Пример #1
0
    def test_big_bitmap(self, xt_node, test_node, num_utxos):
        assert (num_utxos % 8 == 0)
        bitmap_bytes = int(num_utxos / 8)
        num_spent = int(num_utxos / 2)

        self.log.info(
            "bip64: creating a getutxos request for %d outpoints (%d bitmap bytes)",
            num_utxos, bitmap_bytes)

        create_confirmed_utxos(xt_node.getnetworkinfo()["relayfee"], xt_node,
                               num_spent)

        spent = []
        unspent = []
        unspent_values = []

        # spend utxos
        for _ in range(0, num_spent):
            amount = round(random.random() + 0.01, 2)
            txid = xt_node.sendtoaddress(xt_node.getnewaddress(), amount)
            tx = FromHex(CTransaction(), xt_node.getrawtransaction(txid))
            spent.append(tx.vin[0].prevout)

        # find equal amount of unspent
        utxos = create_confirmed_utxos(xt_node.getnetworkinfo()["relayfee"],
                                       xt_node, num_spent)

        assert (len(utxos) >= num_spent)
        for _ in range(0, num_spent):
            u = utxos.pop()
            unspent.append(COutPoint(int(u["txid"], 16), u["vout"]))
            unspent_values.append(u["amount"] * COIN)

        assert (len(spent) + len(unspent) == num_utxos)

        while (xt_node.getmempoolinfo()['size'] > 0):
            xt_node.generate(1)

        outpoints = []
        for b in range(0, bitmap_bytes):
            o = b * 4  # offset: 4 utxos per byte from each of spent, unspent
            outpoints.extend([
                unspent[o], unspent[o + 1], unspent[o + 2], unspent[o + 3],
                spent[o], spent[o + 1], spent[o + 2], spent[o + 3]
            ])

        self.get_utxos(outpoints, False)

        assert_equal(len(test_node.utxos.bitmap), bitmap_bytes)
        assert_equal(len(test_node.utxos.result), len(unspent))
        # check that returned results are in the same order as requested
        for i in range(0, len(unspent_values)):
            assert_equal(unspent_values[i],
                         test_node.utxos.result[i].out.nValue)
        for b in range(0, bitmap_bytes):
            assert_equal(test_node.utxos.bitmap[b], int('00001111', 2))
Пример #2
0
    def run_test(self):
        txouts = gen_return_txouts()
        relayfee = self.nodes[0].getnetworkinfo()['relayfee']

        self.log.info('Check that mempoolminfee is minrelytxfee')
        assert_equal(self.nodes[0].getmempoolinfo()['minrelaytxfee'],
                     Decimal('0.00001000'))
        assert_equal(self.nodes[0].getmempoolinfo()['mempoolminfee'],
                     Decimal('0.00001000'))

        txids = []
        utxos = create_confirmed_utxos(relayfee, self.nodes[0], 91)

        self.log.info('Create a mempool tx that will be evicted')
        us0 = utxos.pop()
        inputs = [{"txid": us0["txid"], "vout": us0["vout"]}]
        outputs = {
            self.nodes[0].getnewaddress(): 0.0001,
            "fee": us0["amount"] - Decimal('0.0001')
        }
        tx = self.nodes[0].createrawtransaction(inputs, outputs)
        self.nodes[0].settxfee(
            relayfee)  # specifically fund this tx with low fee
        txF = self.nodes[0].fundrawtransaction(tx)
        self.nodes[0].settxfee(0)  # return to automatic fee selection
        txFS = self.nodes[0].signrawtransactionwithwallet(txF['hex'])
        txid = self.nodes[0].sendrawtransaction(txFS['hex'])

        relayfee = self.nodes[0].getnetworkinfo()['relayfee']
        base_fee = relayfee * 100
        for i in range(3):
            txids.append([])
            txids[i] = create_lots_of_big_transactions(
                self.nodes[0], txouts, utxos[30 * i:30 * i + 30], 30,
                (i + 1) * base_fee)

        self.log.info('The tx should be evicted by now')
        assert txid not in self.nodes[0].getrawmempool()
        txdata = self.nodes[0].gettransaction(txid)
        assert txdata['confirmations'] == 0  #confirmation should still be 0

        self.log.info('Check that mempoolminfee is larger than minrelytxfee')
        assert_equal(self.nodes[0].getmempoolinfo()['minrelaytxfee'],
                     Decimal('0.00001000'))
        assert_greater_than(self.nodes[0].getmempoolinfo()['mempoolminfee'],
                            Decimal('0.00001000'))

        self.log.info('Create a mempool tx that will not pass mempoolminfee')
        us0 = utxos.pop()
        inputs = [{"txid": us0["txid"], "vout": us0["vout"]}]
        outputs = {
            self.nodes[0].getnewaddress(): 0.0001,
            "fee": us0["amount"] - Decimal('0.0001')
        }
        tx = self.nodes[0].createrawtransaction(inputs, outputs)
        # specifically fund this tx with a fee < mempoolminfee, >= than minrelaytxfee
        txF = self.nodes[0].fundrawtransaction(tx, {'feeRate': relayfee})
        txFS = self.nodes[0].signrawtransactionwithwallet(txF['hex'])
        assert_raises_rpc_error(-26, "mempool min fee not met",
                                self.nodes[0].sendrawtransaction, txFS['hex'])
Пример #3
0
    def _send_transactions_to_node(self, node, num_trasactions):
        # Create UTXOs to build a bunch of transactions from
        self.relayfee = node.getnetworkinfo()['relayfee']
        utxos = create_confirmed_utxos(self.relayfee, node, 100)
        self.sync_all()

