Пример #1
0
def avg_pool2D_forward_naive(x,
                             ksize,
                             strides,
                             paddings,
                             global_pool=0,
                             ceil_mode=False,
                             exclusive=True,
                             adaptive=False,
                             data_type=np.float64):
    N, C, H, W = x.shape
    if global_pool == 1:
        ksize = [H, W]
    if adaptive:
        H_out, W_out = ksize
    else:
        H_out = (H - ksize[0] + 2 * paddings[0] + strides[0] -
                 1) // strides[0] + 1 if ceil_mode else (
                     H - ksize[0] + 2 * paddings[0]) // strides[0] + 1
        W_out = (W - ksize[1] + 2 * paddings[1] + strides[1] -
                 1) // strides[1] + 1 if ceil_mode else (
                     W - ksize[1] + 2 * paddings[1]) // strides[1] + 1
    out = np.zeros((N, C, H_out, W_out))
    for i in range(H_out):
        for j in range(W_out):
            if adaptive:
                r_start = adaptive_start_index(i, H, ksize[0])
                r_end = adaptive_end_index(i, H, ksize[0])
                c_start = adaptive_start_index(j, W, ksize[1])
                c_end = adaptive_end_index(j, W, ksize[1])
            else:
                r_start = i * strides[0] - paddings[0]
                r_end = i * strides[0] + ksize[0] - paddings[0]
                c_start = j * strides[1] - paddings[1]
                c_end = j * strides[1] + ksize[1] - paddings[1]
                field_size = (r_end - r_start) * (c_end - c_start)
                r_start = np.max((r_start, 0))
                r_end = np.min((r_end, H))
                c_start = np.max((c_start, 0))
                c_end = np.min((c_end, W))

            x_masked = x[:, :, r_start:r_end, c_start:c_end]

            if (exclusive or adaptive):
                field_size = (r_end - r_start) * (c_end - c_start)

            if data_type == np.int8 or data_type == np.uint8:
                out[:, :, i,
                    j] = (np.rint(np.sum(x_masked, axis=(2, 3)) /
                                  field_size)).astype(data_type)
            else:
                out[:, :, i, j] = (np.sum(x_masked, axis=(2, 3)) /
                                   field_size).astype(data_type)
    return out
Пример #2
0
def max_pool2D_forward_naive(x,
                             ksize,
                             strides,
                             paddings,
                             global_pool=0,
                             ceil_mode=False,
                             exclusive=True,
                             adaptive=False,
                             data_type=np.float64):
    N, C, H, W = x.shape
    if global_pool == 1:
        ksize = [H, W]
    if adaptive:
        H_out, W_out = ksize
    else:
        H_out = (H - ksize[0] + 2 * paddings[0] + strides[0] -
                 1) // strides[0] + 1 if ceil_mode else (
                     H - ksize[0] + 2 * paddings[0]) // strides[0] + 1
        W_out = (W - ksize[1] + 2 * paddings[1] + strides[1] -
                 1) // strides[1] + 1 if ceil_mode else (
                     W - ksize[1] + 2 * paddings[1]) // strides[1] + 1
    out = np.zeros((N, C, H_out, W_out))
    for i in range(H_out):
        for j in range(W_out):
            if adaptive:
                r_start = adaptive_start_index(i, H, ksize[0])
                r_end = adaptive_end_index(i, H, ksize[0])
                c_start = adaptive_start_index(j, W, ksize[1])
                c_end = adaptive_end_index(j, W, ksize[1])
            else:
                r_start = np.max((i * strides[0] - paddings[0], 0))
                r_end = np.min((i * strides[0] + ksize[0] - paddings[0], H))
                c_start = np.max((j * strides[1] - paddings[1], 0))
                c_end = np.min((j * strides[1] + ksize[1] - paddings[1], W))
            x_masked = x[:, :, r_start:r_end, c_start:c_end]

            out[:, :, i, j] = np.max(x_masked, axis=(2, 3))
    return out
Пример #3
0
def pool2d_backward_navie(x,
                          ksize,
                          strides,
                          paddings,
                          global_pool=0,
                          ceil_mode=False,
                          exclusive=True,
                          adaptive=False,
                          data_format='NCHW',
                          pool_type="max",
                          padding_algorithm="EXPLICIT"):
    # update paddings
    def _get_padding_with_SAME(input_shape, pool_size, pool_stride):
        padding = []
        for input_size, filter_size, stride_size in zip(
                input_shape, pool_size, pool_stride):
            out_size = int((input_size + stride_size - 1) / stride_size)
            pad_sum = np.max(
                ((out_size - 1) * stride_size + filter_size - input_size, 0))
            pad_0 = int(pad_sum / 2)
            pad_1 = int(pad_sum - pad_0)
            padding.append(pad_0)
            padding.append(pad_1)
        return padding

