Пример #1
0
    def start_impala(self):
        '''Starts impala and creates a connection to it.
    '''
        self.impala_env.start_impala()
        self.test_connection = DbConnector(
            IMPALA,
            user_name=None,
            password=None,
            host_name=self.impala_env.host,
            port=self.impala_env.impala_port).create_connection(DATABASE_NAME)

        self.test_connection.reconnect()
        self.query_result_comparator = QueryResultComparator(
            self.ref_connection, self.test_connection)
        LOG.info('Created query result comparator')
        LOG.info(str(self.query_result_comparator.__dict__))
Пример #2
0
    def start_impala(self):
        '''Starts impala and creates a connection to it. '''
        self.impala_env.start_impala()

        self.test_connection = ImpalaConnection(
            host_name=self.impala_env.host,
            port=self.impala_env.impala_port,
            user_name=None,
            db_name=DATABASE_NAME)

        self.test_connection.reconnect()
        self.query_result_comparator = QueryResultComparator(
            self.query_profile,
            self.ref_connection,
            self.test_connection,
            query_timeout_seconds=4 * 60,
            flatten_dialect='POSTGRESQL')
        LOG.info('Created query result comparator')
        LOG.info(str(self.query_result_comparator.__dict__))
Пример #3
0
  def start_impala(self):
    '''Starts impala and creates a connection to it.
    '''
    self.impala_env.start_impala()
    self.test_connection = DbConnector(IMPALA,
        user_name=None,
        password=None,
        host_name=self.impala_env.host,
        port=self.impala_env.impala_port).create_connection(DATABASE_NAME)

    self.test_connection.reconnect()
    self.query_result_comparator = QueryResultComparator(
        self.ref_connection, self.test_connection)
    LOG.info('Created query result comparator')
    LOG.info(str(self.query_result_comparator.__dict__))
Пример #4
0
  def start_impala(self):
    '''Starts impala and creates a connection to it. '''
    self.impala_env.start_impala()

    self.test_connection = ImpalaConnection(
        host_name=self.impala_env.host,
        port=self.impala_env.impala_port,
        user_name=None,
        db_name=DATABASE_NAME)

    self.test_connection.reconnect()
    self.query_result_comparator = QueryResultComparator(
        self.query_profile,
        self.ref_connection,
        self.test_connection,
        query_timeout_seconds=4*60,
        flatten_dialect='POSTGRESQL')
    LOG.info('Created query result comparator')
    LOG.info(str(self.query_result_comparator.__dict__))
Пример #5
0
class Job(object):
  '''Represents a Query Generator Job. One ImpalaDockerEnv is associated with it. Able to
  execute queries by either generaing them based on a provided query profile or by
  extracting queries from an existing report. A report is generated when it finishes
  running.
  '''

  def __init__(self,
      query_profile,
      job_id,
      run_name = 'default',
      time_limit_sec = 24 * 3600,
      git_command = None,
      parent_job = None):
    self.git_hash = ''
    self.job_id = job_id
    self.job_name = run_name
    self.parent_job = parent_job
    self.query_profile = query_profile or (
        ImpalaNestedTypesProfile() if NESTED_TYPES_MODE else DefaultProfile())
    self.ref_connection = None
    self.result_list = []
    self.start_time = time()
    self.stop_time = None
    self.target_stop_time = time() + time_limit_sec
    self.test_connection = None
    self.num_queries_executed = 0
    self.num_queries_returned_correct_data = 0
    self.flatten_dialect = 'POSTGRESQL' if NESTED_TYPES_MODE else None
    self.impala_env = ImpalaDockerEnv(git_command)

  def __getstate__(self):
    '''For pickling'''
    result = {}
    result['job_id'] = self.job_id
    result['job_name'] = self.job_name
    result['parent_job'] = self.parent_job
    result['result_list'] = self.result_list
    result['git_hash'] = self.git_hash
    result['start_time'] = self.start_time
    result['stop_time'] = self.stop_time
    result['num_queries_executed'] = self.num_queries_executed
    result['num_queries_returned_correct_data'] = self.num_queries_returned_correct_data
    return result

