def test_yolo_tiny_portuguese(self): papermill.execute_notebook( "Experiment.ipynb", "/dev/null", parameters=dict( dataset=EXPERIMENT_DATASET, language="português", yolo_weight_type="tiny", ), ) papermill.execute_notebook( "Deployment.ipynb", "/dev/null", ) for ext in ['png', 'jpg']: data = datasets.image_testdata(kind='objects', ext=ext) with server.Server() as s: response = s.test(data=data, timeout=10) if 'tensor' in response.keys(): tensor_shape = response["tensor"]['shape'] self.assertEqual(tensor_shape[1], 6) # outputs 6 features else: # is a ndarray ndarray = response["ndarray"] self.assertEqual(len(ndarray[0]), 6) # 6 features names = response["names"] self.assertEqual(len(names), 6) # 6 feature names
def test_yolo_empty_output(self): papermill.execute_notebook( "Experiment.ipynb", "/dev/null", parameters=dict( dataset=EXPERIMENT_DATASET, score_threshold=0.9999, iou_threshold=0.9999, yolo_weight_type="tiny", ), ) papermill.execute_notebook( "Deployment.ipynb", "/dev/null", ) data = datasets.image_testdata(kind='text', ext='png') with server.Server() as s: response = s.test(data=data, timeout=10) if 'tensor' in response.keys(): tensor_shape = response["tensor"]['shape'] self.assertEqual(tensor_shape[1], 6) # outputs 6 features else: # is a ndarray ndarray = response["ndarray"] self.assertEqual(len(ndarray[0]), 6) # 6 features names = response["names"] self.assertEqual(len(names), 6) # 6 feature names
def test_experiment_ocr_output_data(self): papermill.execute_notebook( "Experiment.ipynb", "/dev/null", parameters=dict( dataset="/tmp/data/ocr_dataset.zip", target="target", filter_type="incluir", model_features="input_image", bbox_conf=60, segmentation_mode="Considere um único bloco de texto uniforme", ocr_engine="Mecanismo de redes neurais com apenas LSTM", language="por", bbox_return="np_array", image_return_format="N/A"), ) papermill.execute_notebook( "Deployment.ipynb", "/dev/null", ) for ext in ['png', 'jpg']: data = datasets.image_testdata(kind='text', ext=ext) with server.Server() as s: response = s.test(data=data, timeout=10) print(response) for bbox in response['ndarray']: xmin, ymin, xmax, ymax, text = bbox self.assertGreater(xmax, xmin, "BoundingBox incorreta.") self.assertGreater(ymax, ymin, "BoundingBox incorreta.")
def test_experiment_face_detection_cuda(self): papermill.execute_notebook( "Experiment.ipynb", "/dev/null", parameters=dict( dataset="/tmp/data/football_teams.zip", device="cuda", ), ) papermill.execute_notebook( "Deployment.ipynb", "/dev/null", ) data = datasets.image_testdata(kind='people', ext='jpg') with server.Server() as s: response = s.test(data=data, timeout=10) if 'tensor' in response.keys(): tensor_shape = response["tensor"]['shape'] self.assertEqual(tensor_shape[1], 5) # output 5 features else: # is a ndarray ndarray = response["ndarray"] self.assertEqual(len(ndarray[0]), 5) # 5 features names = response["names"] self.assertEqual(len(names), 5) # 5 feature names
def test_experiment_face_detection_without_people(self): papermill.execute_notebook( "Experiment.ipynb", "/dev/null", parameters=dict( dataset="/tmp/data/football_teams.zip", image_size=64, margin=5, min_face_size=10, factor=0.709, keep_all=True, device="cpu", seed=7, inference_batch_size=2, input_square_transformation_size=128, ), ) papermill.execute_notebook( "Deployment.ipynb", "/dev/null", ) for ext in ['png', 'jpg']: data = datasets.image_testdata(kind='objects', ext=ext) with server.Server() as s: response = s.test(data=data, timeout=10) if 'tensor' in response.keys(): tensor_shape = response["tensor"]['shape'] self.assertEqual(tensor_shape[1], 5) # outputs 5 features else: # is a ndarray ndarray = response["ndarray"] self.assertEqual(len(ndarray[0]), 5) # 5 features names = response["names"] self.assertEqual(len(names), 5) # 5 feature names