Пример #1
0
def test_data_instream():
    for file_size in test_filesize:
        newfile = False
        for size in test_size:
            result_file = 'report/test_data_instream_{}_{}.txt'.format(size, file_size)
            if os.path.exists(result_file):
                print('skip {}'.format(result_file))
                continue
            test_file = 'testfile.csv'
            dfmaker = DataFrameMaker(size, file_size, 100)
            multip = len(dfmaker)
            if multip == 0:
                continue
            print('testing {}'.format(result_file))
            if not newfile:
                df = next(dfmaker)
                df.to_csv('data/'+test_file)
                newfile = True

            timer = Timer()
            kwargs = {
                'read_number':'0',
                'header':'True',
                'path':test_file,
            }
            while timer.total_cost < 2:
                timer(data_instream, **kwargs)
            cost = timer.avg_cost * multip
            with open(result_file, 'w') as f:
                f.write('total,each,number\n')
                f.write(str(cost)+","+str(timer.avg_cost)+","+str(multip))
def test_kmeans():
    for size in size_list:
        for file_size in filesize_list:
            kwargs = {
                'n_cluster':'2',
                'max_iter':'300',
                'predict_labels':'label',
                'store_origin':'False',
                'n_jobs':'10',
            }
            result_file = 'report/test_kmeans_{}_{}.txt'.format(size, file_size)
            if os.path.exists(result_file):
                print('skip {}'.format(result_file))
                continue
            dfmaker = LabelDataMaker(size, file_size, 100, 2)
            multip = len(dfmaker)
            if multip == 0:
                continue
            timer = Timer()
            print('running {}'.format(result_file))
            timer(kmeans, next(dfmaker), **kwargs)
            cost = timer.avg_cost * multip
            with open(result_file, 'w') as f:
                f.write('total,each,number\n')
                f.write(str(cost)+","+str(timer.avg_cost)+","+str(multip))
Пример #3
0
def test_accuracy():
    for size in size_list:
        for file_size in filesize_list:
            kwargs = {
                'true_posi':'right',
                'average':'binary',
                'truth_column':'label',
                'pred_column':'label',
            }
            result_file = 'report/test_accuracy_{}_{}.txt'.format(size, file_size)
            if os.path.exists(result_file):
                print('skip {}'.format(result_file))
                continue
            dfmaker = LabelDataMaker(size, file_size, 100, 2)
            multip = len(dfmaker)
            if multip == 0:
                continue
            timer = Timer()
            print('running {}'.format(result_file))
            new_data = next(dfmaker)
            timer(accuracy, new_data, new_data, **kwargs)
            cost = timer.avg_cost * multip
            with open(result_file, 'w') as f:
                f.write('total,each,number\n')
                f.write(str(cost)+","+str(timer.avg_cost)+","+str(multip))
def test_iforest():
    for size in size_list:
        for file_size in filesize_list:
            kwargs = {
                'contamination': '0.1',
                'n_jobs': '10',
            }
            result_file = 'report/test_iforest_{}_{}.txt'.format(
                size, file_size)
            if os.path.exists(result_file):
                print('skip {}'.format(result_file))
                continue
            dfmaker = LabelDataMaker(size, file_size, 100, 2)
            multip = len(dfmaker)
            if multip == 0:
                continue
            timer = Timer()
            print('running {}'.format(result_file))
            new_data = next(dfmaker)
            timer(outlier_iforest, new_data, **kwargs)
            cost = timer.avg_cost * multip
            with open(result_file, 'w') as f:
                f.write('total,each,number\n')
                f.write(
                    str(cost) + "," + str(timer.avg_cost) + "," + str(multip))
Пример #5
0
def test_cut():
    for size in size_list:
        kwargs = {
            'left': "0",
            'width': '960',
            'top': '0',
            'height': '540',
        }