        # Create a lot of transactions from the UTXOs
        newutxos = split_utxos(self.relayfee, node, num_trasactions, utxos)
        fill_mempool(self.relayfee, node, newutxos)
    def test_broadcast(self):
        self.log.info(
            "Test that mempool reattempts delivery of locally submitted transaction"
        )
        node = self.nodes[0]

        min_relay_fee = node.getnetworkinfo()["relayfee"]
        utxos = create_confirmed_utxos(min_relay_fee, node, 10)

        disconnect_nodes(node, 1)

        self.log.info("Generate transactions that only node 0 knows about")

        # generate a wallet txn
        addr = node.getnewaddress()
        wallet_tx_hsh = node.sendtoaddress(addr, 0.0001)

        # generate a txn using sendrawtransaction
        us0 = utxos.pop()
        inputs = [{"txid": us0["txid"], "vout": us0["vout"]}]
        outputs = {addr: 0.0001}
        tx = node.createrawtransaction(inputs, outputs)
        node.settxfee(min_relay_fee)
        txF = node.fundrawtransaction(tx)
        txFS = node.signrawtransactionwithwallet(txF["hex"])
        rpc_tx_hsh = node.sendrawtransaction(txFS["hex"])

        # check that second node doesn't have these two txns
        mempool = self.nodes[1].getrawmempool()
        assert rpc_tx_hsh not in mempool
        assert wallet_tx_hsh not in mempool

        # ensure that unbroadcast txs are persisted to mempool.dat
        self.restart_node(0)

        self.log.info("Reconnect nodes & check if they are sent to node 1")
        connect_nodes(node, 1)

        # fast forward into the future & ensure that the second node has the txns
        node.mockscheduler(15 * 60)  # 15 min in seconds
        self.sync_mempools(timeout=30)
        mempool = self.nodes[1].getrawmempool()
        assert rpc_tx_hsh in mempool
        assert wallet_tx_hsh in mempool

        self.log.info(
            "Add another connection & ensure transactions aren't broadcast again"
        )

        conn = node.add_p2p_connection(P2PTxInvStore())
        node.mockscheduler(15 * 60)
        time.sleep(5)
        assert_equal(len(conn.get_invs()), 0)
Пример #5
0
    def run_test(self):
        relayfee = self.nodes[0].getnetworkinfo()['relayfee']
        utxos = create_confirmed_utxos(relayfee, self.nodes[0], 40)
        total_number_of_transactions = 30

        # create a mempool transaction that will be evicted (smaller fee rate)
        # size: 5000211B, fee: 2000000 satoshi (0.02 BSV) --> fee rate: 0.399 sat/byte which is 0.00000399 BSV/kB
        small_fee = decimal.Decimal('0.02')
        small_data_size = 5000000
        firstTxId = send_tx_with_data(self.nodes[0], utxos.pop(), small_fee,
                                      small_data_size)

        assert (firstTxId in self.nodes[0].getrawmempool())
        self.log.info("First transaction %s successfully accepted to mempool.",
                      firstTxId)

        # transactions with higher fee rate
        # size: 10000211B, fee: 10000000 satoshi (0.1 BSV) --> fee rate: 0.999 sat/byte which is 0.00000999 BSV/kB
        big_fee = decimal.Decimal('0.1')
        big_data_size = 10000000
        for i in range(total_number_of_transactions - 1):
            send_tx_with_data(self.nodes[0], utxos.pop(), big_fee,
                              big_data_size)

        assert_equal(len(self.nodes[0].getrawmempool()),
                     total_number_of_transactions)
        self.log.info("%d big transactions successfully arrived to mempool.",
                      total_number_of_transactions - 1)

        # At this point, mempool size is something more than 295 000 000 bytes.
        # If we send another transaction with size more than 5 MB and the highest fee rate, it should be replaced with the first one.

        # transaction with the highest fee rate, the same size as the first one
        # size: 5000211B, fee: 10000000 satoshi (0.1 BSV) --> fee rate: 1.999 sat/byte which is 0.00001999 BSV/kB
        lastTxId = send_tx_with_data(self.nodes[0], utxos.pop(), big_fee,
                                     small_data_size)

        # by now, the first transaction should be evicted, check confirmation state
        assert (firstTxId not in self.nodes[0].getrawmempool())
        # last transaction should be in mempool because it has the highest fee
        assert (lastTxId in self.nodes[0].getrawmempool())

        self.log.info(
            "First transaction %s evicted from mempool. Last sent transaction %s successfully accepted to mempool.",
            firstTxId, lastTxId)
        assert_equal(len(self.nodes[0].getrawmempool()),
                     total_number_of_transactions)

        txdata = self.nodes[0].gettransaction(firstTxId)
        assert (txdata['confirmations'] == 0)  # confirmation should still be 0
Пример #6
0
    def run_test(self):
        txouts = gen_return_txouts()
        relayfee = self.nodes[0].getnetworkinfo()['relayfee']

        txids = []
        utxos = create_confirmed_utxos(relayfee, self.nodes[0],
                                       self.thirtyTransactions * 30)

        # create a mempool tx that will be evicted
        us0 = utxos.pop()
        inputs = [{"txid": us0["txid"], "vout": us0["vout"]}]
        outputs = {self.nodes[0].getnewaddress(): 0.1}
        tx = self.nodes[0].createrawtransaction(inputs, outputs)

