33)) actual_time = self.nodes[0].getwalletinfo()['unlocked_until'] assert_greater_than_or_equal(actual_time, expected_time) assert_greater_than(expected_time + 5, actual_time) # 5 second buffer
class RawTransactionsTest(BitcoinTestFramework): def setup_chain(self): print("Initializing test directory "+self.options.tmpdir) initialize_chain_clean(self.options.tmpdir, 3) def setup_network(self, split=False): self.nodes = start_nodes(3, self.options.tmpdir, extra_args=[['-experimentalfeatures', '-developerencryptwallet']] * 4) connect_nodes_bi(self.nodes,0,1) connect_nodes_bi(self.nodes,1,2) connect_nodes_bi(self.nodes,0,2) self.is_network_split=False self.sync_all() def run_test(self): print "Mining blocks..." feeTolerance = Decimal(0.00000002) #if the fee's positive delta is higher than this value tests will fail, neg. delta always fail the tests self.nodes[2].generate(1) self.sync_all() self.nodes[0].generate(101) self.sync_all() self.nodes[0].sendtoaddress(self.nodes[2].getnewaddress(),1.5); self.nodes[0].sendtoaddress(self.nodes[2].getnewaddress(),1.0); self.nodes[0].sendtoaddress(self.nodes[2].getnewaddress(),5.0); self.sync_all() self.nodes[0].generate(1) self.sync_all() ############### # simple test # ############### inputs = [ ] outputs = { self.nodes[0].getnewaddress() : 1.0 } rawtx = self.nodes[2].createrawtransaction(inputs, outputs) dec_tx = self.nodes[2].decoderawtransaction(rawtx) rawtxfund = self.nodes[2].fundrawtransaction(rawtx) fee = rawtxfund['fee'] dec_tx = self.nodes[2].decoderawtransaction(rawtxfund['hex']) assert_equal(len(dec_tx['vin']) > 0, True) #test if we have enought inputs ############################## # simple test with two coins # ############################## inputs = [ ] outputs = { self.nodes[0].getnewaddress() : 2.2 } rawtx = self.nodes[2].createrawtransaction(inputs, outputs) dec_tx = self.nodes[2].decoderawtransaction(rawtx) rawtxfund = self.nodes[2].fundrawtransaction(rawtx) fee = rawtxfund['fee'] dec_tx = self.nodes[2].decoderawtransaction(rawtxfund['hex']) assert_equal(len(dec_tx['vin']) > 0, True) #test if we have enough inputs ############################## # simple test with two coins # ############################## inputs = [ ] outputs = { self.nodes[0].getnewaddress() : 2.6 } rawtx = self.nodes[2].createrawtransaction(inputs, outputs) dec_tx = self.nodes[2].decoderawtransaction(rawtx) rawtxfund = self.nodes[2].fundrawtransaction(rawtx) fee = rawtxfund['fee'] dec_tx = self.nodes[2].decoderawtransaction(rawtxfund['hex']) assert_equal(len(dec_tx['vin']) > 0, True) assert_equal(dec_tx['vin'][0]['scriptSig']['hex'], '') ################################ # simple test with two outputs # ################################ inputs = [ ] outputs = { self.nodes[0].getnewaddress() : 2.6, self.nodes[1].getnewaddress() : 2.5 } rawtx = self.nodes[2].createrawtransaction(inputs, outputs) dec_tx = self.nodes[2].decoderawtransaction(rawtx) rawtxfund = self.nodes[2].fundrawtransaction(rawtx) fee = rawtxfund['fee'] dec_tx = self.nodes[2].decoderawtransaction(rawtxfund['hex']) totalOut = 0 for out in dec_tx['vout']: totalOut += out['value'] assert_equal(len(dec_tx['vin']) > 0, True) assert_equal(dec_tx['vin'][0]['scriptSig']['hex'], '') ######################################################################### # test a fundrawtransaction with a VIN greater than the required amount # ######################################################################### utx = False listunspent = self.nodes[2].listunspent() for aUtx in listunspent: if aUtx['amount'] == 5.0: utx = aUtx break; assert_equal(utx!=False, True) inputs = [ {'txid' : utx['txid'], 'vout' : utx['vout']}] outputs = { self.nodes[0].getnewaddress() : 1.0 } rawtx = self.nodes[2].createrawtransaction(inputs, outputs) dec_tx = self.nodes[2].decoderawtransaction(rawtx) assert_equal(utx['txid'], dec_tx['vin'][0]['txid']) rawtxfund = self.nodes[2].fundrawtransaction(rawtx) fee = rawtxfund['fee'] dec_tx = self.nodes[2].decoderawtransaction(rawtxfund['hex']) totalOut = 0 for out in dec_tx['vout']: totalOut += out['value'] assert_equal(fee + totalOut, utx['amount']) #compare vin total and totalout+fee ##################################################################### # test a fundrawtransaction with which will not get a change output # ##################################################################### utx = False listunspent = self.nodes[2].listunspent() for aUtx in listunspent: if aUtx['amount'] == 5.0: utx = aUtx break; assert_equal(utx!=False, True) inputs = [ {'txid' : utx['txid'], 'vout' : utx['vout']}] outputs = { self.nodes[0].getnewaddress() : Decimal(5.0) - fee - feeTolerance } rawtx = self.nodes[2].createrawtransaction(inputs, outputs) dec_tx = self.nodes[2].decoderawtransaction(rawtx) assert_equal(utx['txid'], dec_tx['vin'][0]['txid']) rawtxfund = self.nodes[2].fundrawtransaction(rawtx) fee = rawtxfund['fee'] dec_tx = self.nodes[2].decoderawtransaction(rawtxfund['hex']) totalOut = 0 for out in dec_tx['vout']: totalOut += out['value'] assert_equal(rawtxfund['changepos'], -1) assert_equal(fee + totalOut, utx['amount']) #compare vin total and totalout+fee ######################################################################### # test a fundrawtransaction with a VIN smaller than the required amount # ######################################################################### utx = False listunspent = self.nodes[2].listunspent() for aUtx in listunspent: if aUtx['amount'] == 1.0: utx = aUtx break; assert_equal(utx!=False, True) inputs = [ {'txid' : utx['txid'], 'vout' : utx['vout']}] outputs = { self.nodes[0].getnewaddress() : 1.0 } rawtx = self.nodes[2].createrawtransaction(inputs, outputs) # 4-byte version + 1-byte vin count + 36-byte prevout then script_len rawtx = rawtx[:82] + "0100" + rawtx[84:] dec_tx = self.nodes[2].decoderawtransaction(rawtx) assert_equal(utx['txid'], dec_tx['vin'][0]['txid']) assert_equal("00", dec_tx['vin'][0]['scriptSig']['hex']) rawtxfund = self.nodes[2].fundrawtransaction(rawtx) fee = rawtxfund['fee'] dec_tx = self.nodes[2].decoderawtransaction(rawtxfund['hex']) totalOut = 0 matchingOuts = 0 for i, out in enumerate(dec_tx['vout']): totalOut += out['value'] if outputs.has_key(out['scriptPubKey']['addresses'][0]): matchingOuts+=1 else: assert_equal(i, rawtxfund['changepos']) assert_equal(utx['txid'], dec_tx['vin'][0]['txid']) assert_equal("00", dec_tx['vin'][0]['scriptSig']['hex']) assert_equal(matchingOuts, 1) assert_equal(len(dec_tx['vout']), 2) ########################################### # test a fundrawtransaction with two VINs # ########################################### utx = False utx2 = False listunspent = self.nodes[2].listunspent() for aUtx in listunspent: if aUtx['amount'] == 1.0: utx = aUtx if aUtx['amount'] == 5.0: utx2 = aUtx assert_equal(utx!=False, True) inputs = [ {'txid' : utx['txid'], 'vout' : utx['vout']},{'txid' : utx2['txid'], 'vout' : utx2['vout']} ] outputs = { self.nodes[0].getnewaddress() : 6.0 } rawtx = self.nodes[2].createrawtransaction(inputs, outputs) dec_tx = self.nodes[2].decoderawtransaction(rawtx) assert_equal(utx['txid'], dec_tx['vin'][0]['txid']) rawtxfund = self.nodes[2].fundrawtransaction(rawtx) fee = rawtxfund['fee'] dec_tx = self.nodes[2].decoderawtransaction(rawtxfund['hex']) totalOut = 0 matchingOuts = 0 for out in dec_tx['vout']: totalOut += out['value'] if outputs.has_key(out['scriptPubKey']['addresses'][0]): matchingOuts+=1 assert_equal(matchingOuts, 1) assert_equal(len(dec_tx['vout']), 2) matchingIns = 0 for vinOut in dec_tx['vin']: for vinIn in inputs: if vinIn['txid'] == vinOut['txid']: matchingIns+=1 assert_equal(matchingIns, 2) #we now must see two vins identical to vins given as params ######################################################### # test a fundrawtransaction with two VINs and two vOUTs # ######################################################### utx = False utx2 = False listunspent = self.nodes[2].listunspent() for aUtx in listunspent: if aUtx['amount'] == 1.0: utx = aUtx if aUtx['amount'] == 5.0: utx2 = aUtx assert_equal(utx!=False, True) inputs = [ {'txid' : utx['txid'], 'vout' : utx['vout']},{'txid' : utx2['txid'], 'vout' : utx2['vout']} ] outputs = { self.nodes[0].getnewaddress() : 6.0, self.nodes[0].getnewaddress() : 1.0 } rawtx = self.nodes[2].createrawtransaction(inputs, outputs) dec_tx = self.nodes[2].decoderawtransaction(rawtx) assert_equal(utx['txid'], dec_tx['vin'][0]['txid']) rawtxfund = self.nodes[2].fundrawtransaction(rawtx) fee = rawtxfund['fee'] dec_tx = self.nodes[2].decoderawtransaction(rawtxfund['hex']) totalOut = 0 matchingOuts = 0 for out in dec_tx['vout']: totalOut += out['value'] if outputs.has_key(out['scriptPubKey']['addresses'][0]): matchingOuts+=1 assert_equal(matchingOuts, 2) assert_equal(len(dec_tx['vout']), 3) ############################################## # test a fundrawtransaction with invalid vin # ############################################## listunspent = self.nodes[2].listunspent() inputs = [ {'txid' : "1c7f966dab21119bac53213a2bc7532bff1fa844c124fd750a7d0b1332440bd1", 'vout' : 0} ] #invalid vin! outputs = { self.nodes[0].getnewaddress() : 1.0} rawtx = self.nodes[2].createrawtransaction(inputs, outputs) dec_tx = self.nodes[2].decoderawtransaction(rawtx) errorString = "" try: rawtxfund = self.nodes[2].fundrawtransaction(rawtx) except JSONRPCException,e: errorString = e.error['message'] assert_equal("Insufficient" in errorString, True); ############################################################ #compare fee of a standard pubkeyhash transaction inputs = [] outputs = {self.nodes[1].getnewaddress():1.1} rawTx = self.nodes[0].createrawtransaction(inputs, outputs) fundedTx = self.nodes[0].fundrawtransaction(rawTx) #create same transaction over sendtoaddress txId = self.nodes[0].sendtoaddress(self.nodes[1].getnewaddress(), 1.1); signedFee = self.nodes[0].getrawmempool(True)[txId]['fee'] #compare fee feeDelta = Decimal(fundedTx['fee']) - Decimal(signedFee); assert(feeDelta >= 0 and feeDelta <= feeTolerance) ############################################################ ############################################################ #compare fee of a standard pubkeyhash transaction with multiple outputs inputs = [] outputs = {self.nodes[1].getnewaddress():1.1,self.nodes[1].getnewaddress():1.2,self.nodes[1].getnewaddress():0.1,self.nodes[1].getnewaddress():1.3,self.nodes[1].getnewaddress():0.2,self.nodes[1].getnewaddress():0.3} rawTx = self.nodes[0].createrawtransaction(inputs, outputs) fundedTx = self.nodes[0].fundrawtransaction(rawTx) #create same transaction over sendtoaddress txId = self.nodes[0].sendmany("", outputs); signedFee = self.nodes[0].getrawmempool(True)[txId]['fee'] #compare fee feeDelta = Decimal(fundedTx['fee']) - Decimal(signedFee); assert(feeDelta >= 0 and feeDelta <= feeTolerance) ############################################################ ############################################################ #compare fee of a 2of2 multisig p2sh transaction # create 2of2 addr addr1 = self.nodes[1].getnewaddress() addr2 = self.nodes[1].getnewaddress() addr1Obj = self.nodes[1].validateaddress(addr1) addr2Obj = self.nodes[1].validateaddress(addr2) mSigObj = self.nodes[1].addmultisigaddress(2, [addr1Obj['pubkey'], addr2Obj['pubkey']]) inputs = [] outputs = {mSigObj:1.1} rawTx = self.nodes[0].createrawtransaction(inputs, outputs) fundedTx = self.nodes[0].fundrawtransaction(rawTx) #create same transaction over sendtoaddress txId = self.nodes[0].sendtoaddress(mSigObj, 1.1); signedFee = self.nodes[0].getrawmempool(True)[txId]['fee'] #compare fee feeDelta = Decimal(fundedTx['fee']) - Decimal(signedFee); assert(feeDelta >= 0 and feeDelta <= feeTolerance) ############################################################ ############################################################ #compare fee of a standard pubkeyhash transaction # create 4of5 addr addr1 = self.nodes[1].getnewaddress() addr2 = self.nodes[1].getnewaddress() addr3 = self.nodes[1].getnewaddress() addr4 = self.nodes[1].getnewaddress() addr5 = self.nodes[1].getnewaddress() addr1Obj = self.nodes[1].validateaddress(addr1) addr2Obj = self.nodes[1].validateaddress(addr2) addr3Obj = self.nodes[1].validateaddress(addr3) addr4Obj = self.nodes[1].validateaddress(addr4) addr5Obj = self.nodes[1].validateaddress(addr5) mSigObj = self.nodes[1].addmultisigaddress(4, [addr1Obj['pubkey'], addr2Obj['pubkey'], addr3Obj['pubkey'], addr4Obj['pubkey'], addr5Obj['pubkey']]) inputs = [] outputs = {mSigObj:1.1} rawTx = self.nodes[0].createrawtransaction(inputs, outputs) fundedTx = self.nodes[0].fundrawtransaction(rawTx) #create same transaction over sendtoaddress txId = self.nodes[0].sendtoaddress(mSigObj, 1.1); signedFee = self.nodes[0].getrawmempool(True)[txId]['fee'] #compare fee feeDelta = Decimal(fundedTx['fee']) - Decimal(signedFee); assert(feeDelta >= 0 and feeDelta <= feeTolerance) ############################################################ ############################################################ # spend a 2of2 multisig transaction over fundraw # create 2of2 addr addr1 = self.nodes[2].getnewaddress() addr2 = self.nodes[2].getnewaddress() addr1Obj = self.nodes[2].validateaddress(addr1) addr2Obj = self.nodes[2].validateaddress(addr2) mSigObj = self.nodes[2].addmultisigaddress(2, [addr1Obj['pubkey'], addr2Obj['pubkey']]) # send 1.2 BTC to msig addr txId = self.nodes[0].sendtoaddress(mSigObj, 1.2); self.sync_all() self.nodes[1].generate(1) self.sync_all() oldBalance = self.nodes[1].getbalance() inputs = [] outputs = {self.nodes[1].getnewaddress():1.1} rawTx = self.nodes[2].createrawtransaction(inputs, outputs) fundedTx = self.nodes[2].fundrawtransaction(rawTx) signedTx = self.nodes[2].signrawtransaction(fundedTx['hex']) txId = self.nodes[2].sendrawtransaction(signedTx['hex']) self.sync_all() self.nodes[1].generate(1) self.sync_all() # make sure funds are received at node1 assert_equal(oldBalance+Decimal('1.10000000'), self.nodes[1].getbalance()) ############################################################ # locked wallet test self.nodes[1].encryptwallet("test") self.nodes.pop(1) stop_nodes(self.nodes) wait_bitcoinds() self.nodes = start_nodes(3, self.options.tmpdir) connect_nodes_bi(self.nodes,0,1) connect_nodes_bi(self.nodes,1,2) connect_nodes_bi(self.nodes,0,2) self.is_network_split=False self.sync_all() error = False try: self.nodes[1].sendtoaddress(self.nodes[0].getnewaddress(), 1.2); except: error = True assert(error) oldBalance = self.nodes[0].getbalance() inputs = [] outputs = {self.nodes[0].getnewaddress():1.1} rawTx = self.nodes[1].createrawtransaction(inputs, outputs) fundedTx = self.nodes[1].fundrawtransaction(rawTx) #now we need to unlock self.nodes[1].walletpassphrase("test", 100) signedTx = self.nodes[1].signrawtransaction(fundedTx['hex']) txId = self.nodes[1].sendrawtransaction(signedTx['hex']) self.sync_all() self.nodes[1].generate(1) self.sync_all() # make sure funds are received at node1 assert_equal(oldBalance+Decimal('11.10000000'), self.nodes[0].getbalance()) ############################################### # multiple (~19) inputs tx test | Compare fee # ############################################### #empty node1, send some small coins from node0 to node1 self.nodes[1].sendtoaddress(self.nodes[0].getnewaddress(), self.nodes[1].getbalance(), "", "", True); self.sync_all() self.nodes[0].generate(1) self.sync_all() for i in range(0,20): self.nodes[0].sendtoaddress(self.nodes[1].getnewaddress(), 0.01); self.sync_all() self.nodes[0].generate(1) self.sync_all() #fund a tx with ~20 small inputs inputs = [] outputs = {self.nodes[0].getnewaddress():0.15,self.nodes[0].getnewaddress():0.04} rawTx = self.nodes[1].createrawtransaction(inputs, outputs) fundedTx = self.nodes[1].fundrawtransaction(rawTx) #create same transaction over sendtoaddress txId = self.nodes[1].sendmany("", outputs); signedFee = self.nodes[1].getrawmempool(True)[txId]['fee'] #compare fee feeDelta = Decimal(fundedTx['fee']) - Decimal(signedFee); assert(feeDelta >= 0 and feeDelta <= feeTolerance*19) #~19 inputs ############################################# # multiple (~19) inputs tx test | sign/send # ############################################# #again, empty node1, send some small coins from node0 to node1 self.nodes[1].sendtoaddress(self.nodes[0].getnewaddress(), self.nodes[1].getbalance(), "", "", True); self.sync_all() self.nodes[0].generate(1) self.sync_all() for i in range(0,20): self.nodes[0].sendtoaddress(self.nodes[1].getnewaddress(), 0.01); self.sync_all() self.nodes[0].generate(1) self.sync_all() #fund a tx with ~20 small inputs oldBalance = self.nodes[0].getbalance() inputs = [] outputs = {self.nodes[0].getnewaddress():0.15,self.nodes[0].getnewaddress():0.04} rawTx = self.nodes[1].createrawtransaction(inputs, outputs) fundedTx = self.nodes[1].fundrawtransaction(rawTx) fundedAndSignedTx = self.nodes[1].signrawtransaction(fundedTx['hex']) txId = self.nodes[1].sendrawtransaction(fundedAndSignedTx['hex']) self.sync_all() self.nodes[0].generate(1) self.sync_all() assert_equal(oldBalance+Decimal('10.19000000'), self.nodes[0].getbalance()) #0.19+block reward ##################################################### # test fundrawtransaction with OP_RETURN and no vin # ##################################################### rawtx = "0100000000010000000000000000066a047465737400000000" dec_tx = self.nodes[2].decoderawtransaction(rawtx) assert_equal(len(dec_tx['vin']), 0) assert_equal(len(dec_tx['vout']), 1) rawtxfund = self.nodes[2].fundrawtransaction(rawtx) dec_tx = self.nodes[2].decoderawtransaction(rawtxfund['hex']) assert_greater_than(len(dec_tx['vin']), 0) # at least one vin assert_equal(len(dec_tx['vout']), 2) # one change output added
def run_test(self): self.url = urllib.parse.urlparse(self.nodes[0].url) self.log.info("Mine blocks and send TNGC to node 1") # Random address so node1's balance doesn't increase not_related_address = "2MxqoHEdNQTyYeX1mHcbrrpzgojbosTpCvJ" self.nodes[0].generate(1) self.sync_all() self.nodes[1].generatetoaddress(100, not_related_address) self.sync_all() assert_equal(self.nodes[0].getbalance(), 50) txid = self.nodes[0].sendtoaddress(self.nodes[1].getnewaddress(), 0.1) self.sync_all() self.log.info("Test the /tx URI") json_obj = self.test_rest_request("/tx/{}".format(txid)) assert_equal(json_obj['txid'], txid) # Check hex format response hex_response = self.test_rest_request("/tx/{}".format(txid), req_type=ReqType.HEX, ret_type=RetType.OBJ) assert_greater_than_or_equal(int(hex_response.getheader('content-length')), json_obj['size']*2) spent = (json_obj['vin'][0]['txid'], json_obj['vin'][0]['vout']) # get the vin to later check for utxo (should be spent by then) # get n of 0.1 outpoint n, = filter_output_indices_by_value(json_obj['vout'], Decimal('0.1')) spending = (txid, n) self.log.info("Query an unspent TXO using the /getutxos URI") self.nodes[1].generatetoaddress(1, not_related_address) self.sync_all() bb_hash = self.nodes[0].getbestblockhash() assert_equal(self.nodes[1].getbalance(), Decimal("0.1")) # Check chainTip response json_obj = self.test_rest_request("/getutxos/{}-{}".format(*spending)) assert_equal(json_obj['chaintipHash'], bb_hash) # Make sure there is one utxo assert_equal(len(json_obj['utxos']), 1) assert_equal(json_obj['utxos'][0]['value'], Decimal('0.1')) self.log.info("Query a spent TXO using the /getutxos URI") json_obj = self.test_rest_request("/getutxos/{}-{}".format(*spent)) # Check chainTip response assert_equal(json_obj['chaintipHash'], bb_hash) # Make sure there is no utxo in the response because this outpoint has been spent assert_equal(len(json_obj['utxos']), 0) # Check bitmap assert_equal(json_obj['bitmap'], "0") self.log.info("Query two TXOs using the /getutxos URI") json_obj = self.test_rest_request("/getutxos/{}-{}/{}-{}".format(*(spending + spent))) assert_equal(len(json_obj['utxos']), 1) assert_equal(json_obj['bitmap'], "10") self.log.info("Query the TXOs using the /getutxos URI with a binary response") bin_request = b'\x01\x02' for txid, n in [spending, spent]: bin_request += hex_str_to_bytes(txid) bin_request += pack("i", n) bin_response = self.test_rest_request("/getutxos", http_method='POST', req_type=ReqType.BIN, body=bin_request, ret_type=RetType.BYTES) output = BytesIO(bin_response) chain_height, = unpack("<i", output.read(4)) response_hash = output.read(32)[::-1].hex() assert_equal(bb_hash, response_hash) # check if getutxo's chaintip during calculation was fine assert_equal(chain_height, 102) # chain height must be 102 self.log.info("Test the /getutxos URI with and without /checkmempool") # Create a transaction, check that it's found with /checkmempool, but # not found without. Then confirm the transaction and check that it's # found with or without /checkmempool. # do a tx and don't sync txid = self.nodes[0].sendtoaddress(self.nodes[1].getnewaddress(), 0.1) json_obj = self.test_rest_request("/tx/{}".format(txid)) # get the spent output to later check for utxo (should be spent by then) spent = (json_obj['vin'][0]['txid'], json_obj['vin'][0]['vout']) # get n of 0.1 outpoint n, = filter_output_indices_by_value(json_obj['vout'], Decimal('0.1')) spending = (txid, n) json_obj = self.test_rest_request("/getutxos/{}-{}".format(*spending)) assert_equal(len(json_obj['utxos']), 0) json_obj = self.test_rest_request("/getutxos/checkmempool/{}-{}".format(*spending)) assert_equal(len(json_obj['utxos']), 1) json_obj = self.test_rest_request("/getutxos/{}-{}".format(*spent)) assert_equal(len(json_obj['utxos']), 1) json_obj = self.test_rest_request("/getutxos/checkmempool/{}-{}".format(*spent)) assert_equal(len(json_obj['utxos']), 0) self.nodes[0].generate(1) self.sync_all() json_obj = self.test_rest_request("/getutxos/{}-{}".format(*spending)) assert_equal(len(json_obj['utxos']), 1) json_obj = self.test_rest_request("/getutxos/checkmempool/{}-{}".format(*spending)) assert_equal(len(json_obj['utxos']), 1) # Do some invalid requests self.test_rest_request("/getutxos", http_method='POST', req_type=ReqType.JSON, body='{"checkmempool', status=400, ret_type=RetType.OBJ) self.test_rest_request("/getutxos", http_method='POST', req_type=ReqType.BIN, body='{"checkmempool', status=400, ret_type=RetType.OBJ) self.test_rest_request("/getutxos/checkmempool", http_method='POST', req_type=ReqType.JSON, status=400, ret_type=RetType.OBJ) # Test limits long_uri = '/'.join(["{}-{}".format(txid, n_) for n_ in range(20)]) self.test_rest_request("/getutxos/checkmempool/{}".format(long_uri), http_method='POST', status=400, ret_type=RetType.OBJ) long_uri = '/'.join(['{}-{}'.format(txid, n_) for n_ in range(15)]) self.test_rest_request("/getutxos/checkmempool/{}".format(long_uri), http_method='POST', status=200) self.nodes[0].generate(1) # generate block to not affect upcoming tests self.sync_all() self.log.info("Test the /block, /blockhashbyheight and /headers URIs") bb_hash = self.nodes[0].getbestblockhash() # Check result if block does not exists assert_equal(self.test_rest_request('/headers/1/0000000000000000000000000000000000000000000000000000000000000000'), []) self.test_rest_request('/block/0000000000000000000000000000000000000000000000000000000000000000', status=404, ret_type=RetType.OBJ) # Check result if block is not in the active chain self.nodes[0].invalidateblock(bb_hash) assert_equal(self.test_rest_request('/headers/1/{}'.format(bb_hash)), []) self.test_rest_request('/block/{}'.format(bb_hash)) self.nodes[0].reconsiderblock(bb_hash) # Check binary format response = self.test_rest_request("/block/{}".format(bb_hash), req_type=ReqType.BIN, ret_type=RetType.OBJ) assert_greater_than(int(response.getheader('content-length')), BLOCK_HEADER_SIZE) response_bytes = response.read() # Compare with block header response_header = self.test_rest_request("/headers/1/{}".format(bb_hash), req_type=ReqType.BIN, ret_type=RetType.OBJ) assert_equal(int(response_header.getheader('content-length')), BLOCK_HEADER_SIZE) response_header_bytes = response_header.read() assert_equal(response_bytes[:BLOCK_HEADER_SIZE], response_header_bytes) # Check block hex format response_hex = self.test_rest_request("/block/{}".format(bb_hash), req_type=ReqType.HEX, ret_type=RetType.OBJ) assert_greater_than(int(response_hex.getheader('content-length')), BLOCK_HEADER_SIZE*2) response_hex_bytes = response_hex.read().strip(b'\n') assert_equal(binascii.hexlify(response_bytes), response_hex_bytes) # Compare with hex block header response_header_hex = self.test_rest_request("/headers/1/{}".format(bb_hash), req_type=ReqType.HEX, ret_type=RetType.OBJ) assert_greater_than(int(response_header_hex.getheader('content-length')), BLOCK_HEADER_SIZE*2) response_header_hex_bytes = response_header_hex.read(BLOCK_HEADER_SIZE*2) assert_equal(binascii.hexlify(response_bytes[:BLOCK_HEADER_SIZE]), response_header_hex_bytes) # Check json format block_json_obj = self.test_rest_request("/block/{}".format(bb_hash)) assert_equal(block_json_obj['hash'], bb_hash) assert_equal(self.test_rest_request("/blockhashbyheight/{}".format(block_json_obj['height']))['blockhash'], bb_hash) # Check hex/bin format resp_hex = self.test_rest_request("/blockhashbyheight/{}".format(block_json_obj['height']), req_type=ReqType.HEX, ret_type=RetType.OBJ) assert_equal(resp_hex.read().decode('utf-8').rstrip(), bb_hash) resp_bytes = self.test_rest_request("/blockhashbyheight/{}".format(block_json_obj['height']), req_type=ReqType.BIN, ret_type=RetType.BYTES) blockhash = resp_bytes[::-1].hex() assert_equal(blockhash, bb_hash) # Check invalid blockhashbyheight requests resp = self.test_rest_request("/blockhashbyheight/abc", ret_type=RetType.OBJ, status=400) assert_equal(resp.read().decode('utf-8').rstrip(), "Invalid height: abc") resp = self.test_rest_request("/blockhashbyheight/1000000", ret_type=RetType.OBJ, status=404) assert_equal(resp.read().decode('utf-8').rstrip(), "Block height out of range") resp = self.test_rest_request("/blockhashbyheight/-1", ret_type=RetType.OBJ, status=400) assert_equal(resp.read().decode('utf-8').rstrip(), "Invalid height: -1") self.test_rest_request("/blockhashbyheight/", ret_type=RetType.OBJ, status=400) # Compare with json block header json_obj = self.test_rest_request("/headers/1/{}".format(bb_hash)) assert_equal(len(json_obj), 1) # ensure that there is one header in the json response assert_equal(json_obj[0]['hash'], bb_hash) # request/response hash should be the same # Compare with normal RPC block response rpc_block_json = self.nodes[0].getblock(bb_hash) for key in ['hash', 'confirmations', 'height', 'version', 'merkleroot', 'time', 'nonce', 'bits', 'difficulty', 'chainwork', 'previousblockhash']: assert_equal(json_obj[0][key], rpc_block_json[key]) # See if we can get 5 headers in one response self.nodes[1].generate(5) self.sync_all() json_obj = self.test_rest_request("/headers/5/{}".format(bb_hash)) assert_equal(len(json_obj), 5) # now we should have 5 header objects self.log.info("Test tx inclusion in the /mempool and /block URIs") # Make 3 tx and mine them on node 1 txs = [] txs.append(self.nodes[0].sendtoaddress(not_related_address, 11)) txs.append(self.nodes[0].sendtoaddress(not_related_address, 11)) txs.append(self.nodes[0].sendtoaddress(not_related_address, 11)) self.sync_all() # Check that there are exactly 3 transactions in the TX memory pool before generating the block json_obj = self.test_rest_request("/mempool/info") assert_equal(json_obj['size'], 3) # the size of the memory pool should be greater than 3x ~100 bytes assert_greater_than(json_obj['bytes'], 300) # Check that there are our submitted transactions in the TX memory pool json_obj = self.test_rest_request("/mempool/contents") for i, tx in enumerate(txs): assert tx in json_obj assert_equal(json_obj[tx]['spentby'], txs[i + 1:i + 2]) assert_equal(json_obj[tx]['depends'], txs[i - 1:i]) # Now mine the transactions newblockhash = self.nodes[1].generate(1) self.sync_all() # Check if the 3 tx show up in the new block json_obj = self.test_rest_request("/block/{}".format(newblockhash[0])) non_coinbase_txs = {tx['txid'] for tx in json_obj['tx'] if 'coinbase' not in tx['vin'][0]} assert_equal(non_coinbase_txs, set(txs)) # Check the same but without tx details json_obj = self.test_rest_request("/block/notxdetails/{}".format(newblockhash[0])) for tx in txs: assert tx in json_obj['tx'] self.log.info("Test the /chaininfo URI") bb_hash = self.nodes[0].getbestblockhash() json_obj = self.test_rest_request("/chaininfo") assert_equal(json_obj['bestblockhash'], bb_hash)
assert_equal(self.nodes[2].getbalance(), node2utxobalance) assert_equal(self.nodes[2].getbalance("*"), node2utxobalance) # check zaddr balance assert_equal(self.nodes[2].z_getbalance(myzaddr), zsendmanynotevalue) # check via z_gettotalbalance resp = self.nodes[2].z_gettotalbalance() assert_equal(Decimal(resp["transparent"]), node2utxobalance) assert_equal(Decimal(resp["private"]), zsendmanynotevalue) assert_equal(Decimal(resp["total"]), node2utxobalance + zsendmanynotevalue) # there should be at least one joinsplit mytxdetails = self.nodes[2].gettransaction(mytxid) myvJoinSplits = mytxdetails["vJoinSplit"] assert_greater_than(len(myvJoinSplits), 0) # the first (probably only) joinsplit should take in all the public value myjoinsplit = self.nodes[2].getrawtransaction(mytxid, 1)["vJoinSplit"][0] assert_equal(myjoinsplit["vpub_old"], zsendmanynotevalue) assert_equal(myjoinsplit["vpub_new"], 0) assert("onetimePubKey" in myjoinsplit.keys()) assert("randomSeed" in myjoinsplit.keys()) assert("ciphertexts" in myjoinsplit.keys()) # send from private note to node 0 and node 2 node0balance = self.nodes[0].getbalance() # 25.99794745 node2balance = self.nodes[2].getbalance() # 16.99790000 recipients = [] recipients.append({"address":self.nodes[0].getnewaddress(), "amount":1})
def run_test(self): self.url = urllib.parse.urlparse(self.nodes[0].url) self.log.info("Mine blocks and send Bitcoin to node 1") # Random address so node1's balance doesn't increase not_related_address = "2MxqoHEdNQTyYeX1mHcbrrpzgojbosTpCvJ" self.nodes[0].generate(1) self.sync_all() self.nodes[1].generatetoaddress(100, not_related_address) self.sync_all() assert_equal(self.nodes[0].getbalance(), 50) txid = self.nodes[0].sendtoaddress(self.nodes[1].getnewaddress(), 0.1) self.sync_all() self.nodes[1].generatetoaddress(1, not_related_address) self.sync_all() bb_hash = self.nodes[0].getbestblockhash() assert_equal(self.nodes[1].getbalance(), Decimal("0.1")) self.log.info("Load the transaction using the /tx URI") json_obj = self.test_rest_request("/tx/{}".format(txid)) spent = (json_obj['vin'][0]['txid'], json_obj['vin'][0]['vout']) # get the vin to later check for utxo (should be spent by then) # get n of 0.1 outpoint n, = filter_output_indices_by_value(json_obj['vout'], Decimal('0.1')) spending = (txid, n) self.log.info("Query an unspent TXO using the /getutxos URI") json_obj = self.test_rest_request("/getutxos/{}-{}".format(*spending)) # Check chainTip response assert_equal(json_obj['chaintipHash'], bb_hash) # Make sure there is one utxo assert_equal(len(json_obj['utxos']), 1) assert_equal(json_obj['utxos'][0]['value'], Decimal('0.1')) self.log.info("Query a spent TXO using the /getutxos URI") json_obj = self.test_rest_request("/getutxos/{}-{}".format(*spent)) # Check chainTip response assert_equal(json_obj['chaintipHash'], bb_hash) # Make sure there is no utxo in the response because this outpoint has been spent assert_equal(len(json_obj['utxos']), 0) # Check bitmap assert_equal(json_obj['bitmap'], "0") self.log.info("Query two TXOs using the /getutxos URI") json_obj = self.test_rest_request("/getutxos/{}-{}/{}-{}".format(*(spending + spent))) assert_equal(len(json_obj['utxos']), 1) assert_equal(json_obj['bitmap'], "10") self.log.info("Query the TXOs using the /getutxos URI with a binary response") bin_request = b'\x01\x02' for txid, n in [spending, spent]: bin_request += hex_str_to_bytes(txid) bin_request += pack("i", n) bin_response = self.test_rest_request("/getutxos", http_method='POST', req_type=ReqType.BIN, body=bin_request, ret_type=RetType.BYTES) output = BytesIO(bin_response) chain_height, = unpack("i", output.read(4)) response_hash = binascii.hexlify(output.read(32)[::-1]).decode('ascii') assert_equal(bb_hash, response_hash) # check if getutxo's chaintip during calculation was fine assert_equal(chain_height, 102) # chain height must be 102 self.log.info("Test the /getutxos URI with and without /checkmempool") # Create a transaction, check that it's found with /checkmempool, but # not found without. Then confirm the transaction and check that it's # found with or without /checkmempool. # do a tx and don't sync txid = self.nodes[0].sendtoaddress(self.nodes[1].getnewaddress(), 0.1) json_obj = self.test_rest_request("/tx/{}".format(txid)) # get the spent output to later check for utxo (should be spent by then) spent = (json_obj['vin'][0]['txid'], json_obj['vin'][0]['vout']) # get n of 0.1 outpoint n, = filter_output_indices_by_value(json_obj['vout'], Decimal('0.1')) spending = (txid, n) json_obj = self.test_rest_request("/getutxos/{}-{}".format(*spending)) assert_equal(len(json_obj['utxos']), 0) json_obj = self.test_rest_request("/getutxos/checkmempool/{}-{}".format(*spending)) assert_equal(len(json_obj['utxos']), 1) json_obj = self.test_rest_request("/getutxos/{}-{}".format(*spent)) assert_equal(len(json_obj['utxos']), 1) json_obj = self.test_rest_request("/getutxos/checkmempool/{}-{}".format(*spent)) assert_equal(len(json_obj['utxos']), 0) self.nodes[0].generate(1) self.sync_all() json_obj = self.test_rest_request("/getutxos/{}-{}".format(*spending)) assert_equal(len(json_obj['utxos']), 1) json_obj = self.test_rest_request("/getutxos/checkmempool/{}-{}".format(*spending)) assert_equal(len(json_obj['utxos']), 1) # Do some invalid requests self.test_rest_request("/getutxos", http_method='POST', req_type=ReqType.JSON, body='{"checkmempool', status=400, ret_type=RetType.OBJ) self.test_rest_request("/getutxos", http_method='POST', req_type=ReqType.BIN, body='{"checkmempool', status=400, ret_type=RetType.OBJ) self.test_rest_request("/getutxos/checkmempool", http_method='POST', req_type=ReqType.JSON, status=400, ret_type=RetType.OBJ) # Test limits long_uri = '/'.join(["{}-{}".format(txid, n_) for n_ in range(20)]) self.test_rest_request("/getutxos/checkmempool/{}".format(long_uri), http_method='POST', status=400, ret_type=RetType.OBJ) long_uri = '/'.join(['{}-{}'.format(txid, n_) for n_ in range(15)]) self.test_rest_request("/getutxos/checkmempool/{}".format(long_uri), http_method='POST', status=200) self.nodes[0].generate(1) # generate block to not affect upcoming tests self.sync_all() self.log.info("Test the /block, /blockhashbyheight and /headers URIs") bb_hash = self.nodes[0].getbestblockhash() # Check result if block does not exists assert_equal(self.test_rest_request('/headers/1/0000000000000000000000000000000000000000000000000000000000000000'), []) self.test_rest_request('/block/0000000000000000000000000000000000000000000000000000000000000000', status=404, ret_type=RetType.OBJ) # Check result if block is not in the active chain self.nodes[0].invalidateblock(bb_hash) assert_equal(self.test_rest_request('/headers/1/{}'.format(bb_hash)), []) self.test_rest_request('/block/{}'.format(bb_hash)) self.nodes[0].reconsiderblock(bb_hash) # Check binary format response = self.test_rest_request("/block/{}".format(bb_hash), req_type=ReqType.BIN, ret_type=RetType.OBJ) assert_greater_than(int(response.getheader('content-length')), 80) response_bytes = response.read() # Compare with block header response_header = self.test_rest_request("/headers/1/{}".format(bb_hash), req_type=ReqType.BIN, ret_type=RetType.OBJ) assert_equal(int(response_header.getheader('content-length')), 80) response_header_bytes = response_header.read() assert_equal(response_bytes[:80], response_header_bytes) # Check block hex format response_hex = self.test_rest_request("/block/{}".format(bb_hash), req_type=ReqType.HEX, ret_type=RetType.OBJ) assert_greater_than(int(response_hex.getheader('content-length')), 160) response_hex_bytes = response_hex.read().strip(b'\n') assert_equal(binascii.hexlify(response_bytes), response_hex_bytes) # Compare with hex block header response_header_hex = self.test_rest_request("/headers/1/{}".format(bb_hash), req_type=ReqType.HEX, ret_type=RetType.OBJ) assert_greater_than(int(response_header_hex.getheader('content-length')), 160) response_header_hex_bytes = response_header_hex.read(160) assert_equal(binascii.hexlify(response_bytes[:80]), response_header_hex_bytes) # Check json format block_json_obj = self.test_rest_request("/block/{}".format(bb_hash)) assert_equal(block_json_obj['hash'], bb_hash) assert_equal(self.test_rest_request("/blockhashbyheight/{}".format(block_json_obj['height']))['blockhash'], bb_hash) # Check hex/bin format resp_hex = self.test_rest_request("/blockhashbyheight/{}".format(block_json_obj['height']), req_type=ReqType.HEX, ret_type=RetType.OBJ) assert_equal(resp_hex.read().decode('utf-8').rstrip(), bb_hash) resp_bytes = self.test_rest_request("/blockhashbyheight/{}".format(block_json_obj['height']), req_type=ReqType.BIN, ret_type=RetType.BYTES) blockhash = binascii.hexlify(resp_bytes[::-1]).decode('utf-8') assert_equal(blockhash, bb_hash) # Check invalid blockhashbyheight requests resp = self.test_rest_request("/blockhashbyheight/abc", ret_type=RetType.OBJ, status=400) assert_equal(resp.read().decode('utf-8').rstrip(), "Invalid height: abc") resp = self.test_rest_request("/blockhashbyheight/1000000", ret_type=RetType.OBJ, status=404) assert_equal(resp.read().decode('utf-8').rstrip(), "Block height out of range") resp = self.test_rest_request("/blockhashbyheight/-1", ret_type=RetType.OBJ, status=400) assert_equal(resp.read().decode('utf-8').rstrip(), "Invalid height: -1") self.test_rest_request("/blockhashbyheight/", ret_type=RetType.OBJ, status=400) # Compare with json block header json_obj = self.test_rest_request("/headers/1/{}".format(bb_hash)) assert_equal(len(json_obj), 1) # ensure that there is one header in the json response assert_equal(json_obj[0]['hash'], bb_hash) # request/response hash should be the same # Compare with normal RPC block response rpc_block_json = self.nodes[0].getblock(bb_hash) for key in ['hash', 'confirmations', 'height', 'version', 'merkleroot', 'time', 'nonce', 'bits', 'difficulty', 'chainwork', 'previousblockhash']: assert_equal(json_obj[0][key], rpc_block_json[key]) # See if we can get 5 headers in one response self.nodes[1].generate(5) self.sync_all() json_obj = self.test_rest_request("/headers/5/{}".format(bb_hash)) assert_equal(len(json_obj), 5) # now we should have 5 header objects self.log.info("Test the /tx URI") tx_hash = block_json_obj['tx'][0]['txid'] json_obj = self.test_rest_request("/tx/{}".format(tx_hash)) assert_equal(json_obj['txid'], tx_hash) # Check hex format response hex_response = self.test_rest_request("/tx/{}".format(tx_hash), req_type=ReqType.HEX, ret_type=RetType.OBJ) assert_greater_than_or_equal(int(hex_response.getheader('content-length')), json_obj['size']*2) self.log.info("Test tx inclusion in the /mempool and /block URIs") # Make 3 tx and mine them on node 1 txs = [] txs.append(self.nodes[0].sendtoaddress(not_related_address, 11)) txs.append(self.nodes[0].sendtoaddress(not_related_address, 11)) txs.append(self.nodes[0].sendtoaddress(not_related_address, 11)) self.sync_all() # Check that there are exactly 3 transactions in the TX memory pool before generating the block json_obj = self.test_rest_request("/mempool/info") assert_equal(json_obj['size'], 3) # the size of the memory pool should be greater than 3x ~100 bytes assert_greater_than(json_obj['bytes'], 300) # Check that there are our submitted transactions in the TX memory pool json_obj = self.test_rest_request("/mempool/contents") for i, tx in enumerate(txs): assert tx in json_obj assert_equal(json_obj[tx]['spentby'], txs[i + 1:i + 2]) assert_equal(json_obj[tx]['depends'], txs[i - 1:i]) # Now mine the transactions newblockhash = self.nodes[1].generate(1) self.sync_all() # Check if the 3 tx show up in the new block json_obj = self.test_rest_request("/block/{}".format(newblockhash[0])) non_coinbase_txs = {tx['txid'] for tx in json_obj['tx'] if 'coinbase' not in tx['vin'][0]} assert_equal(non_coinbase_txs, set(txs)) # Check the same but without tx details json_obj = self.test_rest_request("/block/notxdetails/{}".format(newblockhash[0])) for tx in txs: assert tx in json_obj['tx'] self.log.info("Test the /chaininfo URI") bb_hash = self.nodes[0].getbestblockhash() json_obj = self.test_rest_request("/chaininfo") assert_equal(json_obj['bestblockhash'], bb_hash)
