def test_build_profile_nonstationary_reproduce_issue(): # This dataset is non-stationary but profiler reports df = read_timeseries_csv("tests/data/complex_nonstationary.csv") df.fillna(0, inplace=True) profile = old_build_profile(df) # This assertion should pass: assert not profile["stationary"]
def test_build_profile_stationary(): df = read_timeseries_csv("tests/data/daily-total-female-births.csv") profile = build_profile(df) assert profile["stationary"]
def test_build_profile_nonstationary_goog200(): df = read_timeseries_csv("tests/data/goog200.csv") profile = build_profile(df, freq="1d") assert not profile["stationary"]
def test_build_profile_nonstationary(): df = read_timeseries_csv("tests/data/international-airline-passengers.csv") profile = build_profile(df) assert not profile["stationary"]
def test_build_profile_seasonal_loaded_dataset(): # dataset from https://www.kaggle.com/rtatman/us-candy-production-by-month?select=candy_production.csv series = read_timeseries_csv("tests/data/candy_production.csv") profile = build_seasonal_profile(series) assert profile["seasonal"]
def test_build_profile_stationary_diff_goog200(): df = read_timeseries_csv("tests/data/diff_goog200.csv") profile = old_build_profile(df) assert profile["stationary"]