        # Any fee calc method should work as longs as base_fee is set proportionally...

        # 1
        tx_f = self.nodes[0].fundrawtransaction(tx)
        base_fee = satoshi_round(
            0.01025 * 100
        )  # DEFAULT_FALLBACK_FEE (settxfee(0) is default and falls through to this)

        # 2
        # self.nodes[0].settxfee(relayfee)  # specifically fund this tx with low fee (this is too low and will be bumped to MINFEE)
        # tx_f = self.nodes[0].fundrawtransaction(tx)
        # base_fee = satoshi_round(0.0005*100)  # DEFAULT_TRANSACTION_MINFEE
        # self.nodes[0].settxfee(0) # return to automatic fee selection

        # 3
        # tx_f = self.nodes[0].fundrawtransaction(tx, {"feeRate": relayfee})
        # relayfee = self.nodes[0].getnetworkinfo()['relayfee']
        # base_fee = relayfee*100

        tx_fs = self.nodes[0].signrawtransaction(tx_f['hex'])
        txid = self.nodes[0].sendrawtransaction(tx_fs['hex'])

        for i in range(self.thirtyTransactions):
            txids.append([])
            txids[i] = create_lots_of_big_transactions(
                self.nodes[0], txouts, utxos[30 * i:30 * i + 30], 30,
                (i + 1) * base_fee)

        # by now, the tx should be evicted, check confirmation state
        assert (txid not in self.nodes[0].getrawmempool())
        txdata = self.nodes[0].gettransaction(txid)
        assert (txdata['confirmations'] == 0)  # confirmation should still be 0
    def run_test(self):
        txouts = gen_return_txouts()
        relayfee = self.nodes[0].getnetworkinfo()['relayfee']

        self.log.info('Check that mempoolminfee is minrelytxfee')
        assert_equal(self.nodes[0].getmempoolinfo()['minrelaytxfee'], Decimal('0.00001000'))
        assert_equal(self.nodes[0].getmempoolinfo()['mempoolminfee'], Decimal('0.00001000'))

        txids = []
        utxos = create_confirmed_utxos(relayfee, self.nodes[0], 91)

        self.log.info('Create a mempool tx that will be evicted')
        us0 = utxos.pop()
        inputs = [{ "txid" : us0["txid"], "vout" : us0["vout"]}]
        outputs = {self.nodes[0].getnewaddress() : 0.0001}
        tx = self.nodes[0].createrawtransaction(inputs, outputs)
        self.nodes[0].settxfee(relayfee) # specifically fund this tx with low fee
        txF = self.nodes[0].fundrawtransaction(tx)
        self.nodes[0].settxfee(0) # return to automatic fee selection
        txFS = self.nodes[0].signrawtransactionwithwallet(txF['hex'])
        txid = self.nodes[0].sendrawtransaction(txFS['hex'])

        relayfee = self.nodes[0].getnetworkinfo()['relayfee']
        base_fee = relayfee*100
        for i in range (3):
            txids.append([])
            txids[i] = create_lots_of_big_transactions(self.nodes[0], txouts, utxos[30*i:30*i+30], 30, (i+1)*base_fee)

        self.log.info('The tx should be evicted by now')
        assert(txid not in self.nodes[0].getrawmempool())
        txdata = self.nodes[0].gettransaction(txid)
        assert(txdata['confirmations'] ==  0) #confirmation should still be 0

        self.log.info('Check that mempoolminfee is larger than minrelytxfee')
        assert_equal(self.nodes[0].getmempoolinfo()['minrelaytxfee'], Decimal('0.00001000'))
        assert_greater_than(self.nodes[0].getmempoolinfo()['mempoolminfee'], Decimal('0.00001000'))

        self.log.info('Create a mempool tx that will not pass mempoolminfee')
        us0 = utxos.pop()
        inputs = [{ "txid" : us0["txid"], "vout" : us0["vout"]}]
        outputs = {self.nodes[0].getnewaddress() : 0.0001}
        tx = self.nodes[0].createrawtransaction(inputs, outputs)
        # specifically fund this tx with a fee < mempoolminfee, >= than minrelaytxfee
        txF = self.nodes[0].fundrawtransaction(tx, {'feeRate': relayfee})
        txFS = self.nodes[0].signrawtransactionwithwallet(txF['hex'])
        assert_raises_rpc_error(-26, "mempool min fee not met", self.nodes[0].sendrawtransaction, txFS['hex'])
Пример #8
0
    def test_broadcast(self):
        self.log.info(
            "Test that mempool reattempts delivery of locally submitted transaction"
        )
        node = self.nodes[0]

        min_relay_fee = node.getnetworkinfo()["relayfee"]
        utxos = create_confirmed_utxos(min_relay_fee, node, 10)

        self.disconnect_nodes(0, 1)

        self.log.info("Generate transactions that only node 0 knows about")

        # generate a wallet txn
        addr = node.getnewaddress()
        wallet_tx_hsh = node.sendtoaddress(addr, 0.0001)

        # generate a txn using sendrawtransaction
        us0 = utxos.pop()
        inputs = [{"txid": us0["txid"], "vout": us0["vout"]}]
        outputs = {addr: 0.0001}
        tx = node.createrawtransaction(inputs, outputs)
        node.settxfee(min_relay_fee)
        txF = node.fundrawtransaction(tx)
        txFS = node.signrawtransactionwithwallet(txF["hex"])
        rpc_tx_hsh = node.sendrawtransaction(txFS["hex"])