    if isinstance(padding_algorithm, str):
        padding_algorithm = padding_algorithm.upper()
        if padding_algorithm not in ["SAME", "VALID", "EXPLICIT"]:
            raise ValueError("Unknown Attr(padding_algorithm): '%s'. "
                             "It can only be 'SAME' or 'VALID'." %
                             str(padding_algorithm))

        if padding_algorithm == "VALID":
            paddings = [0, 0, 0, 0]
            if ceil_mode != False:
                raise ValueError(
                    "When Attr(pool_padding) is \"VALID\", Attr(ceil_mode)"
                    " must be False. "
                    "Received ceil_mode: True.")
        elif padding_algorithm == "SAME":
            input_data_shape = []
            if data_format == "NCHW":
                input_data_shape = x.shape[2:4]
            elif data_format == "NHWC":
                input_data_shape = x.shape[1:3]
            paddings = _get_padding_with_SAME(input_data_shape, ksize, strides)

    assert len(paddings) == 2 or len(paddings) == 4
    is_sys = True if len(paddings) == 2 else False

    if data_format == "NHWC":
        x = x.transpose([0, 3, 1, 2])

    N, C, H, W = x.shape

    if global_pool == 1:
        ksize = [H, W]
        paddings = [0 for _ in range(len(paddings))]

    pad_h_up = paddings[0] if is_sys else paddings[0]
    pad_h_down = paddings[0] if is_sys else paddings[1]
    pad_w_left = paddings[1] if is_sys else paddings[2]
    pad_w_right = paddings[1] if is_sys else paddings[3]

    if adaptive:
        H_out, W_out = ksize
    else:
        H_out = (H - ksize[0] + pad_h_up + pad_h_down + strides[0] - 1) // strides[0] + 1 \
            if ceil_mode else (H - ksize[0] + pad_h_up + pad_h_down) // strides[0] + 1
        W_out = (W - ksize[1] + pad_w_left + pad_w_right + strides[1] - 1) // strides[1] + 1 \
            if ceil_mode else (W - ksize[1] + pad_w_left + pad_w_right) // strides[1] + 1

    x_grad = np.zeros_like(x)
    for i in range(H_out):
        if adaptive:
            in_h_start = adaptive_start_index(i, H, ksize[0])
            in_h_end = adaptive_end_index(i, H, ksize[0])
        else:
            in_h_start = np.max((i * strides[0] - pad_h_up, 0))
            in_h_end = np.min((i * strides[0] + ksize[0] - pad_h_up, H))

        for j in range(W_out):
            if adaptive:
                in_w_start = adaptive_start_index(j, W, ksize[1])
                in_w_end = adaptive_end_index(j, W, ksize[1])
            else:
                in_h_start = i * strides[0] - pad_h_up
                in_w_start = j * strides[1] - pad_w_left
                in_h_end = i * strides[0] + ksize[0] - pad_h_up
                in_w_end = j * strides[1] + ksize[1] - pad_w_left

                field_size = (in_h_end - in_h_start) * (in_w_end - in_w_start)
                in_h_start = np.max((in_h_start, 0))
                in_w_start = np.max((in_w_start, 0))
                in_h_end = np.min((in_h_end, H))
                in_w_end = np.min((in_w_end, W))

            if pool_type == 'avg':
                if (exclusive or adaptive):
                    field_size = (in_h_end - in_h_start) * (in_w_end -
                                                            in_w_start)
                x_grad[:, :, in_h_start:in_h_end,
                       in_w_start:in_w_end] += 1 / field_size
            elif pool_type == 'max':
                for n in range(N):
                    for c in range(C):
                        idx = np.argmax(x[n, c, in_h_start:in_h_end,
                                          in_w_start:in_w_end].flatten())
                        idx_h = idx // (in_w_end - in_w_start)
                        idx_w = idx % (in_w_end - in_w_start)
                        x_grad[n, c, in_h_start + idx_h,
                               in_w_start + idx_w] += 1

    if data_format == "NHWC":
        x_grad = x_grad.transpose([0, 2, 3, 1])
    return x_grad
Пример #4
0
def pool2D_forward_naive(x,
                         ksize,
                         strides,
                         paddings,
                         global_pool=0,
                         ceil_mode=False,
                         exclusive=True,
                         adaptive=False,
                         data_format='NCHW',
                         pool_type="max",
                         padding_algorithm="EXPLICIT"):