  def prepare(self):
    '''Prepares the environment and connects to Postgres and Impala running inside the
    Docker container.
    '''
    LOG.info('Starting Job Preparation')
    self.impala_env.prepare()
    LOG.info('Job Preparation Complete')

    self.ref_connection = PostgresqlConnection(
        user_name=POSTGRES_USER_NAME,
        password=None,
        host_name=self.impala_env.host,
        port=self.impala_env.postgres_port,
        db_name=POSTGRES_DATABASE_NAME)
    LOG.info('Created ref_connection')

    self.start_impala()

    self.git_hash = self.impala_env.get_git_hash()

  def get_stack(self):
    stack_trace = self.impala_env.get_stack()
    LOG.info('Stack Trace: {0}'.format(stack_trace))
    return stack_trace

  def start_impala(self):
    '''Starts impala and creates a connection to it. '''
    self.impala_env.start_impala()

    self.test_connection = ImpalaConnection(
        host_name=self.impala_env.host,
        port=self.impala_env.impala_port,
        user_name=None,
        db_name=DATABASE_NAME)

    self.test_connection.reconnect()
    self.query_result_comparator = QueryResultComparator(
        self.query_profile,
        self.ref_connection,
        self.test_connection,
        query_timeout_seconds=4*60,
        flatten_dialect='POSTGRESQL')
    LOG.info('Created query result comparator')
    LOG.info(str(self.query_result_comparator.__dict__))

  def is_impala_running(self):
    return self.impala_env.is_impala_running()

  def save_pickle(self):
    '''Saves self as pickle. This is normally done when the job finishes running. '''
    with open(join_path(PATH_TO_FINISHED_JOBS, self.job_id), 'w') as f:
      pickle.dump(self, f)
    LOG.info('Saved Completed Job Pickle')

  def queries_to_be_executed(self):
    '''Generator that outputs query models. They are either generated based on the query
    profile, or they are extracted from an existing report.
    '''
    if self.parent_job:
      # If parent job is specified, get the queries from the parent job report
      with open(join_path(PATH_TO_REPORTS, self.parent_job), 'r') as f:
        parent_report = pickle.load(f)
      for error_type in ['stack', 'row_counts', 'mismatch']:
        for query in parent_report.grouped_results[error_type]:
          yield query['model']
    else:
      # If parent job is not specified, generate queries with QueryGenerator
      num_unexpected_errors = 0
      while num_unexpected_errors < NUM_UNEXPECTED_ERRORS_THRESHOLD:
        query = None
        try:
          self.query_generator = QueryGenerator(self.query_profile)
          query = self.query_generator.create_query(self.common_tables)
        except IndexError as e:
          # This is a query generator bug that happens extremely rarely
          LOG.info('Query Generator Choice Problem, {0}'.format(e))
          continue
        except Exception as e:
          LOG.info('Unexpected error in queries_to_be_executed, {0}'.format(e))
          num_unexpected_errors += 1
          if num_unexpected_errors > NUM_UNEXPECTED_ERRORS_THRESHOLD:
            LOG.error('Num Unexpected Errors above threshold')
            raise
          else:
            continue
        yield query

  def generate_report(self):
    '''Generate report and save it into the reports directory. '''
    from report import Report
    rep = Report(self.job_id)
    rep.save_pickle()

  def start(self):
    try:
      self.prepare()
      self.query_generator = QueryGenerator(self.query_profile)
      if NESTED_TYPES_MODE:
        self.common_tables = DbCursor.describe_common_tables(
            [self.test_connection.cursor()])
      else:
        self.common_tables = DbCursor.describe_common_tables(
            [self.test_connection.cursor(), self.ref_connection.cursor()])

      for query_model in self.queries_to_be_executed():
        LOG.info('About to execute query.')
        result_dict = self.run_query(query_model)
        LOG.info('Query Executed successfully.')
        self.num_queries_executed += 1
        if result_dict:
          self.result_list.append(result_dict)
        LOG.info('Time Left: {0}'.format(self.target_stop_time - time()))
        if time() > self.target_stop_time:
          break
      self.stop_time = time()
      self.save_pickle()
      self.generate_report()
      LOG.info('Generated Report')
    except:
      LOG.exception('Unexpected Exception in start')
      raise
    finally:
      self.impala_env.stop_docker()
      LOG.info('Docker Stopped')
      try:
        os.remove(join_path(PATH_TO_SCHEDULE, self.job_id))
        LOG.info('Schedule file removed')
      except OSError:
        LOG.info('Unable to remove schedule file.')