        # check transactions are in unbroadcast using rpc
        mempoolinfo = self.nodes[0].getmempoolinfo()
        assert_equal(mempoolinfo['unbroadcastcount'], 2)
        mempool = self.nodes[0].getrawmempool(True)
        for tx in mempool:
            assert_equal(mempool[tx]['unbroadcast'], True)

        # check that second node doesn't have these two txns
        mempool = self.nodes[1].getrawmempool()
        assert rpc_tx_hsh not in mempool
        assert wallet_tx_hsh not in mempool

        # ensure that unbroadcast txs are persisted to mempool.dat
        self.restart_node(0)

        self.log.info("Reconnect nodes & check if they are sent to node 1")
        self.connect_nodes(0, 1)

        # fast forward into the future & ensure that the second node has the txns
        node.mockscheduler(MAX_INITIAL_BROADCAST_DELAY)
        self.sync_mempools(timeout=30)
        mempool = self.nodes[1].getrawmempool()
        assert rpc_tx_hsh in mempool
        assert wallet_tx_hsh in mempool

        # check that transactions are no longer in first node's unbroadcast set
        mempool = self.nodes[0].getrawmempool(True)
        for tx in mempool:
            assert_equal(mempool[tx]['unbroadcast'], False)

        self.log.info(
            "Add another connection & ensure transactions aren't broadcast again"
        )

        conn = node.add_p2p_connection(P2PTxInvStore())
        node.mockscheduler(MAX_INITIAL_BROADCAST_DELAY)
        time.sleep(2)  # allow sufficient time for possibility of broadcast
        assert_equal(len(conn.get_invs()), 0)

        self.disconnect_nodes(0, 1)
        node.disconnect_p2ps()
Пример #9
0
    def run_test(self):
        # Track test coverage statistics
        self.restart_counts = [0, 0, 0]  # Track the restarts for nodes 0-2
        self.crashed_on_restart = 0  # Track count of crashes during recovery

        # Start by creating a lot of utxos on node3
        initial_height = self.nodes[3].getblockcount()
        utxo_list = create_confirmed_utxos(
            self.nodes[3].getnetworkinfo()['relayfee'], self.nodes[3], 5000)
        self.log.info("Prepped %d utxo entries", len(utxo_list))

        # Sync these blocks with the other nodes
        block_hashes_to_sync = []
        for height in range(initial_height + 1,
                            self.nodes[3].getblockcount() + 1):
            block_hashes_to_sync.append(self.nodes[3].getblockhash(height))

        self.log.debug("Syncing %d blocks with other nodes",
                       len(block_hashes_to_sync))
        # Syncing the blocks could cause nodes to crash, so the test begins here.
        self.sync_node3blocks(block_hashes_to_sync)

        starting_tip_height = self.nodes[3].getblockcount()

        # Main test loop:
        # each time through the loop, generate a bunch of transactions,
        # and then either mine a single new block on the tip, or some-sized reorg.
        for i in range(40):
            self.log.info("Iteration %d, generating 2500 transactions %s", i,
                          self.restart_counts)
            # Generate a bunch of small-ish transactions
            self.generate_small_transactions(self.nodes[3], 2500, utxo_list)
            # Pick a random block between current tip, and starting tip
            current_height = self.nodes[3].getblockcount()
            random_height = random.randint(starting_tip_height, current_height)
            self.log.debug("At height %d, considering height %d",
                           current_height, random_height)
            if random_height > starting_tip_height:
                # Randomly reorg from this point with some probability (1/4 for
                # tip, 1/5 for tip-1, ...)
                if random.random() < 1.0 / (current_height + 4 -
                                            random_height):
                    self.log.debug("Invalidating block at height %d",
                                   random_height)
                    self.nodes[3].invalidateblock(
                        self.nodes[3].getblockhash(random_height))

            # Now generate new blocks until we pass the old tip height
            self.log.debug("Mining longer tip")
            block_hashes = []
            while current_height + 1 > self.nodes[3].getblockcount():
                block_hashes.extend(self.nodes[3].generate(
                    min(10,
                        current_height + 1 - self.nodes[3].getblockcount())))
            self.log.debug("Syncing %d new blocks...", len(block_hashes))
            self.sync_node3blocks(block_hashes)
            utxo_list = self.nodes[3].listunspent()
            self.log.debug("Node3 utxo count: %d", len(utxo_list))

        # Check that the utxo hashes agree with node3
        # Useful side effect: each utxo cache gets flushed here, so that we
        # won't get crashes on shutdown at the end of the test.
        self.verify_utxo_hash()

        # Check the test coverage
        self.log.info("Restarted nodes: %s; crashes on restart: %d",
                      self.restart_counts, self.crashed_on_restart)

        # If no nodes were restarted, we didn't test anything.
        assert self.restart_counts != [0, 0, 0]

        # Make sure we tested the case of crash-during-recovery.
        assert self.crashed_on_restart > 0

        # Warn if any of the nodes escaped restart.
        for i in range(3):
            if self.restart_counts[i] == 0:
                self.log.warning("Node %d never crashed during utxo flush!", i)
    def run_test(self):
        # Test `prioritisetransaction` required parameters
        assert_raises_rpc_error(-1, "prioritisetransaction",
                                self.nodes[0].prioritisetransaction)
        assert_raises_rpc_error(-1, "prioritisetransaction",
                                self.nodes[0].prioritisetransaction, '')
        assert_raises_rpc_error(-1, "prioritisetransaction",
                                self.nodes[0].prioritisetransaction, '', 0)

        # Test `prioritisetransaction` invalid extra parameters
        assert_raises_rpc_error(-1, "prioritisetransaction",
                                self.nodes[0].prioritisetransaction, '', 0, 0,
                                0)