def run_test(self): passphrase = "WalletPassphrase" passphrase2 = "SecondWalletPassphrase" # Make sure the wallet isn't encrypted first msg = "test message" address = self.nodes[0].getnewaddress(address_type='legacy') sig = self.nodes[0].signmessage(address, msg) assert self.nodes[0].verifymessage(address, sig, msg) assert_raises_rpc_error( -15, "Error: running with an unencrypted wallet, but walletpassphrase was called", self.nodes[0].walletpassphrase, 'ff', 1) assert_raises_rpc_error( -15, "Error: running with an unencrypted wallet, but walletpassphrasechange was called.", self.nodes[0].walletpassphrasechange, 'ff', 'ff') # Encrypt the wallet assert_raises_rpc_error(-8, "passphrase can not be empty", self.nodes[0].encryptwallet, '') self.nodes[0].encryptwallet(passphrase) # Test that the wallet is encrypted assert_raises_rpc_error( -13, "Please enter the wallet passphrase with walletpassphrase first", self.nodes[0].signmessage, address, msg) assert_raises_rpc_error( -15, "Error: running with an encrypted wallet, but encryptwallet was called.", self.nodes[0].encryptwallet, 'ff') assert_raises_rpc_error(-8, "passphrase can not be empty", self.nodes[0].walletpassphrase, '', 1) assert_raises_rpc_error(-8, "passphrase can not be empty", self.nodes[0].walletpassphrasechange, '', 'ff') # Check that walletpassphrase works self.nodes[0].walletpassphrase(passphrase, 2) sig = self.nodes[0].signmessage(address, msg) assert self.nodes[0].verifymessage(address, sig, msg) # Check that the timeout is right time.sleep(3) assert_raises_rpc_error( -13, "Please enter the wallet passphrase with walletpassphrase first", self.nodes[0].signmessage, address, msg) # Test wrong passphrase assert_raises_rpc_error(-14, "wallet passphrase entered was incorrect", self.nodes[0].walletpassphrase, passphrase + "wrong", 10) # Test walletlock self.nodes[0].walletpassphrase(passphrase, 84600) sig = self.nodes[0].signmessage(address, msg) assert self.nodes[0].verifymessage(address, sig, msg) self.nodes[0].walletlock() assert_raises_rpc_error( -13, "Please enter the wallet passphrase with walletpassphrase first", self.nodes[0].signmessage, address, msg) # Test passphrase changes self.nodes[0].walletpassphrasechange(passphrase, passphrase2) assert_raises_rpc_error(-14, "wallet passphrase entered was incorrect", self.nodes[0].walletpassphrase, passphrase, 10) self.nodes[0].walletpassphrase(passphrase2, 10) sig = self.nodes[0].signmessage(address, msg) assert self.nodes[0].verifymessage(address, sig, msg) self.nodes[0].walletlock() # Test timeout bounds assert_raises_rpc_error(-8, "Timeout cannot be negative.", self.nodes[0].walletpassphrase, passphrase2, -10) self.log.info('Check a timeout less than the limit') MAX_VALUE = 100000000 expected_time = int(time.time()) + MAX_VALUE - 600 self.nodes[0].walletpassphrase(passphrase2, MAX_VALUE - 600) # give buffer for walletpassphrase, since it iterates over all encrypted keys expected_time_with_buffer = time.time() + MAX_VALUE - 600 actual_time = self.nodes[0].getwalletinfo()['unlocked_until'] assert_greater_than_or_equal(actual_time, expected_time) assert_greater_than(expected_time_with_buffer, actual_time) self.log.info('Check a timeout greater than the limit') expected_time = int(time.time()) + MAX_VALUE - 1 self.nodes[0].walletpassphrase(passphrase2, MAX_VALUE + 1000) expected_time_with_buffer = time.time() + MAX_VALUE actual_time = self.nodes[0].getwalletinfo()['unlocked_until'] assert_greater_than_or_equal(actual_time, expected_time) assert_greater_than(expected_time_with_buffer, actual_time)
def run_test (self): self.log.info("Mining blocks...") self.nodes[0].generate(1) self.nodes[1].generate(1) timestamp = self.nodes[1].getblock(self.nodes[1].getbestblockhash())['mediantime'] node0_address1 = self.nodes[0].getaddressinfo(self.nodes[0].getnewaddress()) #Check only one address assert_equal(node0_address1['ismine'], True) #Node 1 sync test assert_equal(self.nodes[1].getblockcount(),1) #Address Test - before import address_info = self.nodes[1].getaddressinfo(node0_address1['address']) assert_equal(address_info['iswatchonly'], False) assert_equal(address_info['ismine'], False) # RPC importmulti ----------------------------------------------- # Bitcoin Address (implicit non-internal) self.log.info("Should import an address") address = self.nodes[0].getaddressinfo(self.nodes[0].getnewaddress()) result = self.nodes[1].importmulti([{ "scriptPubKey": { "address": address['address'] }, "timestamp": "now", }]) assert_equal(result[0]['success'], True) address_assert = self.nodes[1].getaddressinfo(address['address']) assert_equal(address_assert['iswatchonly'], True) assert_equal(address_assert['ismine'], False) assert_equal(address_assert['timestamp'], timestamp) assert_equal(address_assert['ischange'], False) watchonly_address = address['address'] watchonly_timestamp = timestamp self.log.info("Should not import an invalid address") result = self.nodes[1].importmulti([{ "scriptPubKey": { "address": "not valid address", }, "timestamp": "now", }]) assert_equal(result[0]['success'], False) assert_equal(result[0]['error']['code'], -5) assert_equal(result[0]['error']['message'], 'Invalid address') # ScriptPubKey + internal self.log.info("Should import a scriptPubKey with internal flag") address = self.nodes[0].getaddressinfo(self.nodes[0].getnewaddress()) result = self.nodes[1].importmulti([{ "scriptPubKey": address['scriptPubKey'], "timestamp": "now", "internal": True }]) assert_equal(result[0]['success'], True) address_assert = self.nodes[1].getaddressinfo(address['address']) assert_equal(address_assert['iswatchonly'], True) assert_equal(address_assert['ismine'], False) assert_equal(address_assert['timestamp'], timestamp) assert_equal(address_assert['ischange'], True) # ScriptPubKey + internal + label self.log.info("Should not allow a label to be specified when internal is true") address = self.nodes[0].getaddressinfo(self.nodes[0].getnewaddress()) result = self.nodes[1].importmulti([{ "scriptPubKey": address['scriptPubKey'], "timestamp": "now", "internal": True, "label": "Example label" }]) assert_equal(result[0]['success'], False) assert_equal(result[0]['error']['code'], -8) assert_equal(result[0]['error']['message'], 'Internal addresses should not have a label') # Nonstandard scriptPubKey + !internal self.log.info("Should not import a nonstandard scriptPubKey without internal flag") nonstandardScriptPubKey = address['scriptPubKey'] + bytes_to_hex_str(script.CScript([script.OP_NOP])) address = self.nodes[0].getaddressinfo(self.nodes[0].getnewaddress()) result = self.nodes[1].importmulti([{ "scriptPubKey": nonstandardScriptPubKey, "timestamp": "now", }]) assert_equal(result[0]['success'], False) assert_equal(result[0]['error']['code'], -8) assert_equal(result[0]['error']['message'], 'Internal must be set to true for nonstandard scriptPubKey imports.') address_assert = self.nodes[1].getaddressinfo(address['address']) assert_equal(address_assert['iswatchonly'], False) assert_equal(address_assert['ismine'], False) assert_equal('timestamp' in address_assert, False) # Address + Public key + !Internal(explicit) self.log.info("Should import an address with public key") address = self.nodes[0].getaddressinfo(self.nodes[0].getnewaddress()) result = self.nodes[1].importmulti([{ "scriptPubKey": { "address": address['address'] }, "timestamp": "now", "pubkeys": [ address['pubkey'] ], "internal": False }]) assert_equal(result[0]['success'], True) address_assert = self.nodes[1].getaddressinfo(address['address']) assert_equal(address_assert['iswatchonly'], True) assert_equal(address_assert['ismine'], False) assert_equal(address_assert['timestamp'], timestamp) # ScriptPubKey + Public key + internal self.log.info("Should import a scriptPubKey with internal and with public key") address = self.nodes[0].getaddressinfo(self.nodes[0].getnewaddress()) request = [{ "scriptPubKey": address['scriptPubKey'], "timestamp": "now", "pubkeys": [ address['pubkey'] ], "internal": True }] result = self.nodes[1].importmulti(requests=request) assert_equal(result[0]['success'], True) address_assert = self.nodes[1].getaddressinfo(address['address']) assert_equal(address_assert['iswatchonly'], True) assert_equal(address_assert['ismine'], False) assert_equal(address_assert['timestamp'], timestamp) # Nonstandard scriptPubKey + Public key + !internal self.log.info("Should not import a nonstandard scriptPubKey without internal and with public key") address = self.nodes[0].getaddressinfo(self.nodes[0].getnewaddress()) request = [{ "scriptPubKey": nonstandardScriptPubKey, "timestamp": "now", "pubkeys": [ address['pubkey'] ] }] result = self.nodes[1].importmulti(requests=request) assert_equal(result[0]['success'], False) assert_equal(result[0]['error']['code'], -8) assert_equal(result[0]['error']['message'], 'Internal must be set to true for nonstandard scriptPubKey imports.') address_assert = self.nodes[1].getaddressinfo(address['address']) assert_equal(address_assert['iswatchonly'], False) assert_equal(address_assert['ismine'], False) assert_equal('timestamp' in address_assert, False) # Address + Private key + !watchonly self.log.info("Should import an address with private key") address = self.nodes[0].getaddressinfo(self.nodes[0].getnewaddress()) result = self.nodes[1].importmulti([{ "scriptPubKey": { "address": address['address'] }, "timestamp": "now", "keys": [ self.nodes[0].dumpprivkey(address['address']) ] }]) assert_equal(result[0]['success'], True) address_assert = self.nodes[1].getaddressinfo(address['address']) assert_equal(address_assert['iswatchonly'], False) assert_equal(address_assert['ismine'], True) assert_equal(address_assert['timestamp'], timestamp) self.log.info("Should not import an address with private key if is already imported") result = self.nodes[1].importmulti([{ "scriptPubKey": { "address": address['address'] }, "timestamp": "now", "keys": [ self.nodes[0].dumpprivkey(address['address']) ] }]) assert_equal(result[0]['success'], False) assert_equal(result[0]['error']['code'], -4) assert_equal(result[0]['error']['message'], 'The wallet already contains the private key for this address or script') # Address + Private key + watchonly self.log.info("Should not import an address with private key and with watchonly") address = self.nodes[0].getaddressinfo(self.nodes[0].getnewaddress()) result = self.nodes[1].importmulti([{ "scriptPubKey": { "address": address['address'] }, "timestamp": "now", "keys": [ self.nodes[0].dumpprivkey(address['address']) ], "watchonly": True }]) assert_equal(result[0]['success'], False) assert_equal(result[0]['error']['code'], -8) assert_equal(result[0]['error']['message'], 'Watch-only addresses should not include private keys') address_assert = self.nodes[1].getaddressinfo(address['address']) assert_equal(address_assert['iswatchonly'], False) assert_equal(address_assert['ismine'], False) assert_equal('timestamp' in address_assert, False) # ScriptPubKey + Private key + internal self.log.info("Should import a scriptPubKey with internal and with private key") address = self.nodes[0].getaddressinfo(self.nodes[0].getnewaddress()) result = self.nodes[1].importmulti([{ "scriptPubKey": address['scriptPubKey'], "timestamp": "now", "keys": [ self.nodes[0].dumpprivkey(address['address']) ], "internal": True }]) assert_equal(result[0]['success'], True) address_assert = self.nodes[1].getaddressinfo(address['address']) assert_equal(address_assert['iswatchonly'], False) assert_equal(address_assert['ismine'], True) assert_equal(address_assert['timestamp'], timestamp) # Nonstandard scriptPubKey + Private key + !internal self.log.info("Should not import a nonstandard scriptPubKey without internal and with private key") address = self.nodes[0].getaddressinfo(self.nodes[0].getnewaddress()) result = self.nodes[1].importmulti([{ "scriptPubKey": nonstandardScriptPubKey, "timestamp": "now", "keys": [ self.nodes[0].dumpprivkey(address['address']) ] }]) assert_equal(result[0]['success'], False) assert_equal(result[0]['error']['code'], -8) assert_equal(result[0]['error']['message'], 'Internal must be set to true for nonstandard scriptPubKey imports.') address_assert = self.nodes[1].getaddressinfo(address['address']) assert_equal(address_assert['iswatchonly'], False) assert_equal(address_assert['ismine'], False) assert_equal('timestamp' in address_assert, False) # P2SH address sig_address_1 = self.nodes[0].getaddressinfo(self.nodes[0].getnewaddress()) sig_address_2 = self.nodes[0].getaddressinfo(self.nodes[0].getnewaddress()) sig_address_3 = self.nodes[0].getaddressinfo(self.nodes[0].getnewaddress()) multi_sig_script = self.nodes[0].createmultisig(2, [sig_address_1['pubkey'], sig_address_2['pubkey'], sig_address_3['pubkey']]) self.nodes[1].generate(100) self.nodes[1].sendtoaddress(multi_sig_script['address'], 10.00) self.nodes[1].generate(1) timestamp = self.nodes[1].getblock(self.nodes[1].getbestblockhash())['mediantime'] self.log.info("Should import a p2sh") result = self.nodes[1].importmulti([{ "scriptPubKey": { "address": multi_sig_script['address'] }, "timestamp": "now", }]) assert_equal(result[0]['success'], True) address_assert = self.nodes[1].getaddressinfo(multi_sig_script['address']) assert_equal(address_assert['isscript'], True) assert_equal(address_assert['iswatchonly'], True) assert_equal(address_assert['timestamp'], timestamp) p2shunspent = self.nodes[1].listunspent(0,999999, [multi_sig_script['address']])[0] assert_equal(p2shunspent['spendable'], False) assert_equal(p2shunspent['solvable'], False) # P2SH + Redeem script sig_address_1 = self.nodes[0].getaddressinfo(self.nodes[0].getnewaddress()) sig_address_2 = self.nodes[0].getaddressinfo(self.nodes[0].getnewaddress()) sig_address_3 = self.nodes[0].getaddressinfo(self.nodes[0].getnewaddress()) multi_sig_script = self.nodes[0].createmultisig(2, [sig_address_1['pubkey'], sig_address_2['pubkey'], sig_address_3['pubkey']]) self.nodes[1].generate(100) self.nodes[1].sendtoaddress(multi_sig_script['address'], 10.00) self.nodes[1].generate(1) timestamp = self.nodes[1].getblock(self.nodes[1].getbestblockhash())['mediantime'] self.log.info("Should import a p2sh with respective redeem script") result = self.nodes[1].importmulti([{ "scriptPubKey": { "address": multi_sig_script['address'] }, "timestamp": "now", "redeemscript": multi_sig_script['redeemScript'] }]) assert_equal(result[0]['success'], True) address_assert = self.nodes[1].getaddressinfo(multi_sig_script['address']) assert_equal(address_assert['timestamp'], timestamp) p2shunspent = self.nodes[1].listunspent(0,999999, [multi_sig_script['address']])[0] assert_equal(p2shunspent['spendable'], False) assert_equal(p2shunspent['solvable'], True) # P2SH + Redeem script + Private Keys + !Watchonly sig_address_1 = self.nodes[0].getaddressinfo(self.nodes[0].getnewaddress()) sig_address_2 = self.nodes[0].getaddressinfo(self.nodes[0].getnewaddress()) sig_address_3 = self.nodes[0].getaddressinfo(self.nodes[0].getnewaddress()) multi_sig_script = self.nodes[0].createmultisig(2, [sig_address_1['pubkey'], sig_address_2['pubkey'], sig_address_3['pubkey']]) self.nodes[1].generate(100) self.nodes[1].sendtoaddress(multi_sig_script['address'], 10.00) self.nodes[1].generate(1) timestamp = self.nodes[1].getblock(self.nodes[1].getbestblockhash())['mediantime'] self.log.info("Should import a p2sh with respective redeem script and private keys") result = self.nodes[1].importmulti([{ "scriptPubKey": { "address": multi_sig_script['address'] }, "timestamp": "now", "redeemscript": multi_sig_script['redeemScript'], "keys": [ self.nodes[0].dumpprivkey(sig_address_1['address']), self.nodes[0].dumpprivkey(sig_address_2['address'])] }]) assert_equal(result[0]['success'], True) address_assert = self.nodes[1].getaddressinfo(multi_sig_script['address']) assert_equal(address_assert['timestamp'], timestamp) p2shunspent = self.nodes[1].listunspent(0,999999, [multi_sig_script['address']])[0] assert_equal(p2shunspent['spendable'], False) assert_equal(p2shunspent['solvable'], True) # P2SH + Redeem script + Private Keys + Watchonly sig_address_1 = self.nodes[0].getaddressinfo(self.nodes[0].getnewaddress()) sig_address_2 = self.nodes[0].getaddressinfo(self.nodes[0].getnewaddress()) sig_address_3 = self.nodes[0].getaddressinfo(self.nodes[0].getnewaddress()) multi_sig_script = self.nodes[0].createmultisig(2, [sig_address_1['pubkey'], sig_address_2['pubkey'], sig_address_3['pubkey']]) self.nodes[1].generate(100) self.nodes[1].sendtoaddress(multi_sig_script['address'], 10.00) self.nodes[1].generate(1) timestamp = self.nodes[1].getblock(self.nodes[1].getbestblockhash())['mediantime'] self.log.info("Should import a p2sh with respective redeem script and private keys") result = self.nodes[1].importmulti([{ "scriptPubKey": { "address": multi_sig_script['address'] }, "timestamp": "now", "redeemscript": multi_sig_script['redeemScript'], "keys": [ self.nodes[0].dumpprivkey(sig_address_1['address']), self.nodes[0].dumpprivkey(sig_address_2['address'])], "watchonly": True }]) assert_equal(result[0]['success'], False) assert_equal(result[0]['error']['code'], -8) assert_equal(result[0]['error']['message'], 'Watch-only addresses should not include private keys') # Address + Public key + !Internal + Wrong pubkey self.log.info("Should not import an address with a wrong public key") address = self.nodes[0].getaddressinfo(self.nodes[0].getnewaddress()) address2 = self.nodes[0].getaddressinfo(self.nodes[0].getnewaddress()) result = self.nodes[1].importmulti([{ "scriptPubKey": { "address": address['address'] }, "timestamp": "now", "pubkeys": [ address2['pubkey'] ] }]) assert_equal(result[0]['success'], False) assert_equal(result[0]['error']['code'], -5) assert_equal(result[0]['error']['message'], 'Key does not match address destination') address_assert = self.nodes[1].getaddressinfo(address['address']) assert_equal(address_assert['iswatchonly'], False) assert_equal(address_assert['ismine'], False) assert_equal('timestamp' in address_assert, False) # ScriptPubKey + Public key + internal + Wrong pubkey self.log.info("Should not import a scriptPubKey with internal and with a wrong public key") address = self.nodes[0].getaddressinfo(self.nodes[0].getnewaddress()) address2 = self.nodes[0].getaddressinfo(self.nodes[0].getnewaddress()) request = [{ "scriptPubKey": address['scriptPubKey'], "timestamp": "now", "pubkeys": [ address2['pubkey'] ], "internal": True }] result = self.nodes[1].importmulti(request) assert_equal(result[0]['success'], False) assert_equal(result[0]['error']['code'], -5) assert_equal(result[0]['error']['message'], 'Key does not match address destination') address_assert = self.nodes[1].getaddressinfo(address['address']) assert_equal(address_assert['iswatchonly'], False) assert_equal(address_assert['ismine'], False) assert_equal('timestamp' in address_assert, False) # Address + Private key + !watchonly + Wrong private key self.log.info("Should not import an address with a wrong private key") address = self.nodes[0].getaddressinfo(self.nodes[0].getnewaddress()) address2 = self.nodes[0].getaddressinfo(self.nodes[0].getnewaddress()) result = self.nodes[1].importmulti([{ "scriptPubKey": { "address": address['address'] }, "timestamp": "now", "keys": [ self.nodes[0].dumpprivkey(address2['address']) ] }]) assert_equal(result[0]['success'], False) assert_equal(result[0]['error']['code'], -5) assert_equal(result[0]['error']['message'], 'Key does not match address destination') address_assert = self.nodes[1].getaddressinfo(address['address']) assert_equal(address_assert['iswatchonly'], False) assert_equal(address_assert['ismine'], False) assert_equal('timestamp' in address_assert, False) # ScriptPubKey + Private key + internal + Wrong private key self.log.info("Should not import a scriptPubKey with internal and with a wrong private key") address = self.nodes[0].getaddressinfo(self.nodes[0].getnewaddress()) address2 = self.nodes[0].getaddressinfo(self.nodes[0].getnewaddress()) result = self.nodes[1].importmulti([{ "scriptPubKey": address['scriptPubKey'], "timestamp": "now", "keys": [ self.nodes[0].dumpprivkey(address2['address']) ], "internal": True }]) assert_equal(result[0]['success'], False) assert_equal(result[0]['error']['code'], -5) assert_equal(result[0]['error']['message'], 'Key does not match address destination') address_assert = self.nodes[1].getaddressinfo(address['address']) assert_equal(address_assert['iswatchonly'], False) assert_equal(address_assert['ismine'], False) assert_equal('timestamp' in address_assert, False) # Importing existing watch only address with new timestamp should replace saved timestamp. assert_greater_than(timestamp, watchonly_timestamp) self.log.info("Should replace previously saved watch only timestamp.") result = self.nodes[1].importmulti([{ "scriptPubKey": { "address": watchonly_address, }, "timestamp": "now", }]) assert_equal(result[0]['success'], True) address_assert = self.nodes[1].getaddressinfo(watchonly_address) assert_equal(address_assert['iswatchonly'], True) assert_equal(address_assert['ismine'], False) assert_equal(address_assert['timestamp'], timestamp) watchonly_timestamp = timestamp # restart nodes to check for proper serialization/deserialization of watch only address self.stop_nodes() self.start_nodes() address_assert = self.nodes[1].getaddressinfo(watchonly_address) assert_equal(address_assert['iswatchonly'], True) assert_equal(address_assert['ismine'], False) assert_equal(address_assert['timestamp'], watchonly_timestamp) # Bad or missing timestamps self.log.info("Should throw on invalid or missing timestamp values") assert_raises_rpc_error(-3, 'Missing required timestamp field for key', self.nodes[1].importmulti, [{ "scriptPubKey": address['scriptPubKey'], }]) assert_raises_rpc_error(-3, 'Expected number or "now" timestamp value for key. got type string', self.nodes[1].importmulti, [{ "scriptPubKey": address['scriptPubKey'], "timestamp": "", }]) # Import P2WPKH address as watch only self.log.info("Should import a P2WPKH address as watch only") address = self.nodes[0].getaddressinfo(self.nodes[0].getnewaddress(address_type="bech32")) result = self.nodes[1].importmulti([{ "scriptPubKey": { "address": address['address'] }, "timestamp": "now", }]) assert_equal(result[0]['success'], True) address_assert = self.nodes[1].getaddressinfo(address['address']) assert_equal(address_assert['iswatchonly'], True) assert_equal(address_assert['solvable'], False) # Import P2WPKH address with public key but no private key self.log.info("Should import a P2WPKH address and public key as solvable but not spendable") address = self.nodes[0].getaddressinfo(self.nodes[0].getnewaddress(address_type="bech32")) result = self.nodes[1].importmulti([{ "scriptPubKey": { "address": address['address'] }, "timestamp": "now", "pubkeys": [ address['pubkey'] ] }]) assert_equal(result[0]['success'], True) address_assert = self.nodes[1].getaddressinfo(address['address']) assert_equal(address_assert['ismine'], False) assert_equal(address_assert['solvable'], True) # Import P2WPKH address with key and check it is spendable self.log.info("Should import a P2WPKH address with key") address = self.nodes[0].getaddressinfo(self.nodes[0].getnewaddress(address_type="bech32")) result = self.nodes[1].importmulti([{ "scriptPubKey": { "address": address['address'] }, "timestamp": "now", "keys": [self.nodes[0].dumpprivkey(address['address'])] }]) assert_equal(result[0]['success'], True) address_assert = self.nodes[1].getaddressinfo(address['address']) assert_equal(address_assert['iswatchonly'], False) assert_equal(address_assert['ismine'], True) # P2WSH multisig address without scripts or keys sig_address_1 = self.nodes[0].getaddressinfo(self.nodes[0].getnewaddress()) sig_address_2 = self.nodes[0].getaddressinfo(self.nodes[0].getnewaddress()) multi_sig_script = self.nodes[0].addmultisigaddress(2, [sig_address_1['pubkey'], sig_address_2['pubkey']], "", "bech32") self.log.info("Should import a p2wsh multisig as watch only without respective redeem script and private keys") result = self.nodes[1].importmulti([{ "scriptPubKey": { "address": multi_sig_script['address'] }, "timestamp": "now" }]) assert_equal(result[0]['success'], True) address_assert = self.nodes[1].getaddressinfo(multi_sig_script['address']) assert_equal(address_assert['solvable'], False) # Same P2WSH multisig address as above, but now with witnessscript + private keys self.log.info("Should import a p2wsh with respective redeem script and private keys") result = self.nodes[1].importmulti([{ "scriptPubKey": { "address": multi_sig_script['address'] }, "timestamp": "now", "witnessscript": multi_sig_script['redeemScript'], "keys": [ self.nodes[0].dumpprivkey(sig_address_1['address']), self.nodes[0].dumpprivkey(sig_address_2['address']) ] }]) assert_equal(result[0]['success'], True) address_assert = self.nodes[1].getaddressinfo(multi_sig_script['address']) assert_equal(address_assert['solvable'], True) assert_equal(address_assert['ismine'], True) assert_equal(address_assert['sigsrequired'], 2) # P2SH-P2WPKH address with no redeemscript or public or private key sig_address_1 = self.nodes[0].getaddressinfo(self.nodes[0].getnewaddress(address_type="p2sh-segwit")) pubkeyhash = hash160(hex_str_to_bytes(sig_address_1['pubkey'])) pkscript = CScript([OP_0, pubkeyhash]) self.log.info("Should import a p2sh-p2wpkh without redeem script or keys") result = self.nodes[1].importmulti([{ "scriptPubKey": { "address": sig_address_1['address'] }, "timestamp": "now" }]) assert_equal(result[0]['success'], True) address_assert = self.nodes[1].getaddressinfo(sig_address_1['address']) assert_equal(address_assert['solvable'], False) assert_equal(address_assert['ismine'], False) # P2SH-P2WPKH address + redeemscript + public key with no private key self.log.info("Should import a p2sh-p2wpkh with respective redeem script and pubkey as solvable") result = self.nodes[1].importmulti([{ "scriptPubKey": { "address": sig_address_1['address'] }, "timestamp": "now", "redeemscript": bytes_to_hex_str(pkscript), "pubkeys": [ sig_address_1['pubkey'] ] }]) assert_equal(result[0]['success'], True) address_assert = self.nodes[1].getaddressinfo(sig_address_1['address']) assert_equal(address_assert['solvable'], True) assert_equal(address_assert['ismine'], False) # P2SH-P2WPKH address + redeemscript + private key sig_address_1 = self.nodes[0].getaddressinfo(self.nodes[0].getnewaddress(address_type="p2sh-segwit")) pubkeyhash = hash160(hex_str_to_bytes(sig_address_1['pubkey'])) pkscript = CScript([OP_0, pubkeyhash]) self.log.info("Should import a p2sh-p2wpkh with respective redeem script and private keys") result = self.nodes[1].importmulti([{ "scriptPubKey": { "address": sig_address_1['address'] }, "timestamp": "now", "redeemscript": bytes_to_hex_str(pkscript), "keys": [ self.nodes[0].dumpprivkey(sig_address_1['address'])] }]) assert_equal(result[0]['success'], True) address_assert = self.nodes[1].getaddressinfo(sig_address_1['address']) assert_equal(address_assert['solvable'], True) assert_equal(address_assert['ismine'], True) # P2SH-P2WSH 1-of-1 multisig + redeemscript with no private key sig_address_1 = self.nodes[0].getaddressinfo(self.nodes[0].getnewaddress()) multi_sig_script = self.nodes[0].addmultisigaddress(1, [sig_address_1['pubkey']], "", "p2sh-segwit") scripthash = sha256(hex_str_to_bytes(multi_sig_script['redeemScript'])) redeem_script = CScript([OP_0, scripthash]) self.log.info("Should import a p2sh-p2wsh with respective redeem script but no private key") result = self.nodes[1].importmulti([{ "scriptPubKey": { "address": multi_sig_script['address'] }, "timestamp": "now", "redeemscript": bytes_to_hex_str(redeem_script), "witnessscript": multi_sig_script['redeemScript'] }]) assert_equal(result[0]['success'], True) address_assert = self.nodes[1].getaddressinfo(multi_sig_script['address']) assert_equal(address_assert['solvable'], True)
def run_test(self): self.description = "Performs tests on the Cold Staking P2CS implementation" self.init_test() LAST_POW_BLOCK = 250 NUM_OF_INPUTS = 20 INPUT_VALUE = 50 INITAL_MINED_BLOCKS = LAST_POW_BLOCK + 1 # nodes[0] - coin-owner # nodes[1] - cold-staker # 1) nodes[0] mines 20 blocks. nodes[2] mines 231 blocks. # ----------------------------------------------------------- # Check that SPORK 17 is disabled assert (not self.isColdStakingEnforced()) print("*** 1 ***") self.log.info("Mining %d blocks..." % INITAL_MINED_BLOCKS) self.generateBlock(20, 0) sync_chain(self.nodes) self.log.info("20 Blocks mined.") self.generateBlock(INITAL_MINED_BLOCKS - 20) sync_chain(self.nodes) self.log.info("251 Blocks mined.") # 2) nodes[0] generates a owner address # nodes[1] generates a cold-staking address. # --------------------------------------------- print("*** 2 ***") owner_address = self.nodes[0].getnewaddress() self.log.info("Owner Address: %s" % owner_address) staker_address = self.nodes[1].getnewstakingaddress() self.log.info("Staking Address: %s" % staker_address) # 3) Check enforcement. # --------------------- print("*** 3 ***") self.log.info( "Creating a stake-delegation tx before cold staking enforcement..." ) assert_raises_rpc_error(-4, "The transaction was rejected!", self.nodes[0].delegatestake, staker_address, INPUT_VALUE, owner_address, False, False, True) self.log.info("Good. Cold Staking NOT ACTIVE yet.") # Enable SPORK self.setColdStakingEnforcement() # double check assert (self.isColdStakingEnforced()) # 4) nodes[0] delegates a number of inputs for nodes[1] to stake em. # ------------------------------------------------------------------ print("*** 4 ***") self.log.info("First check warning when using external addresses...") assert_raises_rpc_error( -5, "Only the owner of the key to owneraddress will be allowed to spend these coins", self.nodes[0].delegatestake, staker_address, INPUT_VALUE, "yCgCXC8N5VThhfiaVuKaNLkNnrWduzVnoT") self.log.info("Good. Warning triggered.") self.log.info( "Now force the use of external address creating (but not sending) the delegation..." ) res = self.nodes[0].rawdelegatestake( staker_address, INPUT_VALUE, "yCgCXC8N5VThhfiaVuKaNLkNnrWduzVnoT", True) assert (res is not None and res != "") self.log.info("Good. Warning NOT triggered.") self.log.info("Now delegate with internal owner address..") self.log.info("Try first with a value (0.99) below the threshold") assert_raises_rpc_error(-8, "Invalid amount", self.nodes[0].delegatestake, staker_address, 0.99, owner_address) self.log.info("Nice. it was not possible.") self.log.info( "Then try (creating but not sending) with the threshold value (1.00)" ) res = self.nodes[0].rawdelegatestake(staker_address, 1.00, owner_address) assert (res is not None and res != "") self.log.info("Good. Warning NOT triggered.") self.log.info("Now creating %d real stake-delegation txes..." % NUM_OF_INPUTS) for i in range(NUM_OF_INPUTS): res = self.nodes[0].delegatestake(staker_address, INPUT_VALUE, owner_address) assert (res != None and res["txid"] != None and res["txid"] != "") assert_equal(res["owner_address"], owner_address) assert_equal(res["staker_address"], staker_address) self.generateBlock() sync_chain(self.nodes) self.log.info("%d Txes created." % NUM_OF_INPUTS) # check balances: self.expected_balance = NUM_OF_INPUTS * INPUT_VALUE self.expected_immature_balance = 0 self.checkBalances() # 5) check that the owner (nodes[0]) can spend the coins. # ------------------------------------------------------- print("*** 5 ***") self.log.info("Spending back one of the delegated UTXOs...") delegated_utxos = getDelegatedUtxos(self.nodes[0].listunspent()) assert_equal(20, len(delegated_utxos)) assert_equal(len(delegated_utxos), len(self.nodes[0].listcoldutxos())) u = delegated_utxos[0] txhash = self.spendUTXOwithNode(u, 0) assert (txhash != None) self.log.info("Good. Owner was able to spend - tx: %s" % str(txhash)) self.generateBlock() sync_chain(self.nodes) # check balances after spend. self.expected_balance -= float(u["amount"]) self.checkBalances() self.log.info("Balances check out after spend") assert_equal(19, len(self.nodes[0].listcoldutxos())) # 6) check that the staker CANNOT use the coins to stake yet. # He needs to whitelist the owner first. # ----------------------------------------------------------- print("*** 6 ***") self.log.info( "Trying to generate a cold-stake block before whitelisting the owner..." ) assert_equal(self.nodes[1].getstakingstatus()["mintablecoins"], False) self.log.info( "Nice. Cold staker was NOT able to create the block yet.") self.log.info("Whitelisting the owner...") ret = self.nodes[1].delegatoradd(owner_address) assert (ret) self.log.info("Delegator address %s whitelisted" % owner_address) # 7) check that the staker CANNOT spend the coins. # ------------------------------------------------ print("*** 7 ***") self.log.info( "Trying to spend one of the delegated UTXOs with the cold-staking key..." ) delegated_utxos = getDelegatedUtxos(self.nodes[0].listunspent()) assert_greater_than(len(delegated_utxos), 0) u = delegated_utxos[0] assert_raises_rpc_error( -26, "mandatory-script-verify-flag-failed (Script failed an OP_CHECKCOLDSTAKEVERIFY operation", self.spendUTXOwithNode, u, 1) self.log.info( "Good. Cold staker was NOT able to spend (failed OP_CHECKCOLDSTAKEVERIFY)" ) self.generateBlock() sync_chain(self.nodes) # 8) check that the staker can use the coins to stake a block with internal miner. # -------------------------------------------------------------------------------- print("*** 8 ***") assert_equal(self.nodes[1].getstakingstatus()["mintablecoins"], True) self.log.info("Generating one valid cold-stake block...") self.generateBlock(1, 1) self.log.info("New block created by cold-staking. Trying to submit...") newblockhash = self.nodes[1].getbestblockhash() self.log.info("Block %s submitted" % newblockhash) # Verify that nodes[0] accepts it sync_chain(self.nodes) assert_equal(self.nodes[0].getblockcount(), self.nodes[1].getblockcount()) assert_equal(newblockhash, self.nodes[0].getbestblockhash()) self.log.info("Great. Cold-staked block was accepted!") # check balances after staked block. self.expected_balance -= 50 self.expected_immature_balance += 300 self.checkBalances() self.log.info("Balances check out after staked block") # 9) check that the staker can use the coins to stake a block with a rawtransaction. # ---------------------------------------------------------------------------------- print("*** 9 ***") self.log.info("Generating another valid cold-stake block...") stakeable_coins = getDelegatedUtxos(self.nodes[0].listunspent()) block_n = self.nodes[1].getblockcount() block_hash = self.nodes[1].getblockhash(block_n) prevouts = self.get_prevouts(stakeable_coins, 1) assert_greater_than(len(prevouts), 0) # Create the block new_block = self.create_block(block_hash, prevouts, block_n + 1, 1, staker_address) self.log.info( "New block created (rawtx) by cold-staking. Trying to submit...") # Try to submit the block ret = self.nodes[1].submitblock(bytes_to_hex_str( new_block.serialize())) self.log.info("Block %s submitted." % new_block.hash) assert (ret is None) # Verify that nodes[0] accepts it sync_chain(self.nodes) assert_equal(self.nodes[0].getblockcount(), self.nodes[1].getblockcount()) assert_equal(new_block.hash, self.nodes[0].getbestblockhash()) self.log.info("Great. Cold-staked block was accepted!") # check balances after staked block. self.expected_balance -= 50 self.expected_immature_balance += 300 self.checkBalances() self.log.info("Balances check out after staked block") # 10) check that the staker cannot stake a block changing the coinstake scriptPubkey. # ---------------------------------------------------------------------------------- print("*** 10 ***") self.log.info( "Generating one invalid cold-stake block (changing first coinstake output)..." ) stakeable_coins = getDelegatedUtxos(self.nodes[0].listunspent()) block_n = self.nodes[1].getblockcount() block_hash = self.nodes[1].getblockhash(block_n) prevouts = self.get_prevouts(stakeable_coins, 1) assert_greater_than(len(prevouts), 0) # Create the block new_block = self.create_block(block_hash, prevouts, block_n + 1, 1, staker_address, fInvalid=1) self.log.info( "New block created (rawtx) by cold-staking. Trying to submit...") # Try to submit the block ret = self.nodes[1].submitblock(bytes_to_hex_str( new_block.serialize())) self.log.info("Block %s submitted." % new_block.hash) assert ("rejected" in ret) # Verify that nodes[0] rejects it sync_chain(self.nodes) assert_raises_rpc_error(-5, "Block not found", self.nodes[0].getblock, new_block.hash) self.log.info("Great. Malicious cold-staked block was NOT accepted!") self.checkBalances() self.log.info("Balances check out after (non) staked block") # 11) neither adding different outputs to the coinstake. # ------------------------------------------------------ print("*** 11 ***") self.log.info( "Generating another invalid cold-stake block (adding coinstake output)..." ) stakeable_coins = getDelegatedUtxos(self.nodes[0].listunspent()) block_n = self.nodes[1].getblockcount() block_hash = self.nodes[1].getblockhash(block_n) prevouts = self.get_prevouts(stakeable_coins, 1) assert_greater_than(len(prevouts), 0) # Create the block new_block = self.create_block(block_hash, prevouts, block_n + 1, 1, staker_address, fInvalid=2) self.log.info( "New block created (rawtx) by cold-staking. Trying to submit...") # Try to submit the block ret = self.nodes[1].submitblock(bytes_to_hex_str( new_block.serialize())) self.log.info("Block %s submitted." % new_block.hash) assert_equal(ret, "bad-p2cs-outs") # Verify that nodes[0] rejects it sync_chain(self.nodes) assert_raises_rpc_error(-5, "Block not found", self.nodes[0].getblock, new_block.hash) self.log.info("Great. Malicious cold-staked block was NOT accepted!") self.checkBalances() self.log.info("Balances check out after (non) staked block") # 12) Now node[0] gets mad and spends all the delegated coins, voiding the P2CS contracts. # ---------------------------------------------------------------------------------------- self.log.info("Let's void the contracts.") self.generateBlock() sync_chain(self.nodes) print("*** 12 ***") self.log.info( "Cancel the stake delegation spending the cold stakes...") delegated_utxos = getDelegatedUtxos(self.nodes[0].listunspent()) # remove one utxo to spend later final_spend = delegated_utxos.pop() txhash = self.spendUTXOsWithNode(delegated_utxos, 0) assert (txhash != None) self.log.info( "Good. Owner was able to void the stake delegations - tx: %s" % str(txhash)) self.generateBlock() sync_chain(self.nodes) # deactivate SPORK 17 and check that the owner can still spend the last utxo self.setColdStakingEnforcement(False) assert (not self.isColdStakingEnforced()) txhash = self.spendUTXOsWithNode([final_spend], 0) assert (txhash != None) self.log.info( "Good. Owner was able to void the last stake delegation (with SPORK 17 disabled) - tx: %s" % str(txhash)) self.generateBlock() sync_chain(self.nodes) # check balances after big spend. self.expected_balance = 0 self.checkBalances() self.log.info( "Balances check out after the delegations have been voided.") # re-activate SPORK17 self.setColdStakingEnforcement() assert (self.isColdStakingEnforced()) # 13) check that coinstaker is empty and can no longer stake. # ----------------------------------------------------------- print("*** 13 ***") self.log.info("Trying to generate one cold-stake block again...") assert_equal(self.nodes[1].getstakingstatus()["mintablecoins"], False) self.log.info( "Cigar. Cold staker was NOT able to create any more blocks.") # 14) check balances when mature. # ----------------------------------------------------------- print("*** 14 ***") self.log.info("Staking 100 blocks to mature last 2...") self.generateBlock(100) self.expected_balance = self.expected_immature_balance self.expected_immature_balance = 0 self.checkBalances() self.log.info("Balances check out after maturation.\n")
def run_test(self): min_relay_tx_fee = self.nodes[0].getnetworkinfo()['relayfee'] # This test is not meant to test fee estimation and we'd like # to be sure all txs are sent at a consistent desired feerate for node in self.nodes: node.settxfee(min_relay_tx_fee) # if the fee's positive delta is higher than this value tests will fail, # neg. delta always fail the tests. # The size of the signature of every input may be at most 2 bytes larger # than a minimum sized signature. # = 2 bytes * minRelayTxFeePerByte feeTolerance = 2 * min_relay_tx_fee/1000 self.nodes[2].generate(1) self.sync_all() self.nodes[0].generate(121) self.sync_all() # ensure that setting changePosition in fundraw with an exact match is handled properly rawmatch = self.nodes[2].createrawtransaction([], {self.nodes[2].getnewaddress():50}) rawmatch = self.nodes[2].fundrawtransaction(rawmatch, {"changePosition":1, "subtractFeeFromOutputs":[0]}) assert_equal(rawmatch["changepos"], -1) watchonly_address = self.nodes[0].getnewaddress() watchonly_pubkey = self.nodes[0].getaddressinfo(watchonly_address)["pubkey"] watchonly_amount = Decimal(200) self.nodes[3].importpubkey(watchonly_pubkey, "", True) watchonly_txid = self.nodes[0].sendtoaddress(watchonly_address, watchonly_amount) # Lock UTXO so nodes[0] doesn't accidentally spend it watchonly_vout = find_vout_for_address(self.nodes[0], watchonly_txid, watchonly_address) self.nodes[0].lockunspent(False, [{"txid": watchonly_txid, "vout": watchonly_vout}]) self.nodes[0].sendtoaddress(self.nodes[3].getnewaddress(), watchonly_amount / 10) self.nodes[0].sendtoaddress(self.nodes[2].getnewaddress(), 1.5) self.nodes[0].sendtoaddress(self.nodes[2].getnewaddress(), 1.0) self.nodes[0].sendtoaddress(self.nodes[2].getnewaddress(), 5.0) self.nodes[0].generate(1) self.sync_all() ############### # simple test # ############### inputs = [ ] outputs = { self.nodes[0].getnewaddress() : 1.0 } rawtx = self.nodes[2].createrawtransaction(inputs, outputs) dec_tx = self.nodes[2].decoderawtransaction(rawtx) rawtxfund = self.nodes[2].fundrawtransaction(rawtx) fee = rawtxfund['fee'] dec_tx = self.nodes[2].decoderawtransaction(rawtxfund['hex']) assert(len(dec_tx['vin']) > 0) #test that we have enough inputs ############################## # simple test with two coins # ############################## inputs = [ ] outputs = { self.nodes[0].getnewaddress() : 2.2 } rawtx = self.nodes[2].createrawtransaction(inputs, outputs) dec_tx = self.nodes[2].decoderawtransaction(rawtx) rawtxfund = self.nodes[2].fundrawtransaction(rawtx) fee = rawtxfund['fee'] dec_tx = self.nodes[2].decoderawtransaction(rawtxfund['hex']) assert(len(dec_tx['vin']) > 0) #test if we have enough inputs ############################## # simple test with two coins # ############################## inputs = [ ] outputs = { self.nodes[0].getnewaddress() : 2.6 } rawtx = self.nodes[2].createrawtransaction(inputs, outputs) dec_tx = self.nodes[2].decoderawtransaction(rawtx) rawtxfund = self.nodes[2].fundrawtransaction(rawtx) fee = rawtxfund['fee'] dec_tx = self.nodes[2].decoderawtransaction(rawtxfund['hex']) assert(len(dec_tx['vin']) > 0) assert_equal(dec_tx['vin'][0]['scriptSig']['hex'], '') ################################ # simple test with two outputs # ################################ inputs = [ ] outputs = { self.nodes[0].getnewaddress() : 2.6, self.nodes[1].getnewaddress() : 2.5 } rawtx = self.nodes[2].createrawtransaction(inputs, outputs) dec_tx = self.nodes[2].decoderawtransaction(rawtx) rawtxfund = self.nodes[2].fundrawtransaction(rawtx) fee = rawtxfund['fee'] dec_tx = self.nodes[2].decoderawtransaction(rawtxfund['hex']) totalOut = 0 for out in dec_tx['vout']: totalOut += out['value'] assert(len(dec_tx['vin']) > 0) assert_equal(dec_tx['vin'][0]['scriptSig']['hex'], '') ######################################################################### # test a fundrawtransaction with a VIN greater than the required amount # ######################################################################### utx = get_unspent(self.nodes[2].listunspent(), 5) inputs = [ {'txid' : utx['txid'], 'vout' : utx['vout']}] outputs = { self.nodes[0].getnewaddress() : 1.0 } rawtx = self.nodes[2].createrawtransaction(inputs, outputs) dec_tx = self.nodes[2].decoderawtransaction(rawtx) assert_equal(utx['txid'], dec_tx['vin'][0]['txid']) rawtxfund = self.nodes[2].fundrawtransaction(rawtx) fee = rawtxfund['fee'] dec_tx = self.nodes[2].decoderawtransaction(rawtxfund['hex']) totalOut = 0 for out in dec_tx['vout']: totalOut += out['value'] assert_equal(fee + totalOut, utx['amount']) #compare vin total and totalout+fee ##################################################################### # test a fundrawtransaction with which will not get a change output # ##################################################################### utx = get_unspent(self.nodes[2].listunspent(), 5) inputs = [ {'txid' : utx['txid'], 'vout' : utx['vout']}] outputs = { self.nodes[0].getnewaddress() : Decimal(5.0) - fee - feeTolerance } rawtx = self.nodes[2].createrawtransaction(inputs, outputs) dec_tx = self.nodes[2].decoderawtransaction(rawtx) assert_equal(utx['txid'], dec_tx['vin'][0]['txid']) rawtxfund = self.nodes[2].fundrawtransaction(rawtx) fee = rawtxfund['fee'] dec_tx = self.nodes[2].decoderawtransaction(rawtxfund['hex']) totalOut = 0 for out in dec_tx['vout']: totalOut += out['value'] assert_equal(rawtxfund['changepos'], -1) assert_equal(fee + totalOut, utx['amount']) #compare vin total and totalout+fee #################################################### # test a fundrawtransaction with an invalid option # #################################################### utx = get_unspent(self.nodes[2].listunspent(), 5) inputs = [ {'txid' : utx['txid'], 'vout' : utx['vout']} ] outputs = { self.nodes[0].getnewaddress() : Decimal(4.0) } rawtx = self.nodes[2].createrawtransaction(inputs, outputs) dec_tx = self.nodes[2].decoderawtransaction(rawtx) assert_equal(utx['txid'], dec_tx['vin'][0]['txid']) assert_raises_rpc_error(-3, "Unexpected key foo", self.nodes[2].fundrawtransaction, rawtx, {'foo':'bar'}) # reserveChangeKey was deprecated and is now removed assert_raises_rpc_error(-3, "Unexpected key reserveChangeKey", lambda: self.nodes[2].fundrawtransaction(hexstring=rawtx, options={'reserveChangeKey': True})) ############################################################ # test a fundrawtransaction with an invalid change address # ############################################################ utx = get_unspent(self.nodes[2].listunspent(), 5) inputs = [ {'txid' : utx['txid'], 'vout' : utx['vout']} ] outputs = { self.nodes[0].getnewaddress() : Decimal(4.0) } rawtx = self.nodes[2].createrawtransaction(inputs, outputs) dec_tx = self.nodes[2].decoderawtransaction(rawtx) assert_equal(utx['txid'], dec_tx['vin'][0]['txid']) assert_raises_rpc_error(-5, "changeAddress must be a valid bitcoin address", self.nodes[2].fundrawtransaction, rawtx, {'changeAddress':'foobar'}) ############################################################ # test a fundrawtransaction with a provided change address # ############################################################ utx = get_unspent(self.nodes[2].listunspent(), 5) inputs = [ {'txid' : utx['txid'], 'vout' : utx['vout']} ] outputs = { self.nodes[0].getnewaddress() : Decimal(4.0) } rawtx = self.nodes[2].createrawtransaction(inputs, outputs) dec_tx = self.nodes[2].decoderawtransaction(rawtx) assert_equal(utx['txid'], dec_tx['vin'][0]['txid']) change = self.nodes[2].getnewaddress() assert_raises_rpc_error(-8, "changePosition out of bounds", self.nodes[2].fundrawtransaction, rawtx, {'changeAddress':change, 'changePosition':2}) rawtxfund = self.nodes[2].fundrawtransaction(rawtx, {'changeAddress': change, 'changePosition': 0}) dec_tx = self.nodes[2].decoderawtransaction(rawtxfund['hex']) out = dec_tx['vout'][0] assert_equal(change, out['scriptPubKey']['addresses'][0]) ######################################################### # test a fundrawtransaction with a provided change type # ######################################################### utx = get_unspent(self.nodes[2].listunspent(), 5) inputs = [ {'txid' : utx['txid'], 'vout' : utx['vout']} ] outputs = { self.nodes[0].getnewaddress() : Decimal(4.0) } rawtx = self.nodes[2].createrawtransaction(inputs, outputs) assert_raises_rpc_error(-1, "JSON value is not a string as expected", self.nodes[2].fundrawtransaction, rawtx, {'change_type': None}) assert_raises_rpc_error(-5, "Unknown change type ''", self.nodes[2].fundrawtransaction, rawtx, {'change_type': ''}) rawtx = self.nodes[2].fundrawtransaction(rawtx, {'change_type': 'bech32'}) dec_tx = self.nodes[2].decoderawtransaction(rawtx['hex']) assert_equal('witness_v0_keyhash', dec_tx['vout'][rawtx['changepos']]['scriptPubKey']['type']) ######################################################################### # test a fundrawtransaction with a VIN smaller than the required amount # ######################################################################### utx = get_unspent(self.nodes[2].listunspent(), 1) inputs = [ {'txid' : utx['txid'], 'vout' : utx['vout']}] outputs = { self.nodes[0].getnewaddress() : 1.0 } rawtx = self.nodes[2].createrawtransaction(inputs, outputs) # 4-byte version + 1-byte vin count + 36-byte prevout then script_len rawtx = rawtx[:82] + "0100" + rawtx[84:] dec_tx = self.nodes[2].decoderawtransaction(rawtx) assert_equal(utx['txid'], dec_tx['vin'][0]['txid']) assert_equal("00", dec_tx['vin'][0]['scriptSig']['hex']) rawtxfund = self.nodes[2].fundrawtransaction(rawtx) fee = rawtxfund['fee'] dec_tx = self.nodes[2].decoderawtransaction(rawtxfund['hex']) totalOut = 0 matchingOuts = 0 for i, out in enumerate(dec_tx['vout']): totalOut += out['value'] if out['scriptPubKey']['addresses'][0] in outputs: matchingOuts+=1 else: assert_equal(i, rawtxfund['changepos']) assert_equal(utx['txid'], dec_tx['vin'][0]['txid']) assert_equal("00", dec_tx['vin'][0]['scriptSig']['hex']) assert_equal(matchingOuts, 1) assert_equal(len(dec_tx['vout']), 2) ########################################### # test a fundrawtransaction with two VINs # ########################################### utx = get_unspent(self.nodes[2].listunspent(), 1) utx2 = get_unspent(self.nodes[2].listunspent(), 5) inputs = [ {'txid' : utx['txid'], 'vout' : utx['vout']},{'txid' : utx2['txid'], 'vout' : utx2['vout']} ] outputs = { self.nodes[0].getnewaddress() : 6.0 } rawtx = self.nodes[2].createrawtransaction(inputs, outputs) dec_tx = self.nodes[2].decoderawtransaction(rawtx) assert_equal(utx['txid'], dec_tx['vin'][0]['txid']) rawtxfund = self.nodes[2].fundrawtransaction(rawtx) fee = rawtxfund['fee'] dec_tx = self.nodes[2].decoderawtransaction(rawtxfund['hex']) totalOut = 0 matchingOuts = 0 for out in dec_tx['vout']: totalOut += out['value'] if out['scriptPubKey']['addresses'][0] in outputs: matchingOuts+=1 assert_equal(matchingOuts, 1) assert_equal(len(dec_tx['vout']), 2) matchingIns = 0 for vinOut in dec_tx['vin']: for vinIn in inputs: if vinIn['txid'] == vinOut['txid']: matchingIns+=1 assert_equal(matchingIns, 2) #we now must see two vins identical to vins given as params ######################################################### # test a fundrawtransaction with two VINs and two vOUTs # ######################################################### utx = get_unspent(self.nodes[2].listunspent(), 1) utx2 = get_unspent(self.nodes[2].listunspent(), 5) inputs = [ {'txid' : utx['txid'], 'vout' : utx['vout']},{'txid' : utx2['txid'], 'vout' : utx2['vout']} ] outputs = { self.nodes[0].getnewaddress() : 6.0, self.nodes[0].getnewaddress() : 1.0 } rawtx = self.nodes[2].createrawtransaction(inputs, outputs) dec_tx = self.nodes[2].decoderawtransaction(rawtx) assert_equal(utx['txid'], dec_tx['vin'][0]['txid']) rawtxfund = self.nodes[2].fundrawtransaction(rawtx) fee = rawtxfund['fee'] dec_tx = self.nodes[2].decoderawtransaction(rawtxfund['hex']) totalOut = 0 matchingOuts = 0 for out in dec_tx['vout']: totalOut += out['value'] if out['scriptPubKey']['addresses'][0] in outputs: matchingOuts+=1 assert_equal(matchingOuts, 2) assert_equal(len(dec_tx['vout']), 3) ############################################## # test a fundrawtransaction with invalid vin # ############################################## inputs = [ {'txid' : "1c7f966dab21119bac53213a2bc7532bff1fa844c124fd750a7d0b1332440bd1", 'vout' : 0} ] #invalid vin! outputs = { self.nodes[0].getnewaddress() : 1.0} rawtx = self.nodes[2].createrawtransaction(inputs, outputs) dec_tx = self.nodes[2].decoderawtransaction(rawtx) assert_raises_rpc_error(-4, "Insufficient funds", self.nodes[2].fundrawtransaction, rawtx) ############################################################ #compare fee of a standard pubkeyhash transaction inputs = [] outputs = {self.nodes[1].getnewaddress():1.1} rawtx = self.nodes[0].createrawtransaction(inputs, outputs) fundedTx = self.nodes[0].fundrawtransaction(rawtx) #create same transaction over sendtoaddress txId = self.nodes[0].sendtoaddress(self.nodes[1].getnewaddress(), 1.1) signedFee = self.nodes[0].getrawmempool(True)[txId]['fee'] #compare fee feeDelta = Decimal(fundedTx['fee']) - Decimal(signedFee) assert(feeDelta >= 0 and feeDelta <= feeTolerance) ############################################################ ############################################################ #compare fee of a standard pubkeyhash transaction with multiple outputs inputs = [] outputs = {self.nodes[1].getnewaddress():1.1,self.nodes[1].getnewaddress():1.2,self.nodes[1].getnewaddress():0.1,self.nodes[1].getnewaddress():1.3,self.nodes[1].getnewaddress():0.2,self.nodes[1].getnewaddress():0.3} rawtx = self.nodes[0].createrawtransaction(inputs, outputs) fundedTx = self.nodes[0].fundrawtransaction(rawtx) #create same transaction over sendtoaddress txId = self.nodes[0].sendmany("", outputs) signedFee = self.nodes[0].getrawmempool(True)[txId]['fee'] #compare fee feeDelta = Decimal(fundedTx['fee']) - Decimal(signedFee) assert(feeDelta >= 0 and feeDelta <= feeTolerance) ############################################################ ############################################################ #compare fee of a 2of2 multisig p2sh transaction # create 2of2 addr addr1 = self.nodes[1].getnewaddress() addr2 = self.nodes[1].getnewaddress() addr1Obj = self.nodes[1].getaddressinfo(addr1) addr2Obj = self.nodes[1].getaddressinfo(addr2) mSigObj = self.nodes[1].addmultisigaddress(2, [addr1Obj['pubkey'], addr2Obj['pubkey']])['address'] inputs = [] outputs = {mSigObj:1.1} rawtx = self.nodes[0].createrawtransaction(inputs, outputs) fundedTx = self.nodes[0].fundrawtransaction(rawtx) #create same transaction over sendtoaddress txId = self.nodes[0].sendtoaddress(mSigObj, 1.1) signedFee = self.nodes[0].getrawmempool(True)[txId]['fee'] #compare fee feeDelta = Decimal(fundedTx['fee']) - Decimal(signedFee) assert(feeDelta >= 0 and feeDelta <= feeTolerance) ############################################################ ############################################################ #compare fee of a standard pubkeyhash transaction # create 4of5 addr addr1 = self.nodes[1].getnewaddress() addr2 = self.nodes[1].getnewaddress() addr3 = self.nodes[1].getnewaddress() addr4 = self.nodes[1].getnewaddress() addr5 = self.nodes[1].getnewaddress() addr1Obj = self.nodes[1].getaddressinfo(addr1) addr2Obj = self.nodes[1].getaddressinfo(addr2) addr3Obj = self.nodes[1].getaddressinfo(addr3) addr4Obj = self.nodes[1].getaddressinfo(addr4) addr5Obj = self.nodes[1].getaddressinfo(addr5) mSigObj = self.nodes[1].addmultisigaddress(4, [addr1Obj['pubkey'], addr2Obj['pubkey'], addr3Obj['pubkey'], addr4Obj['pubkey'], addr5Obj['pubkey']])['address'] inputs = [] outputs = {mSigObj:1.1} rawtx = self.nodes[0].createrawtransaction(inputs, outputs) fundedTx = self.nodes[0].fundrawtransaction(rawtx) #create same transaction over sendtoaddress txId = self.nodes[0].sendtoaddress(mSigObj, 1.1) signedFee = self.nodes[0].getrawmempool(True)[txId]['fee'] #compare fee feeDelta = Decimal(fundedTx['fee']) - Decimal(signedFee) assert(feeDelta >= 0 and feeDelta <= feeTolerance) ############################################################ ############################################################ # spend a 2of2 multisig transaction over fundraw # create 2of2 addr addr1 = self.nodes[2].getnewaddress() addr2 = self.nodes[2].getnewaddress() addr1Obj = self.nodes[2].getaddressinfo(addr1) addr2Obj = self.nodes[2].getaddressinfo(addr2) mSigObj = self.nodes[2].addmultisigaddress(2, [addr1Obj['pubkey'], addr2Obj['pubkey']])['address'] # send 1.2 BTC to msig addr txId = self.nodes[0].sendtoaddress(mSigObj, 1.2) self.sync_all() self.nodes[1].generate(1) self.sync_all() oldBalance = self.nodes[1].getbalance() inputs = [] outputs = {self.nodes[1].getnewaddress():1.1} rawtx = self.nodes[2].createrawtransaction(inputs, outputs) fundedTx = self.nodes[2].fundrawtransaction(rawtx) signedTx = self.nodes[2].signrawtransactionwithwallet(fundedTx['hex']) txId = self.nodes[2].sendrawtransaction(signedTx['hex']) self.sync_all() self.nodes[1].generate(1) self.sync_all() # make sure funds are received at node1 assert_equal(oldBalance+Decimal('1.10000000'), self.nodes[1].getbalance()) ############################################################ # locked wallet test self.nodes[1].encryptwallet("test") self.stop_nodes() self.start_nodes() # This test is not meant to test fee estimation and we'd like # to be sure all txs are sent at a consistent desired feerate for node in self.nodes: node.settxfee(min_relay_tx_fee) connect_nodes_bi(self.nodes,0,1) connect_nodes_bi(self.nodes,1,2) connect_nodes_bi(self.nodes,0,2) connect_nodes_bi(self.nodes,0,3) # Again lock the watchonly UTXO or nodes[0] may spend it, because # lockunspent is memory-only and thus lost on restart self.nodes[0].lockunspent(False, [{"txid": watchonly_txid, "vout": watchonly_vout}]) self.sync_all() # drain the keypool self.nodes[1].getnewaddress() self.nodes[1].getrawchangeaddress() inputs = [] outputs = {self.nodes[0].getnewaddress():1.1} rawtx = self.nodes[1].createrawtransaction(inputs, outputs) # fund a transaction that requires a new key for the change output # creating the key must be impossible because the wallet is locked assert_raises_rpc_error(-4, "Keypool ran out, please call keypoolrefill first", self.nodes[1].fundrawtransaction, rawtx) #refill the keypool self.nodes[1].walletpassphrase("test", 100) self.nodes[1].keypoolrefill(8) #need to refill the keypool to get an internal change address self.nodes[1].walletlock() assert_raises_rpc_error(-13, "walletpassphrase", self.nodes[1].sendtoaddress, self.nodes[0].getnewaddress(), 1.2) oldBalance = self.nodes[0].getbalance() inputs = [] outputs = {self.nodes[0].getnewaddress():1.1} rawtx = self.nodes[1].createrawtransaction(inputs, outputs) fundedTx = self.nodes[1].fundrawtransaction(rawtx) #now we need to unlock self.nodes[1].walletpassphrase("test", 600) signedTx = self.nodes[1].signrawtransactionwithwallet(fundedTx['hex']) txId = self.nodes[1].sendrawtransaction(signedTx['hex']) self.nodes[1].generate(1) self.sync_all() # make sure funds are received at node1 assert_equal(oldBalance+Decimal('51.10000000'), self.nodes[0].getbalance()) ############################################### # multiple (~19) inputs tx test | Compare fee # ############################################### #empty node1, send some small coins from node0 to node1 self.nodes[1].sendtoaddress(self.nodes[0].getnewaddress(), self.nodes[1].getbalance(), "", "", True) self.sync_all() self.nodes[0].generate(1) self.sync_all() for i in range(0,20): self.nodes[0].sendtoaddress(self.nodes[1].getnewaddress(), 0.01) self.nodes[0].generate(1) self.sync_all() #fund a tx with ~20 small inputs inputs = [] outputs = {self.nodes[0].getnewaddress():0.15,self.nodes[0].getnewaddress():0.04} rawtx = self.nodes[1].createrawtransaction(inputs, outputs) fundedTx = self.nodes[1].fundrawtransaction(rawtx) #create same transaction over sendtoaddress txId = self.nodes[1].sendmany("", outputs) signedFee = self.nodes[1].getrawmempool(True)[txId]['fee'] #compare fee feeDelta = Decimal(fundedTx['fee']) - Decimal(signedFee) assert(feeDelta >= 0 and feeDelta <= feeTolerance*19) #~19 inputs ############################################# # multiple (~19) inputs tx test | sign/send # ############################################# #again, empty node1, send some small coins from node0 to node1 self.nodes[1].sendtoaddress(self.nodes[0].getnewaddress(), self.nodes[1].getbalance(), "", "", True) self.sync_all() self.nodes[0].generate(1) self.sync_all() for i in range(0,20): self.nodes[0].sendtoaddress(self.nodes[1].getnewaddress(), 0.01) self.nodes[0].generate(1) self.sync_all() #fund a tx with ~20 small inputs oldBalance = self.nodes[0].getbalance() inputs = [] outputs = {self.nodes[0].getnewaddress():0.15,self.nodes[0].getnewaddress():0.04} rawtx = self.nodes[1].createrawtransaction(inputs, outputs) fundedTx = self.nodes[1].fundrawtransaction(rawtx) fundedAndSignedTx = self.nodes[1].signrawtransactionwithwallet(fundedTx['hex']) txId = self.nodes[1].sendrawtransaction(fundedAndSignedTx['hex']) self.sync_all() self.nodes[0].generate(1) self.sync_all() assert_equal(oldBalance+Decimal('50.19000000'), self.nodes[0].getbalance()) #0.19+block reward ##################################################### # test fundrawtransaction with OP_RETURN and no vin # ##################################################### rawtx = "0100000000010000000000000000066a047465737400000000" dec_tx = self.nodes[2].decoderawtransaction(rawtx) assert_equal(len(dec_tx['vin']), 0) assert_equal(len(dec_tx['vout']), 1) rawtxfund = self.nodes[2].fundrawtransaction(rawtx) dec_tx = self.nodes[2].decoderawtransaction(rawtxfund['hex']) assert_greater_than(len(dec_tx['vin']), 0) # at least one vin assert_equal(len(dec_tx['vout']), 2) # one change output added ################################################## # test a fundrawtransaction using only watchonly # ################################################## inputs = [] outputs = {self.nodes[2].getnewaddress() : watchonly_amount / 2} rawtx = self.nodes[3].createrawtransaction(inputs, outputs) result = self.nodes[3].fundrawtransaction(rawtx, {'includeWatching': True }) res_dec = self.nodes[0].decoderawtransaction(result["hex"]) assert_equal(len(res_dec["vin"]), 1) assert_equal(res_dec["vin"][0]["txid"], watchonly_txid) assert("fee" in result.keys()) assert_greater_than(result["changepos"], -1) ############################################################### # test fundrawtransaction using the entirety of watched funds # ############################################################### inputs = [] outputs = {self.nodes[2].getnewaddress() : watchonly_amount} rawtx = self.nodes[3].createrawtransaction(inputs, outputs) # Backward compatibility test (2nd param is includeWatching) result = self.nodes[3].fundrawtransaction(rawtx, True) res_dec = self.nodes[0].decoderawtransaction(result["hex"]) assert_equal(len(res_dec["vin"]), 2) assert(res_dec["vin"][0]["txid"] == watchonly_txid or res_dec["vin"][1]["txid"] == watchonly_txid) assert_greater_than(result["fee"], 0) assert_greater_than(result["changepos"], -1) assert_equal(result["fee"] + res_dec["vout"][result["changepos"]]["value"], watchonly_amount / 10) signedtx = self.nodes[3].signrawtransactionwithwallet(result["hex"]) assert(not signedtx["complete"]) signedtx = self.nodes[0].signrawtransactionwithwallet(signedtx["hex"]) assert(signedtx["complete"]) self.nodes[0].sendrawtransaction(signedtx["hex"]) self.nodes[0].generate(1) self.sync_all() ####################### # Test feeRate option # ####################### # Make sure there is exactly one input so coin selection can't skew the result assert_equal(len(self.nodes[3].listunspent(1)), 1) inputs = [] outputs = {self.nodes[3].getnewaddress() : 1} rawtx = self.nodes[3].createrawtransaction(inputs, outputs) result = self.nodes[3].fundrawtransaction(rawtx) # uses min_relay_tx_fee (set by settxfee) result2 = self.nodes[3].fundrawtransaction(rawtx, {"feeRate": 2*min_relay_tx_fee}) result3 = self.nodes[3].fundrawtransaction(rawtx, {"feeRate": 10*min_relay_tx_fee}) result_fee_rate = result['fee'] * 1000 / count_bytes(result['hex']) assert_fee_amount(result2['fee'], count_bytes(result2['hex']), 2 * result_fee_rate) assert_fee_amount(result3['fee'], count_bytes(result3['hex']), 10 * result_fee_rate) ################################ # Test no address reuse occurs # ################################ result3 = self.nodes[3].fundrawtransaction(rawtx) res_dec = self.nodes[0].decoderawtransaction(result3["hex"]) changeaddress = "" for out in res_dec['vout']: if out['value'] > 1.0: changeaddress += out['scriptPubKey']['addresses'][0] assert(changeaddress != "") nextaddr = self.nodes[3].getnewaddress() # Now the change address key should be removed from the keypool assert(changeaddress != nextaddr) ###################################### # Test subtractFeeFromOutputs option # ###################################### # Make sure there is exactly one input so coin selection can't skew the result assert_equal(len(self.nodes[3].listunspent(1)), 1) inputs = [] outputs = {self.nodes[2].getnewaddress(): 1} rawtx = self.nodes[3].createrawtransaction(inputs, outputs) result = [self.nodes[3].fundrawtransaction(rawtx), # uses min_relay_tx_fee (set by settxfee) self.nodes[3].fundrawtransaction(rawtx, {"subtractFeeFromOutputs": []}), # empty subtraction list self.nodes[3].fundrawtransaction(rawtx, {"subtractFeeFromOutputs": [0]}), # uses min_relay_tx_fee (set by settxfee) self.nodes[3].fundrawtransaction(rawtx, {"feeRate": 2*min_relay_tx_fee}), self.nodes[3].fundrawtransaction(rawtx, {"feeRate": 2*min_relay_tx_fee, "subtractFeeFromOutputs": [0]})] dec_tx = [self.nodes[3].decoderawtransaction(tx_['hex']) for tx_ in result] output = [d['vout'][1 - r['changepos']]['value'] for d, r in zip(dec_tx, result)] change = [d['vout'][r['changepos']]['value'] for d, r in zip(dec_tx, result)] assert_equal(result[0]['fee'], result[1]['fee'], result[2]['fee']) assert_equal(result[3]['fee'], result[4]['fee']) assert_equal(change[0], change[1]) assert_equal(output[0], output[1]) assert_equal(output[0], output[2] + result[2]['fee']) assert_equal(change[0] + result[0]['fee'], change[2]) assert_equal(output[3], output[4] + result[4]['fee']) assert_equal(change[3] + result[3]['fee'], change[4]) inputs = [] outputs = {self.nodes[2].getnewaddress(): value for value in (1.0, 1.1, 1.2, 1.3)} rawtx = self.nodes[3].createrawtransaction(inputs, outputs) result = [self.nodes[3].fundrawtransaction(rawtx), # split the fee between outputs 0, 2, and 3, but not output 1 self.nodes[3].fundrawtransaction(rawtx, {"subtractFeeFromOutputs": [0, 2, 3]})] dec_tx = [self.nodes[3].decoderawtransaction(result[0]['hex']), self.nodes[3].decoderawtransaction(result[1]['hex'])] # Nested list of non-change output amounts for each transaction output = [[out['value'] for i, out in enumerate(d['vout']) if i != r['changepos']] for d, r in zip(dec_tx, result)] # List of differences in output amounts between normal and subtractFee transactions share = [o0 - o1 for o0, o1 in zip(output[0], output[1])] # output 1 is the same in both transactions assert_equal(share[1], 0) # the other 3 outputs are smaller as a result of subtractFeeFromOutputs assert_greater_than(share[0], 0) assert_greater_than(share[2], 0) assert_greater_than(share[3], 0) # outputs 2 and 3 take the same share of the fee assert_equal(share[2], share[3]) # output 0 takes at least as much share of the fee, and no more than 2 satoshis more, than outputs 2 and 3 assert_greater_than_or_equal(share[0], share[2]) assert_greater_than_or_equal(share[2] + Decimal(2e-8), share[0]) # the fee is the same in both transactions assert_equal(result[0]['fee'], result[1]['fee']) # the total subtracted from the outputs is equal to the fee assert_equal(share[0] + share[2] + share[3], result[0]['fee'])
