def test_constant_unification(self): x = Constant(MyType(), 2, name="x") y = MyVariable("y") z = Constant(MyType(), 2, name="z") e = op1(op1(x, y), y) g = FunctionGraph([y], [e]) PatternOptimizer((op1, z, "1"), (op2, "1", z)).optimize(g) assert str(g) == "FunctionGraph(Op1(Op2(y, z), y))"
def test_constant_merging(self): x = MyVariable("x") y = Constant(MyType(), 2, name="y") z = Constant(MyType(), 2, name="z") e = op1(op2(x, y), op2(x, y), op2(x, z)) g = FunctionGraph([x, y, z], [e]) MergeOptimizer().optimize(g) strg = str(g) assert (strg == "FunctionGraph(Op1(*1 -> Op2(x, y), *1, *1))" or strg == "FunctionGraph(Op1(*1 -> Op2(x, z), *1, *1))")
def test_identical_constant_args(self): x = MyVariable("x") y = Constant(MyType(), 2, name="y") z = Constant(MyType(), 2, name="z") with config.change_flags(compute_test_value="off"): e1 = op1(y, z) g = FunctionGraph([x, y, z], [e1]) MergeOptimizer().optimize(g) strg = str(g) assert strg == "FunctionGraph(Op1(y, y))" or strg == "FunctionGraph(Op1(z, z))"
def test_identical_constant_args(self): x = MyVariable("x") y = Constant(MyType(), 2, name="y") z = Constant(MyType(), 2, name="z") ctv_backup = config.compute_test_value config.compute_test_value = "off" try: e1 = op1(y, z) finally: config.compute_test_value = ctv_backup g = FunctionGraph([x, y, z], [e1]) MergeOptimizer().optimize(g) strg = str(g) assert strg == "FunctionGraph(Op1(y, y))" or strg == "FunctionGraph(Op1(z, z))"
def test_pre_greedy_local_optimizer(): empty_fgraph = FunctionGraph([], []) x = MyVariable("x") y = MyVariable("y") c1 = Constant(MyType(), 1, "c1") c2 = Constant(MyType(), 2, "c2") o1 = op2(c1, c2) o3 = op1(c1, y) o2 = op1(o1, c2, x, o3, o1) assert o2.owner.inputs[0].owner is not None assert o2.owner.inputs[4].owner is not None # This should fold `o1`, because it has only `Constant` arguments, and # replace it with the `Constant` result cst = pre_greedy_local_optimizer(empty_fgraph, [constant_folding], o2) assert cst.owner.inputs[0].owner is None assert cst.owner.inputs[1] is c2 assert cst.owner.inputs[2] is x assert cst.owner.inputs[3] is o3 assert cst.owner.inputs[4] is cst.owner.inputs[0] # We're going to do it again, except this time `o1` is # in the `fgraph`, so it shouldn't be folded fg = FunctionGraph([], [o1], clone=False) o2 = op1(o1, c2, x, o3, o1) cst = pre_greedy_local_optimizer(fg, [constant_folding], o2) assert cst.owner.inputs[0] is o1 assert cst.owner.inputs[4] is cst.owner.inputs[0] # What exactly is this supposed to test? ms = MakeSlice()(1) cst = pre_greedy_local_optimizer(empty_fgraph, [constant_folding], ms) assert isinstance(cst, SliceConstant) # Make sure constant of slice signature is hashable. assert isinstance(hash(cst.signature()), int)
def test_pre_constant_merge(): empty_fgraph = FunctionGraph([], []) x = MyVariable("x") y = MyVariable("y") c1 = Constant(MyType(), 1, "c1") c2 = Constant(MyType(), 1, "c1") o1 = op2(c1, x) o2 = op1(o1, y, c2) assert c1 is not c2 res = pre_constant_merge(empty_fgraph, [o2]) assert [o2] == res assert o2.owner.inputs[2] is c1 o2 = op1(o1, y, c2) fg = FunctionGraph([x, y], [o2], clone=False) assert o2.owner in fg.apply_nodes res = pre_constant_merge(fg, [o2]) assert res == [o2] assert o2.owner.inputs[2] is c2 # What is this supposed to test? ms = MakeSlice()(1) res = pre_constant_merge(empty_fgraph, [ms]) assert res == [ms] const_slice = SliceConstant(type=slicetype, data=slice(1, None, 2)) assert isinstance(const_slice, Constant) adv = AdvancedSubtensor()(tt.matrix(), [2, 3], const_slice) res = pre_constant_merge(empty_fgraph, adv) assert res == [adv]
def make_node(self): return Apply(self, [], [MyType()()])