        # Test `prioritisetransaction` invalid `txid`
        assert_raises_rpc_error(-1,
                                "txid must be hexadecimal string",
                                self.nodes[0].prioritisetransaction,
                                txid='foo',
                                fee_delta=0)

        # Test `prioritisetransaction` invalid `dummy`
        txid = '1d1d4e24ed99057e84c3f80fd8fbec79ed9e1acee37da269356ecea000000000'
        assert_raises_rpc_error(-1, "JSON value is not a number as expected",
                                self.nodes[0].prioritisetransaction, txid,
                                'foo', 0)
        assert_raises_rpc_error(
            -8,
            "Priority is no longer supported, dummy argument to prioritisetransaction must be 0.",
            self.nodes[0].prioritisetransaction, txid, 1, 0)

        # Test `prioritisetransaction` invalid `fee_delta`
        assert_raises_rpc_error(-1,
                                "JSON value is not an integer as expected",
                                self.nodes[0].prioritisetransaction,
                                txid=txid,
                                fee_delta='foo')

        self.txouts = gen_return_txouts()
        self.relayfee = self.nodes[0].getnetworkinfo()['relayfee']

        utxo_count = 90
        utxos = create_confirmed_utxos(self.relayfee, self.nodes[0],
                                       utxo_count)
        base_fee = self.relayfee * 100  # our transactions are smaller than 100kb
        txids = []

        # Create 3 batches of transactions at 3 different fee rate levels
        range_size = utxo_count // 3
        for i in range(3):
            txids.append([])
            start_range = i * range_size
            end_range = start_range + range_size
            txids[i] = create_lots_of_big_transactions(
                self.nodes[0], self.txouts, utxos[start_range:end_range],
                end_range - start_range, (i + 1) * base_fee)

        # Make sure that the size of each group of transactions exceeds
        # MAX_BLOCK_BASE_SIZE -- otherwise the test needs to be revised to create
        # more transactions.
        mempool = self.nodes[0].getrawmempool(True)
        sizes = [0, 0, 0]
        for i in range(3):
            for j in txids[i]:
                assert (j in mempool)
                sizes[i] += mempool[j]['size']
            assert (sizes[i] > MAX_BLOCK_BASE_SIZE)  # Fail => raise utxo_count

        # add a fee delta to something in the cheapest bucket and make sure it gets mined
        # also check that a different entry in the cheapest bucket is NOT mined
        self.nodes[0].prioritisetransaction(txid=txids[0][0],
                                            fee_delta=int(3 * base_fee * COIN))

        self.nodes[0].generate(1)

        mempool = self.nodes[0].getrawmempool()
        self.log.info("Assert that prioritised transaction was mined")
        assert (txids[0][0] not in mempool)
        assert (txids[0][1] in mempool)

        high_fee_tx = None
        for x in txids[2]:
            if x not in mempool:
                high_fee_tx = x

        # Something high-fee should have been mined!
        assert (high_fee_tx != None)

        # Add a prioritisation before a tx is in the mempool (de-prioritising a
        # high-fee transaction so that it's now low fee).
        self.nodes[0].prioritisetransaction(
            txid=high_fee_tx, fee_delta=-int(2 * base_fee * COIN))

        # Add everything back to mempool
        self.nodes[0].invalidateblock(self.nodes[0].getbestblockhash())

        # Check to make sure our high fee rate tx is back in the mempool
        mempool = self.nodes[0].getrawmempool()
        assert (high_fee_tx in mempool)

        # Now verify the modified-high feerate transaction isn't mined before
        # the other high fee transactions. Keep mining until our mempool has
        # decreased by all the high fee size that we calculated above.
        while (self.nodes[0].getmempoolinfo()['bytes'] > sizes[0] + sizes[1]):
            self.nodes[0].generate(1)

        # High fee transaction should not have been mined, but other high fee rate
        # transactions should have been.
        mempool = self.nodes[0].getrawmempool()
        self.log.info(
            "Assert that de-prioritised transaction is still in mempool")
        assert (high_fee_tx in mempool)
        for x in txids[2]:
            if (x != high_fee_tx):
                assert (x not in mempool)

        # Create a free transaction.  Should be rejected.
        utxo_list = self.nodes[0].listunspent()
        assert (len(utxo_list) > 0)
        utxo = utxo_list[0]

        inputs = []
        outputs = {}
        inputs.append({"txid": utxo["txid"], "vout": utxo["vout"]})
        outputs[self.nodes[0].getnewaddress()] = utxo["amount"]
        raw_tx = self.nodes[0].createrawtransaction(inputs, outputs)
        tx_hex = self.nodes[0].signrawtransactionwithwallet(raw_tx)["hex"]
        tx_id = self.nodes[0].decoderawtransaction(tx_hex)["txid"]

        # This will raise an exception due to min relay fee not being met
        assert_raises_rpc_error(-26, "min relay fee not met",
                                self.nodes[0].sendrawtransaction, tx_hex)
        assert (tx_id not in self.nodes[0].getrawmempool())

        # This is a less than 1000-byte transaction, so just set the fee
        # to be the minimum for a 1000-byte transaction and check that it is
        # accepted.
        self.nodes[0].prioritisetransaction(txid=tx_id,
                                            fee_delta=int(self.relayfee *
                                                          COIN))

        self.log.info(
            "Assert that prioritised free transaction is accepted to mempool")
        assert_equal(self.nodes[0].sendrawtransaction(tx_hex), tx_id)
        assert (tx_id in self.nodes[0].getrawmempool())

