Пример #1
0
    def check_compr_random(kv, threshold, nworker):
        # set a seed so all workers generate same data. knowing this helps
        # calculate expected value after pull
        mx.random.seed(123)
        rnd.seed(123)
        nrepeat = 5
        compr_random_keys_shapes = [('2121', shape),('212221',irregular_shape),('21221', big_shape)]
        # use new keys so residual is 0 for calculation of expected
        for k,s in compr_random_keys_shapes:
            kv.init(k, mx.nd.zeros(s))
        for k,s in compr_random_keys_shapes:
            curr_residual = np.zeros(s)
            for l in range(nrepeat):
                orig_val = mx.nd.zeros(s)
                kv.pull(k, orig_val)

                grad = mx.nd.array(rnd.rand(s[0], s[1]))
                # creates a copy because push changes grad because of assignment
                grad_cpy = mx.nd.array(grad)
                kv.push(k, grad)
                val = mx.nd.zeros(s)
                kv.pull(k, val)

                diff = val - orig_val

                # compute expected by using simulation of operator
                compr, curr_residual, decompr = compute_expected_2bit_quantization(grad_cpy, curr_residual, threshold)
                decompr *= nworker * rate
                assert_almost_equal(diff.asnumpy(), decompr)
    def check_compr_random(kv, threshold, nworker):
        # set a seed so all workers generate same data. knowing this helps
        # calculate expected value after pull
        mx.random.seed(123)
        rnd.seed(123)
        nrepeat = 5
        compr_random_keys_shapes = [('2121', shape),
                                    ('212221', irregular_shape),
                                    ('21221', big_shape)]
        # use new keys so residual is 0 for calculation of expected
        for k, s in compr_random_keys_shapes:
            kv.init(k, mx.nd.zeros(s))
        for k, s in compr_random_keys_shapes:
            curr_residual = np.zeros(s)
            for l in range(nrepeat):
                orig_val = mx.nd.zeros(s)
                kv.pull(k, orig_val)

                grad = mx.nd.array(rnd.rand(s[0], s[1]))
                # creates a copy because push changes grad because of assignment
                grad_cpy = mx.nd.array(grad)
                kv.push(k, grad)
                val = mx.nd.zeros(s)
                kv.pull(k, val)

                diff = val - orig_val

                # compute expected by using simulation of operator
                compr, curr_residual, decompr = compute_expected_2bit_quantization(
                    grad_cpy, curr_residual, threshold)
                decompr *= nworker * rate
                assert_almost_equal(diff.asnumpy(), decompr)