criteria_best['avb'] = 0
criteria_best['lvh'] = 0
criteria_best['spo2'] = 100
criteria_best['hypoglycemia'] = 0.92
criteria_best['hyperglycemia'] = 0.92
criteria_best['sys'] = 9
criteria_best['dia'] = 5

xmcda_models_toshow = []
xmcda_models = []
for f in sys.argv[1:]:
    if not os.path.isfile(f):
        xmcda_models_toshow.append(f)
        continue

    if is_bz2_file(f) is True:
        f = bz2.BZ2File(f)

    tree = ElementTree.parse(f)
    root = tree.getroot()

    xmcda_models = root.findall(".//ElectreTri")

    m = MRSort().from_xmcda(xmcda_models[0])

    pt_learning = PerformanceTable().from_xmcda(root, 'learning_set')
    aa_learning = AlternativesAssignments().from_xmcda(root, 'learning_set')

    uniquevalues = pt_learning.get_unique_values()

    bname = os.path.basename(os.path.splitext(f.name)[0])
Пример #2
0
from test_utils import save_to_xmcda

table_ca_learning = []
table_ca_test = []
table_auc_learning = []
table_auc_test = []
cmatrix_learning = {}
cmatrix_test = {}

DATADIR = os.getenv('DATADIR', '%s/pymcda-data' % os.path.expanduser('~'))
directory='%s/test-veto2' % (DATADIR)

for f in sys.argv[1:]:
    fname = os.path.splitext(os.path.basename(f))[0]

    if is_bz2_file(f) is True:
        f = bz2.BZ2File(f)

    tree = ElementTree.parse(f)
    root = tree.getroot()
    m = MRSort().from_xmcda(root, 'learned')

    pt_learning = PerformanceTable().from_xmcda(root, 'learning_set')
    pt_test = PerformanceTable().from_xmcda(root, 'test_set')

    aa_learning = AlternativesAssignments().from_xmcda(root,
                                                       'learning_set')
    aa_test = AlternativesAssignments().from_xmcda(root,
                                                  'test_set')

    aa_learning_m2 = m.pessimist(pt_learning)