        # Test that calling prioritisetransaction is sufficient to trigger
        # getblocktemplate to (eventually) return a new block.
        mock_time = int(time.time())
        self.nodes[0].setmocktime(mock_time)
        template = self.nodes[0].getblocktemplate()
        self.nodes[0].prioritisetransaction(
            txid=tx_id, fee_delta=-int(self.relayfee * COIN))
        self.nodes[0].setmocktime(mock_time + 10)
        new_template = self.nodes[0].getblocktemplate()

        assert (template != new_template)
    def run_test(self):
        # Test `prioritisetransaction` required parameters
        assert_raises_rpc_error(-1, "prioritisetransaction", self.nodes[0].prioritisetransaction)
        assert_raises_rpc_error(-1, "prioritisetransaction", self.nodes[0].prioritisetransaction, '')
        assert_raises_rpc_error(-1, "prioritisetransaction", self.nodes[0].prioritisetransaction, '', 0)

        # Test `prioritisetransaction` invalid extra parameters
        assert_raises_rpc_error(-1, "prioritisetransaction", self.nodes[0].prioritisetransaction, '', 0, 0, 0)

        # Test `prioritisetransaction` invalid `txid`
        assert_raises_rpc_error(-1, "txid must be hexadecimal string", self.nodes[0].prioritisetransaction, txid='foo', fee_delta=0)

        # Test `prioritisetransaction` invalid `dummy`
        txid = '1d1d4e24ed99057e84c3f80fd8fbec79ed9e1acee37da269356ecea000000000'
        assert_raises_rpc_error(-1, "JSON value is not a number as expected", self.nodes[0].prioritisetransaction, txid, 'foo', 0)
        assert_raises_rpc_error(-8, "Priority is no longer supported, dummy argument to prioritisetransaction must be 0.", self.nodes[0].prioritisetransaction, txid, 1, 0)

        # Test `prioritisetransaction` invalid `fee_delta`
        assert_raises_rpc_error(-1, "JSON value is not an integer as expected", self.nodes[0].prioritisetransaction, txid=txid, fee_delta='foo')

        self.txouts = gen_return_txouts()
        self.relayfee = self.nodes[0].getnetworkinfo()['relayfee']

        utxo_count = 90
        utxos = create_confirmed_utxos(self.relayfee, self.nodes[0], utxo_count)
        base_fee = self.relayfee*100 # our transactions are smaller than 100kb
        txids = []

        # Create 3 batches of transactions at 3 different fee rate levels
        range_size = utxo_count // 3
        for i in range(3):
            txids.append([])
            start_range = i * range_size
            end_range = start_range + range_size
            txids[i] = create_lots_of_big_transactions(self.nodes[0], self.txouts, utxos[start_range:end_range], end_range - start_range, (i+1)*base_fee)

        # Make sure that the size of each group of transactions exceeds
        # MAX_BLOCK_BASE_SIZE -- otherwise the test needs to be revised to create
        # more transactions.
        mempool = self.nodes[0].getrawmempool(True)
        sizes = [0, 0, 0]
        for i in range(3):
            for j in txids[i]:
                assert(j in mempool)
                sizes[i] += mempool[j]['size']
            assert(sizes[i] > MAX_BLOCK_BASE_SIZE) # Fail => raise utxo_count

        # add a fee delta to something in the cheapest bucket and make sure it gets mined
        # also check that a different entry in the cheapest bucket is NOT mined
        self.nodes[0].prioritisetransaction(txid=txids[0][0], fee_delta=int(3*base_fee*COIN))

        self.nodes[0].generate(1)

        mempool = self.nodes[0].getrawmempool()
        self.log.info("Assert that prioritised transaction was mined")
        assert(txids[0][0] not in mempool)
        assert(txids[0][1] in mempool)

        high_fee_tx = None
        for x in txids[2]:
            if x not in mempool:
                high_fee_tx = x

        # Something high-fee should have been mined!
        assert(high_fee_tx != None)

        # Add a prioritisation before a tx is in the mempool (de-prioritising a
        # high-fee transaction so that it's now low fee).
        self.nodes[0].prioritisetransaction(txid=high_fee_tx, fee_delta=-int(2*base_fee*COIN))

        # Add everything back to mempool
        self.nodes[0].invalidateblock(self.nodes[0].getbestblockhash())

        # Check to make sure our high fee rate tx is back in the mempool
        mempool = self.nodes[0].getrawmempool()
        assert(high_fee_tx in mempool)

        # Now verify the modified-high feerate transaction isn't mined before
        # the other high fee transactions. Keep mining until our mempool has
        # decreased by all the high fee size that we calculated above.
        while (self.nodes[0].getmempoolinfo()['bytes'] > sizes[0] + sizes[1]):
            self.nodes[0].generate(1)

        # High fee transaction should not have been mined, but other high fee rate
        # transactions should have been.
        mempool = self.nodes[0].getrawmempool()
        self.log.info("Assert that de-prioritised transaction is still in mempool")
        assert(high_fee_tx in mempool)
        for x in txids[2]:
            if (x != high_fee_tx):
                assert(x not in mempool)

        # Create a free transaction.  Should be rejected.
        utxo_list = self.nodes[0].listunspent()
        assert(len(utxo_list) > 0)
        utxo = utxo_list[0]

        inputs = []
        outputs = {}
        inputs.append({"txid" : utxo["txid"], "vout" : utxo["vout"]})
        outputs[self.nodes[0].getnewaddress()] = utxo["amount"]
        raw_tx = self.nodes[0].createrawtransaction(inputs, outputs)
        tx_hex = self.nodes[0].signrawtransactionwithwallet(raw_tx)["hex"]
        tx_id = self.nodes[0].decoderawtransaction(tx_hex)["txid"]