def run_test(self): [alice, bob, charlie, miner] = self.nodes def alice_to_bob(amount): alice.sendtoaddress(addr, Decimal(amount)) self.sync_all() miner.generate(1) self.sync_all() def verify_utxos(node, amounts): utxos = node.listunspent(1, 10**9, [addr]) def cmp_confirmations_high_to_low(a, b): return cmp(b["confirmations"], a["confirmations"]) utxos.sort(cmp_confirmations_high_to_low) try: assert_equal(amounts, [utxo["amount"] for utxo in utxos]) except AssertionError: logging.error( 'Expected amounts: %r; utxos: %r', amounts, utxos) raise # Seed Alice with some funds alice.generate(10) self.sync_all() miner.generate(100) self.sync_all() # Now get a pristine address for receiving transfers: addr = bob.getnewaddress() verify_utxos(bob, []) verify_utxos(charlie, []) # the amounts of each txn embodied which generates a single UTXO: amounts = map(Decimal, ['2.3', '3.7', '0.1', '0.5', '1.0', '0.19']) # Internal test consistency assertion: assert_greater_than( alice.getbalance(), reduce(Decimal.__add__, amounts)) logging.info("Sending pre-export txns...") for amount in amounts[0:2]: alice_to_bob(amount) logging.info("Exporting privkey from bob...") privkey = bob.dumpprivkey(addr) logging.info("Sending post-export txns...") for amount in amounts[2:4]: alice_to_bob(amount) verify_utxos(bob, amounts[:4]) verify_utxos(charlie, []) logging.info("Importing privkey into charlie...") ipkaddr = charlie.importprivkey(privkey, '', True) assert_equal(addr, ipkaddr) # importprivkey should have rescanned, so this should pass: verify_utxos(charlie, amounts[:4]) # Verify idempotent behavior: ipkaddr2 = charlie.importprivkey(privkey, '', True) assert_equal(addr, ipkaddr2) # amounts should be unchanged verify_utxos(charlie, amounts[:4]) logging.info("Sending post-import txns...") for amount in amounts[4:]: alice_to_bob(amount) verify_utxos(bob, amounts) verify_utxos(charlie, amounts)
def run_test(self): min_relay_tx_fee = self.nodes[0].getnetworkinfo()['relayfee'] * 100 # This test is not meant to test fee estimation and we'd like # to be sure all txs are sent at a consistent desired feerate for node in self.nodes: node.settxfee(min_relay_tx_fee) # if the fee's positive delta is higher than this value tests will fail, # neg. delta always fail the tests. # The size of the signature of every input may be at most 2 bytes larger # than a minimum sized signature. # = 2 bytes * minRelayTxFeePerByte feeTolerance = 2 * min_relay_tx_fee / 1000 self.nodes[2].generate(1) self.sync_all() self.nodes[0].generate(121) self.sync_all() # ensure that setting changePosition in fundraw with an exact match is handled properly rawmatch = self.nodes[2].createrawtransaction( [], {self.nodes[2].getnewaddress(): 50}) rawmatch = self.nodes[2].fundrawtransaction( rawmatch, { "changePosition": 1, "subtractFeeFromOutputs": [0] }) assert_equal(rawmatch["changepos"], -1) watchonly_address = self.nodes[0].getnewaddress() watchonly_pubkey = self.nodes[0].getaddressinfo( watchonly_address)["pubkey"] watchonly_amount = Decimal(200) self.nodes[3].importpubkey(watchonly_pubkey, "", True) watchonly_txid = self.nodes[0].sendtoaddress(watchonly_address, watchonly_amount) # Lock UTXO so nodes[0] doesn't accidentally spend it watchonly_vout = find_vout_for_address(self.nodes[0], watchonly_txid, watchonly_address) self.nodes[0].lockunspent(False, [{ "txid": watchonly_txid, "vout": watchonly_vout }]) self.nodes[0].sendtoaddress(self.nodes[3].getnewaddress(), watchonly_amount / 10) self.nodes[0].sendtoaddress(self.nodes[2].getnewaddress(), 1.5) self.nodes[0].sendtoaddress(self.nodes[2].getnewaddress(), 1.0) self.nodes[0].sendtoaddress(self.nodes[2].getnewaddress(), 5.0) self.nodes[0].generate(1) self.sync_all() ############### # simple test # ############### inputs = [] outputs = {self.nodes[0].getnewaddress(): 1.0} rawtx = self.nodes[2].createrawtransaction(inputs, outputs) dec_tx = self.nodes[2].decoderawtransaction(rawtx) rawtxfund = self.nodes[2].fundrawtransaction(rawtx) fee = rawtxfund['fee'] dec_tx = self.nodes[2].decoderawtransaction(rawtxfund['hex']) assert (len(dec_tx['vin']) > 0) #test that we have enough inputs ############################## # simple test with two coins # ############################## inputs = [] outputs = {self.nodes[0].getnewaddress(): 2.2} rawtx = self.nodes[2].createrawtransaction(inputs, outputs) dec_tx = self.nodes[2].decoderawtransaction(rawtx) rawtxfund = self.nodes[2].fundrawtransaction(rawtx) fee = rawtxfund['fee'] dec_tx = self.nodes[2].decoderawtransaction(rawtxfund['hex']) assert (len(dec_tx['vin']) > 0) #test if we have enough inputs ############################## # simple test with two coins # ############################## inputs = [] outputs = {self.nodes[0].getnewaddress(): 2.6} rawtx = self.nodes[2].createrawtransaction(inputs, outputs) dec_tx = self.nodes[2].decoderawtransaction(rawtx) rawtxfund = self.nodes[2].fundrawtransaction(rawtx) fee = rawtxfund['fee'] dec_tx = self.nodes[2].decoderawtransaction(rawtxfund['hex']) assert (len(dec_tx['vin']) > 0) assert_equal(dec_tx['vin'][0]['scriptSig']['hex'], '') ################################ # simple test with two outputs # ################################ inputs = [] outputs = { self.nodes[0].getnewaddress(): 2.6, self.nodes[1].getnewaddress(): 2.5 } rawtx = self.nodes[2].createrawtransaction(inputs, outputs) dec_tx = self.nodes[2].decoderawtransaction(rawtx) rawtxfund = self.nodes[2].fundrawtransaction(rawtx) fee = rawtxfund['fee'] dec_tx = self.nodes[2].decoderawtransaction(rawtxfund['hex']) totalOut = 0 for out in dec_tx['vout']: totalOut += out['value'] assert (len(dec_tx['vin']) > 0) assert_equal(dec_tx['vin'][0]['scriptSig']['hex'], '') ######################################################################### # test a fundrawtransaction with a VIN greater than the required amount # ######################################################################### utx = get_unspent(self.nodes[2].listunspent(), 5) inputs = [{'txid': utx['txid'], 'vout': utx['vout']}] outputs = {self.nodes[0].getnewaddress(): 1.0} rawtx = self.nodes[2].createrawtransaction(inputs, outputs) dec_tx = self.nodes[2].decoderawtransaction(rawtx) assert_equal(utx['txid'], dec_tx['vin'][0]['txid']) rawtxfund = self.nodes[2].fundrawtransaction(rawtx) fee = rawtxfund['fee'] dec_tx = self.nodes[2].decoderawtransaction(rawtxfund['hex']) totalOut = 0 for out in dec_tx['vout']: totalOut += out['value'] assert_equal(fee + totalOut, utx['amount']) #compare vin total and totalout+fee ##################################################################### # test a fundrawtransaction with which will not get a change output # ##################################################################### utx = get_unspent(self.nodes[2].listunspent(), 5) inputs = [{'txid': utx['txid'], 'vout': utx['vout']}] outputs = { self.nodes[0].getnewaddress(): Decimal(5.0) - fee - feeTolerance } rawtx = self.nodes[2].createrawtransaction(inputs, outputs) dec_tx = self.nodes[2].decoderawtransaction(rawtx) assert_equal(utx['txid'], dec_tx['vin'][0]['txid']) rawtxfund = self.nodes[2].fundrawtransaction(rawtx) fee = rawtxfund['fee'] dec_tx = self.nodes[2].decoderawtransaction(rawtxfund['hex']) totalOut = 0 for out in dec_tx['vout']: totalOut += out['value'] assert_equal(rawtxfund['changepos'], -1) assert_equal(fee + totalOut, utx['amount']) #compare vin total and totalout+fee #################################################### # test a fundrawtransaction with an invalid option # #################################################### utx = get_unspent(self.nodes[2].listunspent(), 5) inputs = [{'txid': utx['txid'], 'vout': utx['vout']}] outputs = {self.nodes[0].getnewaddress(): Decimal(4.0)} rawtx = self.nodes[2].createrawtransaction(inputs, outputs) dec_tx = self.nodes[2].decoderawtransaction(rawtx) assert_equal(utx['txid'], dec_tx['vin'][0]['txid']) assert_raises_rpc_error(-3, "Unexpected key foo", self.nodes[2].fundrawtransaction, rawtx, {'foo': 'bar'}) # reserveChangeKey was deprecated and is now removed assert_raises_rpc_error( -3, "Unexpected key reserveChangeKey", lambda: self.nodes[2].fundrawtransaction( hexstring=rawtx, options={'reserveChangeKey': True})) ############################################################ # test a fundrawtransaction with an invalid change address # ############################################################ utx = get_unspent(self.nodes[2].listunspent(), 5) inputs = [{'txid': utx['txid'], 'vout': utx['vout']}] outputs = {self.nodes[0].getnewaddress(): Decimal(4.0)} rawtx = self.nodes[2].createrawtransaction(inputs, outputs) dec_tx = self.nodes[2].decoderawtransaction(rawtx) assert_equal(utx['txid'], dec_tx['vin'][0]['txid']) assert_raises_rpc_error( -5, "changeAddress must be a valid pfandcoin address", self.nodes[2].fundrawtransaction, rawtx, {'changeAddress': 'foobar'}) ############################################################ # test a fundrawtransaction with a provided change address # ############################################################ utx = get_unspent(self.nodes[2].listunspent(), 5) inputs = [{'txid': utx['txid'], 'vout': utx['vout']}] outputs = {self.nodes[0].getnewaddress(): Decimal(4.0)} rawtx = self.nodes[2].createrawtransaction(inputs, outputs) dec_tx = self.nodes[2].decoderawtransaction(rawtx) assert_equal(utx['txid'], dec_tx['vin'][0]['txid']) change = self.nodes[2].getnewaddress() assert_raises_rpc_error(-8, "changePosition out of bounds", self.nodes[2].fundrawtransaction, rawtx, { 'changeAddress': change, 'changePosition': 2 }) rawtxfund = self.nodes[2].fundrawtransaction(rawtx, { 'changeAddress': change, 'changePosition': 0 }) dec_tx = self.nodes[2].decoderawtransaction(rawtxfund['hex']) out = dec_tx['vout'][0] assert_equal(change, out['scriptPubKey']['addresses'][0]) ######################################################### # test a fundrawtransaction with a provided change type # ######################################################### utx = get_unspent(self.nodes[2].listunspent(), 5) inputs = [{'txid': utx['txid'], 'vout': utx['vout']}] outputs = {self.nodes[0].getnewaddress(): Decimal(4.0)} rawtx = self.nodes[2].createrawtransaction(inputs, outputs) assert_raises_rpc_error(-1, "JSON value is not a string as expected", self.nodes[2].fundrawtransaction, rawtx, {'change_type': None}) assert_raises_rpc_error(-5, "Unknown change type ''", self.nodes[2].fundrawtransaction, rawtx, {'change_type': ''}) rawtx = self.nodes[2].fundrawtransaction(rawtx, {'change_type': 'bech32'}) dec_tx = self.nodes[2].decoderawtransaction(rawtx['hex']) assert_equal( 'witness_v0_keyhash', dec_tx['vout'][rawtx['changepos']]['scriptPubKey']['type']) ######################################################################### # test a fundrawtransaction with a VIN smaller than the required amount # ######################################################################### utx = get_unspent(self.nodes[2].listunspent(), 1) inputs = [{'txid': utx['txid'], 'vout': utx['vout']}] outputs = {self.nodes[0].getnewaddress(): 1.0} rawtx = self.nodes[2].createrawtransaction(inputs, outputs) # 4-byte version + 1-byte vin count + 36-byte prevout then script_len rawtx = rawtx[:82] + "0100" + rawtx[84:] dec_tx = self.nodes[2].decoderawtransaction(rawtx) assert_equal(utx['txid'], dec_tx['vin'][0]['txid']) assert_equal("00", dec_tx['vin'][0]['scriptSig']['hex']) rawtxfund = self.nodes[2].fundrawtransaction(rawtx) fee = rawtxfund['fee'] dec_tx = self.nodes[2].decoderawtransaction(rawtxfund['hex']) totalOut = 0 matchingOuts = 0 for i, out in enumerate(dec_tx['vout']): totalOut += out['value'] if out['scriptPubKey']['addresses'][0] in outputs: matchingOuts += 1 else: assert_equal(i, rawtxfund['changepos']) assert_equal(utx['txid'], dec_tx['vin'][0]['txid']) assert_equal("00", dec_tx['vin'][0]['scriptSig']['hex']) assert_equal(matchingOuts, 1) assert_equal(len(dec_tx['vout']), 2) ########################################### # test a fundrawtransaction with two VINs # ########################################### utx = get_unspent(self.nodes[2].listunspent(), 1) utx2 = get_unspent(self.nodes[2].listunspent(), 5) inputs = [{ 'txid': utx['txid'], 'vout': utx['vout'] }, { 'txid': utx2['txid'], 'vout': utx2['vout'] }] outputs = {self.nodes[0].getnewaddress(): 6.0} rawtx = self.nodes[2].createrawtransaction(inputs, outputs) dec_tx = self.nodes[2].decoderawtransaction(rawtx) assert_equal(utx['txid'], dec_tx['vin'][0]['txid']) rawtxfund = self.nodes[2].fundrawtransaction(rawtx) fee = rawtxfund['fee'] dec_tx = self.nodes[2].decoderawtransaction(rawtxfund['hex']) totalOut = 0 matchingOuts = 0 for out in dec_tx['vout']: totalOut += out['value'] if out['scriptPubKey']['addresses'][0] in outputs: matchingOuts += 1 assert_equal(matchingOuts, 1) assert_equal(len(dec_tx['vout']), 2) matchingIns = 0 for vinOut in dec_tx['vin']: for vinIn in inputs: if vinIn['txid'] == vinOut['txid']: matchingIns += 1 assert_equal( matchingIns, 2) #we now must see two vins identical to vins given as params ######################################################### # test a fundrawtransaction with two VINs and two vOUTs # ######################################################### utx = get_unspent(self.nodes[2].listunspent(), 1) utx2 = get_unspent(self.nodes[2].listunspent(), 5) inputs = [{ 'txid': utx['txid'], 'vout': utx['vout'] }, { 'txid': utx2['txid'], 'vout': utx2['vout'] }] outputs = { self.nodes[0].getnewaddress(): 6.0, self.nodes[0].getnewaddress(): 1.0 } rawtx = self.nodes[2].createrawtransaction(inputs, outputs) dec_tx = self.nodes[2].decoderawtransaction(rawtx) assert_equal(utx['txid'], dec_tx['vin'][0]['txid']) rawtxfund = self.nodes[2].fundrawtransaction(rawtx) fee = rawtxfund['fee'] dec_tx = self.nodes[2].decoderawtransaction(rawtxfund['hex']) totalOut = 0 matchingOuts = 0 for out in dec_tx['vout']: totalOut += out['value'] if out['scriptPubKey']['addresses'][0] in outputs: matchingOuts += 1 assert_equal(matchingOuts, 2) assert_equal(len(dec_tx['vout']), 3) ############################################## # test a fundrawtransaction with invalid vin # ############################################## inputs = [{ 'txid': "1c7f966dab21119bac53213a2bc7532bff1fa844c124fd750a7d0b1332440bd1", 'vout': 0 }] #invalid vin! outputs = {self.nodes[0].getnewaddress(): 1.0} rawtx = self.nodes[2].createrawtransaction(inputs, outputs) dec_tx = self.nodes[2].decoderawtransaction(rawtx) assert_raises_rpc_error(-4, "Insufficient funds", self.nodes[2].fundrawtransaction, rawtx) ############################################################ #compare fee of a standard pubkeyhash transaction inputs = [] outputs = {self.nodes[1].getnewaddress(): 1.1} rawtx = self.nodes[0].createrawtransaction(inputs, outputs) fundedTx = self.nodes[0].fundrawtransaction(rawtx) #create same transaction over sendtoaddress txId = self.nodes[0].sendtoaddress(self.nodes[1].getnewaddress(), 1.1) signedFee = self.nodes[0].getrawmempool(True)[txId]['fee'] #compare fee feeDelta = Decimal(fundedTx['fee']) - Decimal(signedFee) assert (feeDelta >= 0 and feeDelta <= feeTolerance) ############################################################ ############################################################ #compare fee of a standard pubkeyhash transaction with multiple outputs inputs = [] outputs = { self.nodes[1].getnewaddress(): 1.1, self.nodes[1].getnewaddress(): 1.2, self.nodes[1].getnewaddress(): 0.1, self.nodes[1].getnewaddress(): 1.3, self.nodes[1].getnewaddress(): 0.2, self.nodes[1].getnewaddress(): 0.3 } rawtx = self.nodes[0].createrawtransaction(inputs, outputs) fundedTx = self.nodes[0].fundrawtransaction(rawtx) #create same transaction over sendtoaddress txId = self.nodes[0].sendmany("", outputs) signedFee = self.nodes[0].getrawmempool(True)[txId]['fee'] #compare fee feeDelta = Decimal(fundedTx['fee']) - Decimal(signedFee) assert (feeDelta >= 0 and feeDelta <= feeTolerance) ############################################################ ############################################################ #compare fee of a 2of2 multisig p2sh transaction # create 2of2 addr addr1 = self.nodes[1].getnewaddress() addr2 = self.nodes[1].getnewaddress() addr1Obj = self.nodes[1].getaddressinfo(addr1) addr2Obj = self.nodes[1].getaddressinfo(addr2) mSigObj = self.nodes[1].addmultisigaddress( 2, [addr1Obj['pubkey'], addr2Obj['pubkey']])['address'] inputs = [] outputs = {mSigObj: 1.1} rawtx = self.nodes[0].createrawtransaction(inputs, outputs) fundedTx = self.nodes[0].fundrawtransaction(rawtx) #create same transaction over sendtoaddress txId = self.nodes[0].sendtoaddress(mSigObj, 1.1) signedFee = self.nodes[0].getrawmempool(True)[txId]['fee'] #compare fee feeDelta = Decimal(fundedTx['fee']) - Decimal(signedFee) assert (feeDelta >= 0 and feeDelta <= feeTolerance) ############################################################ ############################################################ #compare fee of a standard pubkeyhash transaction # create 4of5 addr addr1 = self.nodes[1].getnewaddress() addr2 = self.nodes[1].getnewaddress() addr3 = self.nodes[1].getnewaddress() addr4 = self.nodes[1].getnewaddress() addr5 = self.nodes[1].getnewaddress() addr1Obj = self.nodes[1].getaddressinfo(addr1) addr2Obj = self.nodes[1].getaddressinfo(addr2) addr3Obj = self.nodes[1].getaddressinfo(addr3) addr4Obj = self.nodes[1].getaddressinfo(addr4) addr5Obj = self.nodes[1].getaddressinfo(addr5) mSigObj = self.nodes[1].addmultisigaddress(4, [ addr1Obj['pubkey'], addr2Obj['pubkey'], addr3Obj['pubkey'], addr4Obj['pubkey'], addr5Obj['pubkey'] ])['address'] inputs = [] outputs = {mSigObj: 1.1} rawtx = self.nodes[0].createrawtransaction(inputs, outputs) fundedTx = self.nodes[0].fundrawtransaction(rawtx) #create same transaction over sendtoaddress txId = self.nodes[0].sendtoaddress(mSigObj, 1.1) signedFee = self.nodes[0].getrawmempool(True)[txId]['fee'] #compare fee feeDelta = Decimal(fundedTx['fee']) - Decimal(signedFee) assert (feeDelta >= 0 and feeDelta <= feeTolerance) ############################################################ ############################################################ # spend a 2of2 multisig transaction over fundraw # create 2of2 addr addr1 = self.nodes[2].getnewaddress() addr2 = self.nodes[2].getnewaddress() addr1Obj = self.nodes[2].getaddressinfo(addr1) addr2Obj = self.nodes[2].getaddressinfo(addr2) mSigObj = self.nodes[2].addmultisigaddress( 2, [addr1Obj['pubkey'], addr2Obj['pubkey']])['address'] # send 