  def reproduce_crash(self, query_model):
    '''Check if the given query_model causes a crash. Returns the number of times the
    query had to be run to cause a crash.
    '''
    NUM_TRIES = 5
    self.start_impala()
    for try_num in range(1, NUM_TRIES + 1):
      self.query_result_comparator.compare_query_results(query_model)
      if not self.is_impala_running():
        return try_num

  def run_query(self, query_model):
    '''Runs a single query. '''
    if not self.is_impala_running():
      LOG.info('Impala is not running, starting Impala.')
      self.start_impala()

    def run_query_internal():
      self.comparison_result = self.query_result_comparator.compare_query_results(
          query_model)

    self.comparison_result = None
    internal_thread = Thread(
      target=run_query_internal,
      name='run_query_internal_{0}'.format(self.job_id))
    internal_thread.daemon = True
    internal_thread.start()
    internal_thread.join(timeout=600)
    if internal_thread.is_alive():
      LOG.info('run_query_internal is alive, restarting Impala Environment')
      self.impala_env.stop_docker()
      self.prepare()
      return None
    else:
      LOG.info('run_query_internal is dead as expected')

    comparison_result = self.comparison_result

    if comparison_result.query_timed_out:
      LOG.info('Query Timeout Exception')
      restart_impala = True
    else:
      restart_impala = False

    result_dict = {}

    if self.is_impala_running():
      if comparison_result.error:
        result_dict = self.comparison_result_analysis(comparison_result)
        result_dict['model'] = query_model
      elif comparison_result.query_resulted_in_data:
        self.num_queries_returned_correct_data += 1
    else:
      LOG.info('CRASH OCCURED')
      result_dict = self.comparison_result_analysis(comparison_result)
      result_dict['model'] = query_model
      result_dict['stack'] = self.get_stack()
      result_dict['num_tries_to_reproduce'] = self.reproduce_crash(query_model)

    if restart_impala:
      self.start_impala()

    return result_dict

  def comparison_result_analysis(self, comparison_result):
    '''Get useful information from the comparison_result. '''
    result_dict = {}
    result_dict['error'] = comparison_result.error
    result_dict['mismatch_col'] = comparison_result.mismatch_at_col_number
    result_dict['mismatch_ref_row'] = comparison_result.ref_row
    result_dict['mismatch_test_row'] = comparison_result.test_row
    result_dict['ref_row_count'] = comparison_result.ref_row_count
    result_dict['ref_sql'] = comparison_result.ref_sql
    result_dict['test_row_count'] = comparison_result.test_row_count
    result_dict['test_sql'] = comparison_result.test_sql
    return result_dict
Пример #6
0
class Job(object):
    '''Represents a Query Generator Job. One ImpalaDockerEnv is associated with it. Able to
  execute queries by either generaing them based on a provided query profile or by
  extracting queries from an existing report. A report is generated when it finishes
  running.
  '''
    def __init__(self,
                 query_profile,
                 job_id,
                 run_name='default',
                 time_limit_sec=24 * 3600,
                 git_command=None,
                 parent_job=None):
        self.git_hash = ''
        self.job_id = job_id
        self.job_name = run_name
        self.parent_job = parent_job
        self.query_profile = query_profile or (ImpalaNestedTypesProfile()
                                               if NESTED_TYPES_MODE else
                                               DefaultProfile())
        self.ref_connection = None
        self.result_list = []
        self.start_time = time()
        self.stop_time = None
        self.target_stop_time = time() + time_limit_sec
        self.test_connection = None
        self.num_queries_executed = 0
        self.num_queries_returned_correct_data = 0
        self.flatten_dialect = 'POSTGRESQL' if NESTED_TYPES_MODE else None
        self.impala_env = ImpalaDockerEnv(git_command)