    # update paddings
    def _get_padding_with_SAME(input_shape, pool_size, pool_stride):
        padding = []
        for input_size, filter_size, stride_size in zip(
                input_shape, pool_size, pool_stride):
            out_size = int((input_size + stride_size - 1) / stride_size)
            pad_sum = np.max(
                ((out_size - 1) * stride_size + filter_size - input_size, 0))
            pad_0 = int(pad_sum / 2)
            pad_1 = int(pad_sum - pad_0)
            padding.append(pad_0)
            padding.append(pad_1)
        return padding

    if isinstance(padding_algorithm, str):
        padding_algorithm = padding_algorithm.upper()
        if padding_algorithm not in ["SAME", "VALID", "EXPLICIT"]:
            raise ValueError("Unknown Attr(padding_algorithm): '%s'. "
                             "It can only be 'SAME' or 'VALID'." %
                             str(padding_algorithm))

        if padding_algorithm == "VALID":
            paddings = [0, 0, 0, 0]
            if ceil_mode != False:
                raise ValueError(
                    "When Attr(pool_padding) is \"VALID\", Attr(ceil_mode)"
                    " must be False. "
                    "Received ceil_mode: True.")
        elif padding_algorithm == "SAME":
            input_data_shape = []
            if data_format == "NCHW":
                input_data_shape = x.shape[2:4]
            elif data_format == "NHWC":
                input_data_shape = x.shape[1:3]
            paddings = _get_padding_with_SAME(input_data_shape, ksize, strides)

    assert len(paddings) == 2 or len(paddings) == 4
    is_sys = True if len(paddings) == 2 else False

    N = x.shape[0]
    C, H, W = [x.shape[1], x.shape[2], x.shape[3]] if data_format == 'NCHW' \
        else [x.shape[3], x.shape[1], x.shape[2]]

    if global_pool == 1:
        ksize = [H, W]
        paddings = [0 for _ in range(len(paddings))]

    pad_h_up = paddings[0] if is_sys else paddings[0]
    pad_h_down = paddings[0] if is_sys else paddings[1]
    pad_w_left = paddings[1] if is_sys else paddings[2]
    pad_w_right = paddings[1] if is_sys else paddings[3]

    if adaptive:
        H_out, W_out = ksize
    else:
        H_out = (H - ksize[0] + pad_h_up + pad_h_down + strides[0] - 1) // strides[0] + 1 \
            if ceil_mode else (H - ksize[0] + pad_h_up + pad_h_down) // strides[0] + 1
        W_out = (W - ksize[1] + pad_w_left + pad_w_right + strides[1] - 1) // strides[1] + 1 \
            if ceil_mode else (W - ksize[1] + pad_w_left + pad_w_right) // strides[1] + 1

    out = np.zeros((N, C, H_out, W_out)) if data_format=='NCHW' \
        else np.zeros((N, H_out, W_out, C))
    for i in range(H_out):
        if adaptive:
            in_h_start = adaptive_start_index(i, H, ksize[0])
            in_h_end = adaptive_end_index(i, H, ksize[0])
        else:
            in_h_start = np.max((i * strides[0] - pad_h_up, 0))
            in_h_end = np.min((i * strides[0] + ksize[0] - pad_h_up, H))

        for j in range(W_out):
            if adaptive:
                in_w_start = adaptive_start_index(j, W, ksize[1])
                in_w_end = adaptive_end_index(j, W, ksize[1])
            else:
                in_h_start = i * strides[0] - pad_h_up
                in_w_start = j * strides[1] - pad_w_left
                in_h_end = i * strides[0] + ksize[0] - pad_h_up
                in_w_end = j * strides[1] + ksize[1] - pad_w_left

                field_size = (in_h_end - in_h_start) * (in_w_end - in_w_start)
                in_h_start = np.max((in_h_start, 0))
                in_w_start = np.max((in_w_start, 0))
                in_h_end = np.min((in_h_end, H))
                in_w_end = np.min((in_w_end, W))

            if data_format == 'NCHW':
                x_masked = x[:, :, in_h_start:in_h_end, in_w_start:in_w_end]
                if pool_type == 'avg':
                    if (exclusive or adaptive):
                        field_size = (in_h_end - in_h_start) * (in_w_end -
                                                                in_w_start)


#                         if (exclusive or adaptive) else (ksize[0] * ksize[1])
                    out[:, :, i,
                        j] = np.sum(x_masked, axis=(2, 3)) / field_size
                elif pool_type == 'max':
                    out[:, :, i, j] = np.max(x_masked, axis=(2, 3))
            elif data_format == 'NHWC':
                x_masked = x[:, in_h_start:in_h_end, in_w_start:in_w_end, :]
                if pool_type == 'avg':
                    if (exclusive or adaptive):
                        field_size = (in_h_end - in_h_start) * (in_w_end -
                                                                in_w_start)
                    out[:, i,
                        j, :] = np.sum(x_masked, axis=(1, 2)) / field_size
                elif pool_type == 'max':
                    out[:, i, j, :] = np.max(x_masked, axis=(1, 2))
    return out