        result_file = 'report/test_image_cut_{}.txt'.format(size)
        if os.path.exists(result_file):
            print('skip {}'.format(result_file))
            continue
        import cv2
        data_in = [[cv2.imread('data/1.png')], ['1.png']]
        filesize = 2690941
        totalsize = 1024 * 1024 * 1024 * 1024  #gb*mb*kb*b
        multip = totalsize // filesize
        timer = Timer()
        print('running {}'.format(result_file))
        while timer.count < 20 or timer.total_cost < 2:
            timer(image_cut, data_in, **kwargs)
        cost = timer.avg_cost * multip
        with open(result_file, 'w') as f:
            f.write('total,each,number\n')
            f.write(str(cost) + "," + str(timer.avg_cost) + "," + str(multip))
Пример #6
0
def test_random():
    for size in size_list:
        for file_size in filesize_list:
            kwargs = {}
            result_file = 'report/test_random_{}_{}.txt'.format(
                size, file_size)
            if os.path.exists(result_file):
                print('skip {}'.format(result_file))
                continue
            dfmaker = LabelDataMaker(size, file_size, 100, 2)
            multip = len(dfmaker)
            if multip == 0:
                continue
            timer = Timer()
            print('running {}'.format(result_file))
            timer(random, next(dfmaker), **kwargs)
            cost = timer.avg_cost * multip
            with open(result_file, 'w') as f:
                f.write('total,each,number\n')
                f.write(
                    str(cost) + "," + str(timer.avg_cost) + "," + str(multip))
Пример #7
0
def test_dilate():
    for size in size_list:
        kwargs = {
            'kernel_size': '3,3',
            'iterations': 1,
        }
        result_file = 'report/test_image_dilate_{}.txt'.format(size)
        if os.path.exists(result_file):
            print('skip {}'.format(result_file))
            continue
        import cv2
        data_in = [[cv2.imread('data/1.png')], ['1.png']]
        filesize = 2690941
        totalsize = 1024 * 1024 * 1024 * 1024  #gb*mb*kb*b
        multip = totalsize // filesize
        timer = Timer()
        print('running {}'.format(result_file))
        while timer.count < 20 or timer.total_cost < 2:
            timer(image_dilate, data_in, **kwargs)
        cost = timer.avg_cost * multip
        with open(result_file, 'w') as f:
            f.write('total,each,number\n')
            f.write(str(cost) + "," + str(timer.avg_cost) + "," + str(multip))
Пример #8
0
def test_monorec():
    for size in size_list:
        kwargs = {
            'class_': 'people,car',
        }
        result_file = 'report/test_image_monorec_{}.txt'.format(size)
        if os.path.exists(result_file):
            print('skip {}'.format(result_file))
            continue
        import cv2
        data_in = [[cv2.imread('data/1.png')], ['1.png']]
        filesize = 2690941
        totalsize = 1024 * 1024 * 1024 * 1024  #gb*mb*kb*b
        multip = totalsize // filesize
        timer = Timer()
        print('running {}'.format(result_file))
        image_monorec(data_in, **kwargs)
        while timer.count < 20:
            timer(image_monorec, data_in, **kwargs)
        cost = timer.avg_cost * multip
        with open(result_file, 'w') as f:
            f.write('total,each,number\n')
            f.write(str(cost) + "," + str(timer.avg_cost) + "," + str(multip))
Пример #9
0
def test_sort():
    for size in size_list:
        for file_size in filesize_list:
            kwargs = {
                'columns': '1',
                'ascending': 'True',
                'na_position': 'last',
            }
            result_file = 'report/test_sort_{}_{}.txt'.format(size, file_size)
            if os.path.exists(result_file):
                print('skip {}'.format(result_file))
                continue
            dfmaker = LabelDataMaker(size, file_size, 100, 2)
            multip = len(dfmaker)
            if multip == 0:
                continue
            timer = Timer()
            print('running {}'.format(result_file))
            timer(sort, next(dfmaker), **kwargs)
            cost = timer.avg_cost * multip
            with open(result_file, 'w') as f:
                f.write('total,each,number\n')
                f.write(
                    str(cost) + "," + str(timer.avg_cost) + "," + str(multip))