def test_build_profile_nonstationary_reproduce_issue():
    # This dataset is non-stationary but profiler reports
    df = read_timeseries_csv("tests/data/complex_nonstationary.csv")
    df.fillna(0, inplace=True)
    profile = old_build_profile(df)
    # This assertion should pass:
    assert not profile["stationary"]
def test_build_profile_stationary():
    df = read_timeseries_csv("tests/data/daily-total-female-births.csv")
    profile = build_profile(df)
    assert profile["stationary"]
def test_build_profile_nonstationary_goog200():
    df = read_timeseries_csv("tests/data/goog200.csv")
    profile = build_profile(df, freq="1d")
    assert not profile["stationary"]
def test_build_profile_nonstationary():
    df = read_timeseries_csv("tests/data/international-airline-passengers.csv")
    profile = build_profile(df)
    assert not profile["stationary"]
def test_build_profile_seasonal_loaded_dataset():
    # dataset from https://www.kaggle.com/rtatman/us-candy-production-by-month?select=candy_production.csv
    series = read_timeseries_csv("tests/data/candy_production.csv")
    profile = build_seasonal_profile(series)
    assert profile["seasonal"]
def test_build_profile_stationary_diff_goog200():
    df = read_timeseries_csv("tests/data/diff_goog200.csv")
    profile = old_build_profile(df)
    assert profile["stationary"]