        # This will raise an exception due to min relay fee not being met
        assert_raises_rpc_error(-26, "min relay fee not met", self.nodes[0].sendrawtransaction, tx_hex)
        assert(tx_id not in self.nodes[0].getrawmempool())

        # This is a less than 1000-byte transaction, so just set the fee
        # to be the minimum for a 1000-byte transaction and check that it is
        # accepted.
        self.nodes[0].prioritisetransaction(txid=tx_id, fee_delta=int(self.relayfee*COIN))

        self.log.info("Assert that prioritised free transaction is accepted to mempool")
        assert_equal(self.nodes[0].sendrawtransaction(tx_hex), tx_id)
        assert(tx_id in self.nodes[0].getrawmempool())

        # Test that calling prioritisetransaction is sufficient to trigger
        # getblocktemplate to (eventually) return a new block.
        mock_time = int(time.time())
        self.nodes[0].setmocktime(mock_time)
        template = self.nodes[0].getblocktemplate()
        self.nodes[0].prioritisetransaction(txid=tx_id, fee_delta=-int(self.relayfee*COIN))
        self.nodes[0].setmocktime(mock_time+10)
        new_template = self.nodes[0].getblocktemplate()

        assert(template != new_template)
Пример #12
0
    def run_test(self):
        # Track test coverage statistics
        self.restart_counts = [0, 0, 0]  # Track the restarts for nodes 0-2
        self.crashed_on_restart = 0      # Track count of crashes during recovery

        # Start by creating a lot of utxos on node3
        initial_height = self.nodes[3].getblockcount()
        utxo_list = create_confirmed_utxos(self.nodes[3].getnetworkinfo()['relayfee'], self.nodes[3], 5000)
        self.log.info("Prepped %d utxo entries", len(utxo_list))

        # Sync these blocks with the other nodes
        block_hashes_to_sync = []
        for height in range(initial_height + 1, self.nodes[3].getblockcount() + 1):
            block_hashes_to_sync.append(self.nodes[3].getblockhash(height))

        self.log.debug("Syncing %d blocks with other nodes", len(block_hashes_to_sync))
        # Syncing the blocks could cause nodes to crash, so the test begins here.
        self.sync_node3blocks(block_hashes_to_sync)

        starting_tip_height = self.nodes[3].getblockcount()

        # Main test loop:
        # each time through the loop, generate a bunch of transactions,
        # and then either mine a single new block on the tip, or some-sized reorg.
        for i in range(40):
            self.log.info("Iteration %d, generating 2500 transactions %s", i, self.restart_counts)
            # Generate a bunch of small-ish transactions
            self.generate_small_transactions(self.nodes[3], 2500, utxo_list)
            # Pick a random block between current tip, and starting tip
            current_height = self.nodes[3].getblockcount()
            random_height = random.randint(starting_tip_height, current_height)
            self.log.debug("At height %d, considering height %d", current_height, random_height)
            if random_height > starting_tip_height:
                # Randomly reorg from this point with some probability (1/4 for
                # tip, 1/5 for tip-1, ...)
                if random.random() < 1.0 / (current_height + 4 - random_height):
                    self.log.debug("Invalidating block at height %d", random_height)
                    self.nodes[3].invalidateblock(self.nodes[3].getblockhash(random_height))

            # Now generate new blocks until we pass the old tip height
            self.log.debug("Mining longer tip")
            block_hashes = []
            while current_height + 1 > self.nodes[3].getblockcount():
                block_hashes.extend(self.nodes[3].generate(min(10, current_height + 1 - self.nodes[3].getblockcount())))
            self.log.debug("Syncing %d new blocks...", len(block_hashes))
            self.sync_node3blocks(block_hashes)
            utxo_list = self.nodes[3].listunspent()
            self.log.debug("Node3 utxo count: %d", len(utxo_list))

        # Check that the utxo hashes agree with node3
        # Useful side effect: each utxo cache gets flushed here, so that we
        # won't get crashes on shutdown at the end of the test.
        self.verify_utxo_hash()

        # Check the test coverage
        self.log.info("Restarted nodes: %s; crashes on restart: %d", self.restart_counts, self.crashed_on_restart)

        # If no nodes were restarted, we didn't test anything.
        assert self.restart_counts != [0, 0, 0]

        # Make sure we tested the case of crash-during-recovery.
        assert self.crashed_on_restart > 0

        # Warn if any of the nodes escaped restart.
        for i in range(3):
            if self.restart_counts[i] == 0:
                self.log.warn("Node %d never crashed during utxo flush!", i)
    def run_test(self):
        transaction_overhead = 2048
        mempool_size = self.mempool_size
        total_number_of_transactions = self.total_number_of_transactions
        number_of_good_transactions = total_number_of_transactions * 90 // 100
        number_of_cheap_transactions = total_number_of_transactions - number_of_good_transactions
        last_transaction_factor = total_number_of_transactions * 15 // 100
        transaction_size = mempool_size * ONE_MEGABYTE // total_number_of_transactions - transaction_overhead

        relayfee = self.nodes[0].getnetworkinfo()['relayfee']
        utxos = create_confirmed_utxos(relayfee, self.nodes[0],
                                       total_number_of_transactions + 1)