    def __getstate__(self):
        '''For pickling'''
        result = {}
        result['job_id'] = self.job_id
        result['job_name'] = self.job_name
        result['parent_job'] = self.parent_job
        result['result_list'] = self.result_list
        result['git_hash'] = self.git_hash
        result['start_time'] = self.start_time
        result['stop_time'] = self.stop_time
        result['num_queries_executed'] = self.num_queries_executed
        result[
            'num_queries_returned_correct_data'] = self.num_queries_returned_correct_data
        return result

    def prepare(self):
        '''Prepares the environment and connects to Postgres and Impala running inside the
    Docker container.
    '''
        LOG.info('Starting Job Preparation')
        self.impala_env.prepare()
        LOG.info('Job Preparation Complete')

        self.ref_connection = PostgresqlConnection(
            user_name=POSTGRES_USER_NAME,
            password=None,
            host_name=self.impala_env.host,
            port=self.impala_env.postgres_port,
            db_name=POSTGRES_DATABASE_NAME)
        LOG.info('Created ref_connection')

        self.start_impala()

        self.git_hash = self.impala_env.get_git_hash()

    def get_stack(self):
        stack_trace = self.impala_env.get_stack()
        LOG.info('Stack Trace: {0}'.format(stack_trace))
        return stack_trace

    def start_impala(self):
        '''Starts impala and creates a connection to it. '''
        self.impala_env.start_impala()

        self.test_connection = ImpalaConnection(
            host_name=self.impala_env.host,
            port=self.impala_env.impala_port,
            user_name=None,
            db_name=DATABASE_NAME)

        self.test_connection.reconnect()
        self.query_result_comparator = QueryResultComparator(
            self.query_profile,
            self.ref_connection,
            self.test_connection,
            query_timeout_seconds=4 * 60,
            flatten_dialect='POSTGRESQL')
        LOG.info('Created query result comparator')
        LOG.info(str(self.query_result_comparator.__dict__))

    def is_impala_running(self):
        return self.impala_env.is_impala_running()

    def save_pickle(self):
        '''Saves self as pickle. This is normally done when the job finishes running. '''
        with open(join_path(PATH_TO_FINISHED_JOBS, self.job_id), 'w') as f:
            pickle.dump(self, f)
        LOG.info('Saved Completed Job Pickle')

    def queries_to_be_executed(self):
        '''Generator that outputs query models. They are either generated based on the query
    profile, or they are extracted from an existing report.
    '''
        if self.parent_job:
            # If parent job is specified, get the queries from the parent job report
            with open(join_path(PATH_TO_REPORTS, self.parent_job), 'r') as f:
                parent_report = pickle.load(f)
            for error_type in ['stack', 'row_counts', 'mismatch']:
                for query in parent_report.grouped_results[error_type]:
                    yield query['model']
        else:
            # If parent job is not specified, generate queries with QueryGenerator
            num_unexpected_errors = 0
            while num_unexpected_errors < NUM_UNEXPECTED_ERRORS_THRESHOLD:
                query = None
                try:
                    self.query_generator = QueryGenerator(self.query_profile)
                    query = self.query_generator.create_query(
                        self.common_tables)
                except IndexError as e:
                    # This is a query generator bug that happens extremely rarely
                    LOG.info('Query Generator Choice Problem, {0}'.format(e))
                    continue
                except Exception as e:
                    LOG.info('Unexpected error in queries_to_be_executed, {0}'.
                             format(e))
                    num_unexpected_errors += 1
                    if num_unexpected_errors > NUM_UNEXPECTED_ERRORS_THRESHOLD:
                        LOG.error('Num Unexpected Errors above threshold')
                        raise
                    else:
                        continue
                yield query