1.2 BTC to msig addr txId = self.nodes[0].sendtoaddress(mSigObj, 1.2) self.sync_all() self.nodes[1].generate(1) self.sync_all() oldBalance = self.nodes[1].getbalance() inputs = [] outputs = {self.nodes[1].getnewaddress(): 1.1} rawtx = self.nodes[2].createrawtransaction(inputs, outputs) fundedTx = self.nodes[2].fundrawtransaction(rawtx) signedTx = self.nodes[2].signrawtransactionwithwallet(fundedTx['hex']) txId = self.nodes[2].sendrawtransaction(signedTx['hex']) self.sync_all() self.nodes[1].generate(1) self.sync_all() # make sure funds are received at node1 assert_equal(oldBalance + Decimal('1.10000000'), self.nodes[1].getbalance()) ############################################################ # locked wallet test self.nodes[1].encryptwallet("test") self.stop_nodes() self.start_nodes() # This test is not meant to test fee estimation and we'd like # to be sure all txs are sent at a consistent desired feerate for node in self.nodes: node.settxfee(min_relay_tx_fee) connect_nodes_bi(self.nodes, 0, 1) connect_nodes_bi(self.nodes, 1, 2) connect_nodes_bi(self.nodes, 0, 2) connect_nodes_bi(self.nodes, 0, 3) # Again lock the watchonly UTXO or nodes[0] may spend it, because # lockunspent is memory-only and thus lost on restart self.nodes[0].lockunspent(False, [{ "txid": watchonly_txid, "vout": watchonly_vout }]) self.sync_all() # drain the keypool self.nodes[1].getnewaddress() self.nodes[1].getrawchangeaddress() inputs = [] outputs = {self.nodes[0].getnewaddress(): 1.1} rawtx = self.nodes[1].createrawtransaction(inputs, outputs) # fund a transaction that requires a new key for the change output # creating the key must be impossible because the wallet is locked assert_raises_rpc_error( -4, "Keypool ran out, please call keypoolrefill first", self.nodes[1].fundrawtransaction, rawtx) #refill the keypool self.nodes[1].walletpassphrase("test", 100) self.nodes[1].keypoolrefill( 8) #need to refill the keypool to get an internal change address self.nodes[1].walletlock() assert_raises_rpc_error(-13, "walletpassphrase", self.nodes[1].sendtoaddress, self.nodes[0].getnewaddress(), 1.2) oldBalance = self.nodes[0].getbalance() inputs = [] outputs = {self.nodes[0].getnewaddress(): 1.1} rawtx = self.nodes[1].createrawtransaction(inputs, outputs) fundedTx = self.nodes[1].fundrawtransaction(rawtx) #now we need to unlock self.nodes[1].walletpassphrase("test", 600) signedTx = self.nodes[1].signrawtransactionwithwallet(fundedTx['hex']) txId = self.nodes[1].sendrawtransaction(signedTx['hex']) self.nodes[1].generate(1) self.sync_all() # make sure funds are received at node1 assert_equal(oldBalance + Decimal('51.10000000'), self.nodes[0].getbalance()) ############################################### # multiple (~19) inputs tx test | Compare fee # ############################################### #empty node1, send some small coins from node0 to node1 self.nodes[1].sendtoaddress(self.nodes[0].getnewaddress(), self.nodes[1].getbalance(), "", "", True) self.sync_all() self.nodes[0].generate(1) self.sync_all() for i in range(0, 20): self.nodes[0].sendtoaddress(self.nodes[1].getnewaddress(), 0.01) self.nodes[0].generate(1) self.sync_all() #fund a tx with ~20 small inputs inputs = [] outputs = { self.nodes[0].getnewaddress(): 0.15, self.nodes[0].getnewaddress(): 0.04 } rawtx = self.nodes[1].createrawtransaction(inputs, outputs) fundedTx = self.nodes[1].fundrawtransaction(rawtx) #create same transaction over sendtoaddress txId = self.nodes[1].sendmany("", outputs) signedFee = self.nodes[1].getrawmempool(True)[txId]['fee'] #compare fee feeDelta = Decimal(fundedTx['fee']) - Decimal(signedFee) assert (feeDelta >= 0 and feeDelta <= feeTolerance * 19) #~19 inputs ############################################# # multiple (~19) inputs tx test | sign/send # ############################################# #again, empty node1, send some small coins from node0 to node1 self.nodes[1].sendtoaddress(self.nodes[0].getnewaddress(), self.nodes[1].getbalance(), "", "", True) self.sync_all() self.nodes[0].generate(1) self.sync_all() for i in range(0, 20): self.nodes[0].sendtoaddress(self.nodes[1].getnewaddress(), 0.01) self.nodes[0].generate(1) self.sync_all() #fund a tx with ~20 small inputs oldBalance = self.nodes[0].getbalance() inputs = [] outputs = { self.nodes[0].getnewaddress(): 0.15, self.nodes[0].getnewaddress(): 0.04 } rawtx = self.nodes[1].createrawtransaction(inputs, outputs) fundedTx = self.nodes[1].fundrawtransaction(rawtx) fundedAndSignedTx = self.nodes[1].signrawtransactionwithwallet( fundedTx['hex']) txId = self.nodes[1].sendrawtransaction(fundedAndSignedTx['hex']) self.sync_all() self.nodes[0].generate(1) self.sync_all() assert_equal(oldBalance + Decimal('50.19000000'), self.nodes[0].getbalance()) #0.19+block reward ##################################################### # test fundrawtransaction with OP_RETURN and no vin # ##################################################### rawtx = "0100000000010000000000000000066a047465737400000000" dec_tx = self.nodes[2].decoderawtransaction(rawtx) assert_equal(len(dec_tx['vin']), 0) assert_equal(len(dec_tx['vout']), 1) rawtxfund = self.nodes[2].fundrawtransaction(rawtx) dec_tx = self.nodes[2].decoderawtransaction(rawtxfund['hex']) assert_greater_than(len(dec_tx['vin']), 0) # at least one vin assert_equal(len(dec_tx['vout']), 2) # one change output added ################################################## # test a fundrawtransaction using only watchonly # ################################################## inputs = [] outputs = {self.nodes[2].getnewaddress(): watchonly_amount / 2} rawtx = self.nodes[3].createrawtransaction(inputs, outputs) result = self.nodes[3].fundrawtransaction(rawtx, {'includeWatching': True}) res_dec = self.nodes[0].decoderawtransaction(result["hex"]) assert_equal(len(res_dec["vin"]), 1) assert_equal(res_dec["vin"][0]["txid"], watchonly_txid) assert ("fee" in result.keys()) assert_greater_than(result["changepos"], -1) ############################################################### # test fundrawtransaction using the entirety of watched funds # ############################################################### inputs = [] outputs = {self.nodes[2].getnewaddress(): watchonly_amount} rawtx = self.nodes[3].createrawtransaction(inputs, outputs) # Backward compatibility test (2nd param is includeWatching) result = self.nodes[3].fundrawtransaction(rawtx, True) res_dec = self.nodes[0].decoderawtransaction(result["hex"]) assert_equal(len(res_dec["vin"]), 2) assert (res_dec["vin"][0]["txid"] == watchonly_txid or res_dec["vin"][1]["txid"] == watchonly_txid) assert_greater_than(result["fee"], 0) assert_greater_than(result["changepos"], -1) assert_equal( result["fee"] + res_dec["vout"][result["changepos"]]["value"], watchonly_amount / 10) signedtx = self.nodes[3].signrawtransactionwithwallet(result["hex"]) assert (not signedtx["complete"]) signedtx = self.nodes[0].signrawtransactionwithwallet(signedtx["hex"]) assert (signedtx["complete"]) self.nodes[0].sendrawtransaction(signedtx["hex"]) self.nodes[0].generate(1) self.sync_all() ####################### # Test feeRate option # ####################### # Make sure there is exactly one input so coin selection can't skew the result assert_equal(len(self.nodes[3].listunspent(1)), 1) inputs = [] outputs = {self.nodes[3].getnewaddress(): 1} rawtx = self.nodes[3].createrawtransaction(inputs, outputs) result = self.nodes[3].fundrawtransaction( rawtx) # uses min_relay_tx_fee (set by settxfee) result2 = self.nodes[3].fundrawtransaction( rawtx, {"feeRate": 2 * min_relay_tx_fee}) result3 = self.nodes[3].fundrawtransaction( rawtx, {"feeRate": 10 * min_relay_tx_fee}) assert_raises_rpc_error(-4, "Fee exceeds maximum configured by -maxtxfee", self.nodes[3].fundrawtransaction, rawtx, {"feeRate": 1}) result_fee_rate = result['fee'] * 1000 / count_bytes(result['hex']) assert_fee_amount(result2['fee'], count_bytes(result2['hex']), 2 * result_fee_rate) assert_fee_amount(result3['fee'], count_bytes(result3['hex']), 10 * result_fee_rate) ################################ # Test no address reuse occurs # ################################ result3 = self.nodes[3].fundrawtransaction(rawtx) res_dec = self.nodes[0].decoderawtransaction(result3["hex"]) changeaddress = "" for out in res_dec['vout']: if out['value'] > 1.0: changeaddress += out['scriptPubKey']['addresses'][0] assert (changeaddress != "") nextaddr = self.nodes[3].getnewaddress() # Now the change address key should be removed from the keypool assert (changeaddress != nextaddr) ###################################### # Test subtractFeeFromOutputs option # ###################################### # Make sure there is exactly one input so coin selection can't skew the result assert_equal(len(self.nodes[3].listunspent(1)), 1) inputs = [] outputs = {self.nodes[2].getnewaddress(): 1} rawtx = self.nodes[3].createrawtransaction(inputs, outputs) result = [ self.nodes[3].fundrawtransaction( rawtx), # uses min_relay_tx_fee (set by settxfee) self.nodes[3].fundrawtransaction( rawtx, {"subtractFeeFromOutputs": []}), # empty subtraction list self.nodes[3].fundrawtransaction( rawtx, {"subtractFeeFromOutputs": [0] }), # uses min_relay_tx_fee (set by settxfee) self.nodes[3].fundrawtransaction( rawtx, {"feeRate": 2 * min_relay_tx_fee}), self.nodes[3].fundrawtransaction(rawtx, { "feeRate": 2 * min_relay_tx_fee, "subtractFeeFromOutputs": [0] }) ] dec_tx = [ self.nodes[3].decoderawtransaction(tx_['hex']) for tx_ in result ] output = [ d['vout'][1 - r['changepos']]['value'] for d, r in zip(dec_tx, result) ] change = [ d['vout'][r['changepos']]['value'] for d, r in zip(dec_tx, result) ] assert_equal(result[0]['fee'], result[1]['fee'], result[2]['fee']) assert_equal(result[3]['fee'], result[4]['fee']) assert_equal(change[0], change[1]) assert_equal(output[0], output[1]) assert_equal(output[0], output[2] + result[2]['fee']) assert_equal(change[0] + result[0]['fee'], change[2]) assert_equal(output[3], output[4] + result[4]['fee']) assert_equal(change[3] + result[3]['fee'], change[4]) inputs = [] outputs = { self.nodes[2].getnewaddress(): value for value in (1.0, 1.1, 1.2, 1.3) } rawtx = self.nodes[3].createrawtransaction(inputs, outputs) result = [ self.nodes[3].fundrawtransaction(rawtx), # split the fee between outputs 0, 2, and 3, but not output 1 self.nodes[3].fundrawtransaction( rawtx, {"subtractFeeFromOutputs": [0, 2, 3]}) ] dec_tx = [ self.nodes[3].decoderawtransaction(result[0]['hex']), self.nodes[3].decoderawtransaction(result[1]['hex']) ] # Nested list of non-change output amounts for each transaction output = [[ out['value'] for i, out in enumerate(d['vout']) if i != r['changepos'] ] for d, r in zip(dec_tx, result)] # List of differences in output amounts between normal and subtractFee transactions share = [o0 - o1 for o0, o1 in zip(output[0], output[1])] # output 1 is the same in both transactions assert_equal(share[1], 0) # the other 3 outputs are smaller as a result of subtractFeeFromOutputs assert_greater_than(share[0], 0) assert_greater_than(share[2], 0) assert_greater_than(share[3], 0) # outputs 2 and 3 take the same share of the fee assert_equal(share[2], share[3]) # output 0 takes at least as much share of the fee, and no more than 2 satoshis more, than outputs 2 and 3 assert_greater_than_or_equal(share[0], share[2]) assert_greater_than_or_equal(share[2] + Decimal(2e-8), share[0]) # the fee is the same in both transactions assert_equal(result[0]['fee'], result[1]['fee']) # the total subtracted from the outputs is equal to the fee assert_equal(share[0] + share[2] + share[3], result[0]['fee'])
assert_equal(self.nodes[2].getbalance("*"), node2utxobalance) # check zaddr balance assert_equal(self.nodes[2].z_getbalance(myzaddr), zsendmanynotevalue) # check via z_gettotalbalance resp = self.nodes[2].z_gettotalbalance() assert_equal(Decimal(resp["transparent"]), node2utxobalance) assert_equal(Decimal(resp["private"]), zsendmanynotevalue) assert_equal(Decimal(resp["total"]), node2utxobalance + zsendmanynotevalue) # there should be at least one joinsplit mytxdetails = self.nodes[2].gettransaction(mytxid) myvjoinsplits = mytxdetails["vjoinsplit"] assert_greater_than(len(myvjoinsplits), 0) # the first (probably only) joinsplit should take in all the public value myjoinsplit = self.nodes[2].getrawtransaction(mytxid, 1)["vjoinsplit"][0] assert_equal(myjoinsplit["vpub_old"], zsendmanynotevalue) assert_equal(myjoinsplit["vpub_new"], 0) assert ("onetimePubKey" in myjoinsplit.keys()) assert ("randomSeed" in myjoinsplit.keys()) assert ("ciphertexts" in myjoinsplit.keys()) # send from private note to node 0 and node 2 node0balance = self.nodes[0].getbalance() # 25.99794745 node2balance = self.nodes[2].getbalance() # 16.99790000 recipients = []
def run_test(self): self.log.info("Mining blocks...") self.nodes[0].generate(1) self.nodes[1].generate(1) timestamp = self.nodes[1].getblock(self.nodes[1].getbestblockhash())['mediantime'] node0_address1 = self.nodes[0].getaddressinfo(self.nodes[0].getnewaddress()) # Check only one address assert_equal(node0_address1['ismine'], True) # Node 1 sync test assert_equal(self.nodes[1].getblockcount(), 1) # Address Test - before import address_info = self.nodes[1].getaddressinfo(node0_address1['address']) assert_equal(address_info['iswatchonly'], False) assert_equal(address_info['ismine'], False) # RPC importmulti ----------------------------------------------- # Bitcoin Address (implicit non-internal) self.log.info("Should import an address") key = get_key(self.nodes[0]) self.test_importmulti({"scriptPubKey": {"address": key.p2pkh_addr}, "timestamp": "now"}, success=True) test_address(self.nodes[1], key.p2pkh_addr, iswatchonly=True, ismine=False, timestamp=timestamp, ischange=False) watchonly_address = key.p2pkh_addr watchonly_timestamp = timestamp self.log.info("Should not import an invalid address") self.test_importmulti({"scriptPubKey": {"address": "not valid address"}, "timestamp": "now"}, success=False, error_code=-5, error_message='Invalid address \"not valid address\"') # ScriptPubKey + internal self.log.info("Should import a scriptPubKey with internal flag") key = get_key(self.nodes[0]) self.test_importmulti({"scriptPubKey": key.p2pkh_script, "timestamp": "now", "internal": True}, success=True) test_address(self.nodes[1], key.p2pkh_addr, iswatchonly=True, ismine=False, timestamp=timestamp, ischange=True) # ScriptPubKey + internal + label self.log.info("Should not allow a label to be specified when internal is true") key = get_key(self.nodes[0]) self.test_importmulti({"scriptPubKey": key.p2pkh_script, "timestamp": "now", "internal": True, "label": "Example label"}, success=False, error_code=-8, error_message='Internal addresses should not have a label') # Nonstandard scriptPubKey + !internal self.log.info("Should not import a nonstandard scriptPubKey without internal flag") nonstandardScriptPubKey = key.p2pkh_script + CScript([OP_NOP]).hex() key = get_key(self.nodes[0]) self.test_importmulti({"scriptPubKey": nonstandardScriptPubKey, "timestamp": "now"}, success=False, error_code=-8, error_message='Internal must be set to true for nonstandard scriptPubKey imports.') test_address(self.nodes[1], key.p2pkh_addr, iswatchonly=False, ismine=False, timestamp=None) # Address + Public key + !Internal(explicit) self.log.info("Should import an address with public key") key = get_key(self.nodes[0]) self.test_importmulti({"scriptPubKey": {"address": key.p2pkh_addr}, "timestamp": "now", "pubkeys": [key.pubkey], "internal": False}, success=True, warnings=["Some private keys are missing, outputs will be considered watchonly. If this is intentional, specify the watchonly flag."]) test_address(self.nodes[1], key.p2pkh_addr, iswatchonly=True, ismine=False, timestamp=timestamp) # ScriptPubKey + Public key + internal self.log.info("Should import a scriptPubKey with internal and with public key") key = get_key(self.nodes[0]) self.test_importmulti({"scriptPubKey": key.p2pkh_script, "timestamp": "now", "pubkeys": [key.pubkey], "internal": True}, success=True, warnings=["Some private keys are missing, outputs will be considered watchonly. If this is intentional, specify the watchonly flag."]) test_address(self.nodes[1], key.p2pkh_addr, iswatchonly=True, ismine=False, timestamp=timestamp) # Nonstandard scriptPubKey + Public key + !internal self.log.info("Should not import a nonstandard scriptPubKey without internal and with public key") key = get_key(self.nodes[0]) self.test_importmulti({"scriptPubKey": nonstandardScriptPubKey, "timestamp": "now", "pubkeys": [key.pubkey]}, success=False, error_code=-8, error_message='Internal must be set to true for nonstandard scriptPubKey imports.') test_address(self.nodes[1], key.p2pkh_addr, iswatchonly=False, ismine=False, timestamp=None) # Address + Private key + !watchonly self.log.info("Should import an address with private key") key = get_key(self.nodes[0]) self.test_importmulti({"scriptPubKey": {"address": key.p2pkh_addr}, "timestamp": "now", "keys": [key.privkey]}, success=True) test_address(self.nodes[1], key.p2pkh_addr, iswatchonly=False, ismine=True, timestamp=timestamp) self.log.info("Should not import an address with private key if is already imported") self.test_importmulti({"scriptPubKey": {"address": key.p2pkh_addr}, "timestamp": "now", "keys": [key.privkey]}, success=False, error_code=-4, error_message='The wallet already contains the private key for this address or script ("' + key.p2pkh_script + '")') # Address + Private key + watchonly self.log.info("Should import an address with private key and with watchonly") key = get_key(self.nodes[0]) self.test_importmulti({"scriptPubKey": {"address": key.p2pkh_addr}, "timestamp": "now", "keys": [key.privkey], "watchonly": True}, success=True, warnings=["All private keys are provided, outputs will be considered spendable. If this is intentional, do not specify the watchonly flag."]) test_address(self.nodes[1], key.p2pkh_addr, iswatchonly=False, ismine=True, timestamp=timestamp) # ScriptPubKey + Private key + internal self.log.info("Should import a scriptPubKey with internal and with private key") key = get_key(self.nodes[0]) self.test_importmulti({"scriptPubKey": key.p2pkh_script, "timestamp": "now", "keys": [key.privkey], "internal": True}, success=True) test_address(self.nodes[1], key.p2pkh_addr, iswatchonly=False, ismine=True, timestamp=timestamp) # Nonstandard scriptPubKey + Private key + !internal self.log.info("Should not import a nonstandard scriptPubKey without internal and with private key") key = get_key(self.nodes[0]) self.test_importmulti({"scriptPubKey": nonstandardScriptPubKey, "timestamp": "now", "keys": [key.privkey]}, success=False, error_code=-8, error_message='Internal must be set to true for nonstandard scriptPubKey imports.') test_address(self.nodes[1], key.p2pkh_addr, iswatchonly=False, ismine=False, timestamp=None) # P2SH address multisig = get_multisig(self.nodes[0]) self.nodes[1].generate(100) self.nodes[1].sendtoaddress(multisig.p2sh_addr, 10.00) self.nodes[1].generate(1) timestamp = self.nodes[1].getblock(self.nodes[1].getbestblockhash())['mediantime'] self.log.info("Should import a p2sh") self.test_importmulti({"scriptPubKey": {"address": multisig.p2sh_addr}, "timestamp": "now"}, success=True) test_address(self.nodes[1], multisig.p2sh_addr, isscript=True, iswatchonly=True, timestamp=timestamp) p2shunspent = self.nodes[1].listunspent(0, 999999, [multisig.p2sh_addr])[0] assert_equal(p2shunspent['spendable'], False) assert_equal(p2shunspent['solvable'], False) # P2SH + Redeem script multisig = get_multisig(self.nodes[0]) self.nodes[1].generate(100) self.nodes[1].sendtoaddress(multisig.p2sh_addr, 10.00) self.nodes[1].generate(1) timestamp = self.nodes[1].getblock(self.nodes[1].getbestblockhash())['mediantime'] self.log.info("Should import a p2sh with respective redeem script") self.test_importmulti({"scriptPubKey": {"address": multisig.p2sh_addr}, "timestamp": "now", "redeemscript": multisig.redeem_script}, success=True, warnings=["Some private keys are missing, outputs will be considered watchonly. If this is intentional, specify the watchonly flag."]) test_address(self.nodes[1], multisig.p2sh_addr, timestamp=timestamp, iswatchonly=True, ismine=False, solvable=True) p2shunspent = self.nodes[1].listunspent(0, 999999, [multisig.p2sh_addr])[0] assert_equal(p2shunspent['spendable'], False) assert_equal(p2shunspent['solvable'], True) # P2SH + Redeem script + Private Keys + !Watchonly multisig = get_multisig(self.nodes[0]) self.nodes[1].generate(100) self.nodes[1].sendtoaddress(multisig.p2sh_addr, 10.00) self.nodes[1].generate(1) timestamp = self.nodes[1].getblock(self.nodes[1].getbestblockhash())['mediantime'] self.log.info("Should import a p2sh with respective redeem script and private keys") self.test_importmulti({"scriptPubKey": {"address": multisig.p2sh_addr}, "timestamp": "now", "redeemscript": multisig.redeem_script, "keys": multisig.privkeys[0:2]}, success=True, warnings=["Some private keys are missing, outputs will be considered watchonly. If this is intentional, specify the watchonly flag."]) test_address(self.nodes[1], multisig.p2sh_addr, timestamp=timestamp, ismine=False, iswatchonly=True, solvable=True) p2shunspent = self.nodes[1].listunspent(0, 999999, [multisig.p2sh_addr])[0] assert_equal(p2shunspent['spendable'], False) assert_equal(p2shunspent['solvable'], True) # P2SH + Redeem script + Private Keys + Watchonly multisig = get_multisig(self.nodes[0]) self.nodes[1].generate(100) self.nodes[1].sendtoaddress(multisig.p2sh_addr, 10.00) self.nodes[1].generate(1) timestamp = self.nodes[1].getblock(self.nodes[1].getbestblockhash())['mediantime'] self.log.info("Should import a p2sh with respective redeem script and private keys") self.test_importmulti({"scriptPubKey": {"address": multisig.p2sh_addr}, "timestamp": "now", "redeemscript": multisig.redeem_script, "keys": multisig.privkeys[0:2], "watchonly": True}, success=True) test_address(self.nodes[1], multisig.p2sh_addr, iswatchonly=True, ismine=False, solvable=True, timestamp=timestamp) # Address + Public key + !Internal + Wrong pubkey self.log.info("Should not import an address with the wrong public key as non-solvable") key = get_key(self.nodes[0]) wrong_key = get_key(self.nodes[0]).pubkey self.test_importmulti({"scriptPubKey": {"address": key.p2pkh_addr}, "timestamp": "now", "pubkeys": [wrong_key]}, success=True, warnings=["Importing as non-solvable: some required keys are missing. If this is intentional, don't provide any keys, pubkeys, witnessscript, or redeemscript.", "Some private keys are missing, outputs will be considered watchonly. If this is intentional, specify the watchonly flag."]) test_address(self.nodes[1], key.p2pkh_addr, iswatchonly=True, ismine=False, solvable=False, timestamp=timestamp) # ScriptPubKey + Public key + internal + Wrong pubkey self.log.info("Should import a scriptPubKey with internal and with a wrong public key as non-solvable") key = get_key(self.nodes[0]) wrong_key = get_key(self.nodes[0]).pubkey self.test_importmulti({"scriptPubKey": key.p2pkh_script, "timestamp": "now", "pubkeys": [wrong_key], "internal": True}, success=True, warnings=["Importing as non-solvable: some required keys are missing. If this is intentional, don't provide any keys, pubkeys, witnessscript, or redeemscript.", "Some private keys are missing, outputs will be considered watchonly. If this is intentional, specify the watchonly flag."]) test_address(self.nodes[1], key.p2pkh_addr, iswatchonly=True, ismine=False, solvable=False, timestamp=timestamp) # Address + Private key + !watchonly + Wrong private key self.log.info("Should import an address with a wrong private key as non-solvable") key = get_key(self.nodes[0]) wrong_privkey = get_key(self.nodes[0]).privkey self.test_importmulti({"scriptPubKey": {"address": key.p2pkh_addr}, "timestamp": "now", "keys": [wrong_privkey]}, success=True, warnings=["Importing as non-solvable: some required keys are missing. If this is intentional, don't provide any keys, pubkeys, witnessscript, or redeemscript.", "Some private keys are missing, outputs will be considered watchonly. If this is intentional, specify the watchonly flag."]) test_address(self.nodes[1], key.p2pkh_addr, iswatchonly=True, ismine=False, solvable=False, timestamp=timestamp) # ScriptPubKey + Private key + internal + Wrong private key self.log.info("Should import a scriptPubKey with internal and with a wrong private key as non-solvable") key = get_key(self.nodes[0]) wrong_privkey = get_key(self.nodes[0]).privkey self.test_importmulti({"scriptPubKey": key.p2pkh_script, "timestamp": "now", "keys": [wrong_privkey], "internal": True}, success=True, warnings=["Importing as non-solvable: some required keys are missing. If this is intentional, don't provide any keys, pubkeys, witnessscript, or redeemscript.", "Some private keys are missing, outputs will be considered watchonly. If this is intentional, specify the watchonly flag."]) test_address(self.nodes[1], key.p2pkh_addr, iswatchonly=True, ismine=False, solvable=False, timestamp=timestamp) # Importing existing watch only address with new timestamp should replace saved timestamp. assert_greater_than(timestamp, watchonly_timestamp) self.log.info("Should replace previously saved watch only timestamp.") self.test_importmulti({"scriptPubKey": {"address": watchonly_address}, "timestamp": "now"}, success=True) test_address(self.nodes[1], watchonly_address, iswatchonly=True, ismine=False, timestamp=timestamp) watchonly_timestamp = timestamp # restart nodes to check for proper serialization/deserialization of watch only address self.stop_nodes() self.start_nodes() test_address(self.nodes[1], watchonly_address, iswatchonly=True, ismine=False, timestamp=watchonly_timestamp) # Bad or missing timestamps self.log.info("Should throw on invalid or missing timestamp values") assert_raises_rpc_error(-3, 'Missing required timestamp field for key', self.nodes[1].importmulti, [{"scriptPubKey": key.p2pkh_script}]) assert_raises_rpc_error(-3, 'Expected number or "now" timestamp value for key. got type string', self.nodes[1].importmulti, [{ "scriptPubKey": key.p2pkh_script, "timestamp": "" }]) # Import P2WPKH address as watch only self.log.info("Should import a P2WPKH address as watch only") key = get_key(self.nodes[0]) self.test_importmulti({"scriptPubKey": {"address": key.p2wpkh_addr}, "timestamp": "now"}, success=True) test_address(self.nodes[1], key.p2wpkh_addr, iswatchonly=True, solvable=False) # Import P2WPKH address with public key but no private key self.log.info("Should import a P2WPKH address and public key as solvable but not spendable") key = get_key(self.nodes[0]) self.test_importmulti({"scriptPubKey": {"address": key.p2wpkh_addr}, "timestamp": "now", "pubkeys": [key.pubkey]}, success=True, warnings=["Some private keys are missing, outputs will be considered watchonly. If this is intentional, specify the watchonly flag."]) test_address(self.nodes[1], key.p2wpkh_addr, ismine=False, solvable=True) # Import P2WPKH address with key and check it is spendable self.log.info("Should import a P2WPKH address with key") key = get_key(self.nodes[0]) self.test_importmulti({"scriptPubKey": {"address": key.p2wpkh_addr}, "timestamp": "now", "keys": [key.privkey]}, success=True) test_address(self.nodes[1], key.p2wpkh_addr, iswatchonly=False, ismine=True) # P2WSH multisig address without scripts or keys multisig = get_multisig(self.nodes[0]) self.log.info("Should import a p2wsh multisig as watch only without respective redeem script and private keys") self.test_importmulti({"scriptPubKey": {"address": multisig.p2wsh_addr}, "timestamp": "now"}, success=True) test_address(self.nodes[1], multisig.p2sh_addr, solvable=False) # Same P2WSH multisig address as above, but now with witnessscript + private keys self.log.info("Should import a p2wsh with respective witness script and private keys") self.test_importmulti({"scriptPubKey": {"address": multisig.p2wsh_addr}, "timestamp": "now", "witnessscript": multisig.redeem_script, "keys": multisig.privkeys}, success=True) test_address(self.nodes[1], multisig.p2sh_addr, solvable=True, ismine=True, sigsrequired=2) # P2SH-P2WPKH address with no redeemscript or public or private key key = get_key(self.nodes[0]) self.log.info("Should import a p2sh-p2wpkh without redeem script or keys") self.test_importmulti({"scriptPubKey": {"address": key.p2sh_p2wpkh_addr}, "timestamp": "now"}, success=True) test_address(self.nodes[1], key.p2sh_p2wpkh_addr, solvable=False, ismine=False) # P2SH-P2WPKH address + redeemscript + public key with no private key self.log.info("Should import a p2sh-p2wpkh with respective redeem script and pubkey as solvable") self.test_importmulti({"scriptPubKey": {"address": key.p2sh_p2wpkh_addr}, "timestamp": "now", "redeemscript": key.p2sh_p2wpkh_redeem_script, "pubkeys": [key.pubkey]}, success=True, warnings=["Some private keys are missing, outputs will be considered watchonly. If this is intentional, specify the watchonly flag."]) test_address(self.nodes[1], key.p2sh_p2wpkh_addr, solvable=True, ismine=False) # P2SH-P2WPKH address + redeemscript + private key key = get_key(self.nodes[0]) self.log.info("Should import a p2sh-p2wpkh with respective redeem script and private keys") self.test_importmulti({"scriptPubKey": {"address": key.p2sh_p2wpkh_addr}, "timestamp": "now", "redeemscript": key.p2sh_p2wpkh_redeem_script, "keys": [key.privkey]}, success=True) test_address(self.nodes[1], key.p2sh_p2wpkh_addr, solvable=True, ismine=True) # P2SH-P2WSH multisig + redeemscript with no private key multisig = get_multisig(self.nodes[0]) self.log.info("Should import a p2sh-p2wsh with respective redeem script but no private key") self.test_importmulti({"scriptPubKey": {"address": multisig.p2sh_p2wsh_addr}, "timestamp": "now", "redeemscript": multisig.p2wsh_script, "witnessscript": multisig.redeem_script}, success=True, warnings=["Some private keys are missing, outputs will be considered watchonly. If this is intentional, specify the watchonly flag."]) test_address(self.nodes[1], multisig.p2sh_p2wsh_addr, solvable=True, ismine=False) # Test importing of a P2SH-P2WPKH address via descriptor + private key key = get_key(self.nodes[0]) self.log.info("Should not import a p2sh-p2wpkh address from descriptor without checksum and private key") self.test_importmulti({"desc": "sh(wpkh(" + key.pubkey + "))", "timestamp": "now", "label": "Descriptor import test", "keys": [key.privkey]}, success=False, error_code=-5, error_message="Descriptor is invalid") # Test importing of a P2SH-P2WPKH address via descriptor + private key key = get_key(self.nodes[0]) self.log.info("Should import a p2sh-p2wpkh address from descriptor and private key") self.test_importmulti({"desc": descsum_create("sh(wpkh(" + key.pubkey + "))"), "timestamp": "now", "label": "Descriptor import test", "keys": [key.privkey]}, success=True) test_address(self.nodes[1], key.p2sh_p2wpkh_addr, solvable=True, ismine=True, label="Descriptor import test") # Test ranged descriptor fails if range is not specified xpriv = "tprv8ZgxMBicQKsPeuVhWwi6wuMQGfPKi9Li5GtX35jVNknACgqe3CY4g5xgkfDDJcmtF7o1QnxWDRYw4H5P26PXq7sbcUkEqeR4fg3Kxp2tigg" addresses = ["2N7yv4p8G8yEaPddJxY41kPihnWvs39qCMf", "2MsHxyb2JS3pAySeNUsJ7mNnurtpeenDzLA"] # hdkeypath=m/0'/0'/0' and 1' desc = "sh(wpkh(" + xpriv + "/0'/0'/*'" + "))" self.log.info("Ranged descriptor import should fail without a specified range") self.test_importmulti({"desc": descsum_create(desc), "timestamp": "now"}, success=False, error_code=-8, error_message='Descriptor is ranged, please specify the range') # Test importing of a ranged descriptor without keys self.log.info("Should import the ranged descriptor with specified range as solvable") self.test_importmulti({"desc": descsum_create(desc), "timestamp": "now", "range": 1}, success=True, warnings=["Some private keys are missing, outputs will be considered watchonly. If this is intentional, specify the watchonly flag."]) for address in addresses: test_address(self.nodes[1], key.p2sh_p2wpkh_addr, solvable=True) # Test importing of a P2PKH address via descriptor key = get_key(self.nodes[0]) self.log.info("Should import a p2pkh address from descriptor") self.test_importmulti({"desc": descsum_create("pkh(" + key.pubkey + ")"), "timestamp": "now", "label": "Descriptor import test"}, True, warnings=["Some private keys are missing, outputs will be considered watchonly. If this is intentional, specify the watchonly flag."]) test_address(self.nodes[1], key.p2pkh_addr, solvable=True, ismine=False, label="Descriptor import test") # Test import fails if both desc and scriptPubKey are provided key = get_key(self.nodes[0]) self.log.info("Import should fail if both scriptPubKey and desc are provided") self.test_importmulti({"desc": descsum_create("pkh(" + key.pubkey + ")"), "scriptPubKey": {"address": key.p2pkh_addr}, "timestamp": "now"}, success=False, error_code=-8, error_message='Both a descriptor and a scriptPubKey should not be provided.') # Test import fails if neither desc nor scriptPubKey are present key = get_key(self.nodes[0]) self.log.info("Import should fail if neither a descriptor nor a scriptPubKey are provided") self.test_importmulti({"timestamp": "now"}, success=False, error_code=-8, error_message='Either a descriptor or scriptPubKey must be provided.') # Test importing of a multisig via descriptor key1 = get_key(self.nodes[0]) key2 = get_key(self.nodes[0]) self.log.info("Should import a 1-of-2 bare multisig from descriptor") self.test_importmulti({"desc": descsum_create("multi(1," + key1.pubkey + "," + key2.pubkey + ")"), "timestamp": "now"}, success=True, warnings=["Some private keys are missing, outputs will be considered watchonly. If this is intentional, specify the watchonly flag."]) self.log.info("Should not treat individual keys from the imported bare multisig as watchonly") test_address(self.nodes[1], key1.p2pkh_addr, ismine=False, iswatchonly=False) # Import pubkeys with key origin info self.log.info("Addresses should have hd keypath and master key id after import with key origin") pub_addr = self.nodes[1].getnewaddress() pub_addr = self.nodes[1].getnewaddress() info = self.nodes[1].getaddressinfo(pub_addr) pub = info['pubkey'] pub_keypath = info['hdkeypath'] pub_fpr = info['hdmasterfingerprint'] result = self.nodes[0].importmulti( [{ 'desc' : descsum_create("wpkh([" + pub_fpr + pub_keypath[1:] +"]" + pub + ")"), "timestamp": "now", }] ) assert result[0]['success'] pub_import_info = self.nodes[0].getaddressinfo(pub_addr) assert_equal(pub_import_info['hdmasterfingerprint'], pub_fpr) assert_equal(pub_import_info['pubkey'], pub) assert_equal(pub_import_info['hdkeypath'], pub_keypath) # Import privkeys with key origin info priv_addr = self.nodes[1].getnewaddress() info = self.nodes[1].getaddressinfo(priv_addr) priv = self.nodes[1].dumpprivkey(priv_addr) priv_keypath = info['hdkeypath'] priv_fpr = info['hdmasterfingerprint'] result = self.nodes[0].importmulti( [{ 'desc' : descsum_create("wpkh([" + priv_fpr + priv_keypath[1:] + "]" + priv + ")"), "timestamp": "now", }] ) assert result[0]['success'] priv_import_info = self.nodes[0].getaddressinfo(priv_addr) assert_equal(priv_import_info['hdmasterfingerprint'], priv_fpr) assert_equal(priv_import_info['hdkeypath'], priv_keypath) # Make sure the key origin info are still there after a restart self.stop_nodes() self.start_nodes() import_info = self.nodes[0].getaddressinfo(pub_addr) assert_equal(import_info['hdmasterfingerprint'], pub_fpr) assert_equal(import_info['hdkeypath'], pub_keypath) import_info = self.nodes[0].getaddressinfo(priv_addr) assert_equal(import_info['hdmasterfingerprint'], priv_fpr) assert_equal(import_info['hdkeypath'], priv_keypath) # Check legacy import does not import key origin info self.log.info("Legacy imports don't have key origin info") pub_addr = self.nodes[1].getnewaddress() info = self.nodes[1].getaddressinfo(pub_addr) pub = info['pubkey'] result = self.nodes[0].importmulti( [{ 'scriptPubKey': {'address': pub_addr}, 'pubkeys': [pub], "timestamp": "now", }] ) assert result[0]['success'] pub_import_info = self.nodes[0].getaddressinfo(pub_addr) assert_equal(pub_import_info['pubkey'], pub) assert 'hdmasterfingerprint' not in pub_import_info assert 'hdkeypath' not in pub_import_info # Import some public keys to the keypool of a no privkey wallet self.log.info("Adding pubkey to keypool of disableprivkey wallet") self.nodes[1].createwallet(wallet_name="noprivkeys", disable_private_keys=True) wrpc = self.nodes[1].get_wallet_rpc("noprivkeys") addr1 = self.nodes[0].getnewaddress() addr2 = self.nodes[0].getnewaddress() pub1 = self.nodes[0].getaddressinfo(addr1)['pubkey'] pub2 = self.nodes[0].getaddressinfo(addr2)['pubkey'] result = wrpc.importmulti( [{ 'desc': descsum_create('wpkh(' + pub1 + ')'), 'keypool': True, "timestamp": "now", }, { 'desc': descsum_create('wpkh(' + pub2 + ')'), 'keypool': True, "timestamp": "now", }] ) assert result[0]['success'] assert result[1]['success'] assert_equal(wrpc.getwalletinfo()["keypoolsize"], 2) newaddr1 = wrpc.getnewaddress() assert_equal(addr1, newaddr1) newaddr2 = wrpc.getnewaddress() assert_equal(addr2, newaddr2) # Import some public keys to the internal keypool of a no privkey wallet self.log.info("Adding pubkey to internal keypool of disableprivkey wallet") addr1 = self.nodes[0].getnewaddress() addr2 = self.nodes[0].getnewaddress() pub1 = self.nodes[0].getaddressinfo(addr1)['pubkey'] pub2 = self.nodes[0].getaddressinfo(addr2)['pubkey'] result = wrpc.importmulti( [{ 'desc': descsum_create('wpkh(' + pub1 + ')'), 'keypool': True, 'internal': True, "timestamp": "now", }, { 'desc': descsum_create('wpkh(' + pub2 + ')'), 'keypool': True, 'internal': True, "timestamp": "now", }] ) assert result[0]['success'] assert result[1]['success'] assert_equal(wrpc.getwalletinfo()["keypoolsize_hd_internal"], 2) newaddr1 = wrpc.getrawchangeaddress() assert_equal(addr1, newaddr1) newaddr2 = wrpc.getrawchangeaddress() assert_equal(addr2, newaddr2) # Import a multisig and make sure the keys don't go into the keypool self.log.info('Imported scripts with pubkeys should not have their pubkeys go into the keypool') addr1 = self.nodes[0].getnewaddress() addr2 = self.nodes[0].getnewaddress() pub1 = self.nodes[0].getaddressinfo(addr1)['pubkey'] pub2 = self.nodes[0].getaddressinfo(addr2)['pubkey'] result = wrpc.importmulti( [{ 'desc': descsum_create('wsh(multi(2,' + pub1 + ',' + pub2 + '))'), 'keypool': True, "timestamp": "now", }] ) assert result[0]['success'] assert_equal(wrpc.getwalletinfo()["keypoolsize"], 0) # Cannot import those pubkeys to keypool of wallet with privkeys self.log.info("Pubkeys cannot be added to the keypool of a wallet with private keys") wrpc = self.nodes[1].get_wallet_rpc("") assert wrpc.getwalletinfo()['private_keys_enabled'] result = wrpc.importmulti( [{ 'desc': descsum_create('wpkh(' + pub1 + ')'), 'keypool': True, "timestamp": "now", }] ) assert_equal(result[0]['error']['code'], -8) assert_equal(result[0]['error']['message'], "Keys can only be imported to the keypool when private keys are disabled") # Make sure ranged imports import keys in order self.log.info('Key ranges should be imported in order') wrpc = self.nodes[1].get_wallet_rpc("noprivkeys") assert_equal(wrpc.getwalletinfo()["keypoolsize"], 0) assert_equal(wrpc.getwalletinfo()["private_keys_enabled"], False) xpub = "tpubDAXcJ7s7ZwicqjprRaEWdPoHKrCS215qxGYxpusRLLmJuT69ZSicuGdSfyvyKpvUNYBW1s2U3NSrT6vrCYB9e6nZUEvrqnwXPF8ArTCRXMY" addresses = [ 'ncrt1qtmp74ayg7p24uslctssvjm06q5phz4yrvy646e', # m/0'/0'/0 'ncrt1q8vprchan07gzagd5e6v9wd7azyucksq2vqu8lj', # m/0'/0'/1 'ncrt1qtuqdtha7zmqgcrr26n2rqxztv5y8rafjtaapkf', # m/0'/0'/2 'ncrt1qau64272ymawq26t90md6an0ps99qkrse7le8u6', # m/0'/0'/3 'ncrt1qsg97266hrh6cpmutqen8s4s962aryy77ced5p6', # m/0'/0'/4 ] result = wrpc.importmulti( [{ 'desc': descsum_create('wpkh([80002067/0h/0h]' + xpub + '/*)'), 'keypool': True, 'timestamp': 'now', 'range' : [0, 4], }] ) for i in range(0, 5): addr = wrpc.getnewaddress('', 'bech32') assert_equal(addr, addresses[i])
def run_test(self): self.log.info( "check if we can access a blockfilter when pruning is enabled but no blocks are actually pruned" ) self.wait_until(lambda: self.nodes[1].getindexinfo() == { 'basic block filter index': { 'synced': True, 'best_block_height': 200 } }) assert len(self.nodes[1].getblockfilter( self.nodes[1].getbestblockhash())['filter']) > 0 # Mine two batches of blocks to avoid hitting NODE_NETWORK_LIMITED_MIN_BLOCKS disconnection self.nodes[1].generate(250) self.sync_all() self.nodes[1].generate(250) self.sync_all() self.wait_until(lambda: self.nodes[1].getindexinfo() == { 'basic block filter index': { 'synced': True, 'best_block_height': 700 } }) self.log.info("prune some blocks") pruneheight = self.nodes[1].pruneblockchain(400) assert_equal(pruneheight, 250) self.log.info( "check if we can access the tips blockfilter when we have pruned some blocks" ) assert len(self.nodes[1].getblockfilter( self.nodes[1].getbestblockhash())['filter']) > 0 self.log.info( "check if we can access the blockfilter of a pruned block") assert len(self.nodes[1].getblockfilter( self.nodes[1].getblockhash(2))['filter']) > 0 self.log.info("start node without blockfilterindex") self.stop_node(1) self.start_node(1, extra_args=self.extra_args[0]) self.log.info("make sure accessing the blockfilters throws an error") assert_raises_rpc_error(-1, "Index is not enabled for filtertype basic", self.nodes[1].getblockfilter, self.nodes[1].getblockhash(2)) self.nodes[1].generate(1000) self.log.info( "prune below the blockfilterindexes best block while blockfilters are disabled" ) pruneheight_new = self.nodes[1].pruneblockchain(1000) assert_greater_than(pruneheight_new, pruneheight) self.stop_node(1) self.log.info( "make sure we get an init error when starting the node again with block filters" ) with self.nodes[1].assert_debug_log([ "basic block filter index best block of the index goes beyond pruned data. Please disable the index or reindex (which will download the whole blockchain again)" ]): self.nodes[1].assert_start_raises_init_error( extra_args=self.extra_args[1]) self.log.info("make sure the node starts again with the -reindex arg") reindex_args = self.extra_args[1] reindex_args.append("-reindex") self.start_node(1, extra_args=reindex_args)