        # Transactions with higher fee rate
        # size: 6MiB, fee: 10,000,000 satoshi (0.1 BSV) --> fee rate: 1.6 sat/byte
        good_fee = decimal.Decimal('0.1')
        good_txids = []
        for i in range(number_of_good_transactions):
            txid = send_tx_with_data(self.nodes[0], utxos.pop(), good_fee,
                                     transaction_size)
            self.log.debug("Inserted good transaction %d %s", i + 1, txid)
            good_txids.append(txid)

        assert_equal(len(self.nodes[0].getrawmempool()),
                     number_of_good_transactions)
        self.log.info("%d transactions successfully arrived to mempool.",
                      number_of_good_transactions)

        # Transactions with lower fee rate
        # size: 6MiB, fee: 2,500,000 satoshi (0.025 BSV) --> fee rate: 0.4 sat/byte
        cheap_fee = good_fee / 4
        cheap_txids = []
        for i in range(number_of_cheap_transactions):
            txid = send_tx_with_data(self.nodes[0], utxos.pop(), cheap_fee,
                                     transaction_size)
            self.log.debug("Inserted cheap transaction %d %s", i + 1, txid)
            cheap_txids.append(txid)

        assert_equal(len(self.nodes[0].getrawmempool()),
                     total_number_of_transactions)
        self.log.info("%d transactions successfully arrived to mempool.",
                      total_number_of_transactions)

        # The mempool should now be full. Insert the last, large transaction
        # size: 42MiB, fee: 35,000,000 satoshi (0.35 BSV) --> fee rate: 0.8 sat/byte
        self.log.info("Inserting last transaction")
        last_fee = last_transaction_factor * good_fee / 2
        last_size = last_transaction_factor * transaction_size
        assert_raises_rpc_error(-26, 'mempool full', send_tx_with_data,
                                self.nodes[0], utxos.pop(), last_fee,
                                last_size)

        # Now let's see what happens. There should be no cheap transactions in the pool any more.
        mempool = self.nodes[0].getrawmempool()
        assert_equal(len(mempool), number_of_good_transactions)
        self.log.info("%d transactions were evicted.",
                      total_number_of_transactions - len(mempool))

        for txid in cheap_txids:
            assert (txid not in mempool)
        self.log.info("All transactions with insufficient fee were evicted.")
    def run_test(self):
        # Test `prioritisetransaction` required parameters
        assert_raises_rpc_error(-1, "prioritisetransaction", self.nodes[0].prioritisetransaction)
        assert_raises_rpc_error(-1, "prioritisetransaction", self.nodes[0].prioritisetransaction, '')
        assert_raises_rpc_error(-1, "prioritisetransaction", self.nodes[0].prioritisetransaction, '', 0)

        # Test `prioritisetransaction` invalid extra parameters
        assert_raises_rpc_error(-1, "prioritisetransaction", self.nodes[0].prioritisetransaction, '', 0, 0, 0)

        # Test `prioritisetransaction` invalid `txid`
        assert_raises_rpc_error(-1, "txid must be hexadecimal string", self.nodes[0].prioritisetransaction, txid='foo', fee_delta=0)

        # Test `prioritisetransaction` invalid `dummy`
        txid = '1d1d4e24ed99057e84c3f80fd8fbec79ed9e1acee37da269356ecea000000000'
        assert_raises_rpc_error(-1, "JSON value is not a number as expected", self.nodes[0].prioritisetransaction, txid, 'foo', 0)
        assert_raises_rpc_error(-8, "Priority is no longer supported, dummy argument to prioritisetransaction must be 0.", self.nodes[0].prioritisetransaction, txid, 1, 0)

        # Test `prioritisetransaction` invalid `fee_delta`
        assert_raises_rpc_error(-1, "JSON value is not an integer as expected", self.nodes[0].prioritisetransaction, txid=txid, fee_delta='foo')

        self.txouts = gen_return_txouts()
        self.relayfee = self.nodes[0].getnetworkinfo()['relayfee']

        utxo_count = 90
        utxos = create_confirmed_utxos(self.relayfee, self.nodes[0], utxo_count)
        base_fee = self.relayfee*100 # our transactions are smaller than 100kb
        txids = []

        # Create 3 batches of transactions at 3 different fee rate levels
        range_size = utxo_count // 3
        for i in range(3):
            txids.append([])
            start_range = i * range_size
            end_range = start_range + range_size
            txids[i] = create_lots_of_big_transactions(self.nodes[0], self.txouts, utxos[start_range:end_range], end_range - start_range, (i+1)*base_fee)

        # Make sure that the size of each group of transactions exceeds
        # MAX_BLOCK_BASE_SIZE -- otherwise the test needs to be revised to create
        # more transactions.
        mempool = self.nodes[0].getrawmempool(True)
        sizes = [0, 0, 0]
        for i in range(3):
            for j in txids[i]:
                assert j in mempool
                sizes[i] += mempool[j]['vsize']
            assert sizes[i] > MAX_BLOCK_BASE_SIZE  # Fail => raise utxo_count

        # add a fee delta to something in the cheapest bucket and make sure it gets mined
        # also check that a different entry in the cheapest bucket is NOT mined
        self.nodes[0].prioritisetransaction(txid=txids[0][0], fee_delta=int(3*base_fee*COIN))

        self.nodes[0].generate(1)

        mempool = self.nodes[0].getrawmempool()
        self.log.info("Assert that prioritised transaction was mined")
        assert txids[0][0] not in mempool
        assert txids[0][1] in mempool

        high_fee_tx = None
        for x in txids[2]:
            if x not in mempool:
                high_fee_tx = x