    def generate_report(self):
        '''Generate report and save it into the reports directory. '''
        from report import Report
        rep = Report(self.job_id)
        rep.save_pickle()

    def start(self):
        try:
            self.prepare()
            self.query_generator = QueryGenerator(self.query_profile)
            if NESTED_TYPES_MODE:
                self.common_tables = DbCursor.describe_common_tables(
                    [self.test_connection.cursor()])
            else:
                self.common_tables = DbCursor.describe_common_tables([
                    self.test_connection.cursor(),
                    self.ref_connection.cursor()
                ])

            for query_model in self.queries_to_be_executed():
                LOG.info('About to execute query.')
                result_dict = self.run_query(query_model)
                LOG.info('Query Executed successfully.')
                self.num_queries_executed += 1
                if result_dict:
                    self.result_list.append(result_dict)
                LOG.info('Time Left: {0}'.format(self.target_stop_time -
                                                 time()))
                if time() > self.target_stop_time:
                    break
            self.stop_time = time()
            self.save_pickle()
            self.generate_report()
            LOG.info('Generated Report')
        except:
            LOG.exception('Unexpected Exception in start')
            raise
        finally:
            self.impala_env.stop_docker()
            LOG.info('Docker Stopped')
            try:
                os.remove(join_path(PATH_TO_SCHEDULE, self.job_id))
                LOG.info('Schedule file removed')
            except OSError:
                LOG.info('Unable to remove schedule file.')

    def reproduce_crash(self, query_model):
        '''Check if the given query_model causes a crash. Returns the number of times the
    query had to be run to cause a crash.
    '''
        NUM_TRIES = 5
        self.start_impala()
        for try_num in range(1, NUM_TRIES + 1):
            self.query_result_comparator.compare_query_results(query_model)
            if not self.is_impala_running():
                return try_num

    def run_query(self, query_model):
        '''Runs a single query. '''
        if not self.is_impala_running():
            LOG.info('Impala is not running, starting Impala.')
            self.start_impala()

        def run_query_internal():
            self.comparison_result = self.query_result_comparator.compare_query_results(
                query_model)

        self.comparison_result = None
        internal_thread = Thread(target=run_query_internal,
                                 name='run_query_internal_{0}'.format(
                                     self.job_id))
        internal_thread.daemon = True
        internal_thread.start()
        internal_thread.join(timeout=600)
        if internal_thread.is_alive():
            LOG.info(
                'run_query_internal is alive, restarting Impala Environment')
            self.impala_env.stop_docker()
            self.prepare()
            return None
        else:
            LOG.info('run_query_internal is dead as expected')

        comparison_result = self.comparison_result

        if comparison_result.query_timed_out:
            LOG.info('Query Timeout Exception')
            restart_impala = True
        else:
            restart_impala = False

        result_dict = {}

        if self.is_impala_running():
            if comparison_result.error:
                result_dict = self.comparison_result_analysis(
                    comparison_result)
                result_dict['model'] = query_model
            elif comparison_result.query_resulted_in_data:
                self.num_queries_returned_correct_data += 1
        else:
            LOG.info('CRASH OCCURED')
            result_dict = self.comparison_result_analysis(comparison_result)
            result_dict['model'] = query_model
            result_dict['stack'] = self.get_stack()
            result_dict['num_tries_to_reproduce'] = self.reproduce_crash(
                query_model)

        if restart_impala:
            self.start_impala()

        return result_dict

    def comparison_result_analysis(self, comparison_result):
        '''Get useful information from the comparison_result. '''
        result_dict = {}
        result_dict['error'] = comparison_result.error
        result_dict['mismatch_col'] = comparison_result.mismatch_at_col_number
        result_dict['mismatch_ref_row'] = comparison_result.ref_row
        result_dict['mismatch_test_row'] = comparison_result.test_row
        result_dict['ref_row_count'] = comparison_result.ref_row_count
        result_dict['ref_sql'] = comparison_result.ref_sql
        result_dict['test_row_count'] = comparison_result.test_row_count
        result_dict['test_sql'] = comparison_result.test_sql
        return result_dict