Пример #1
0
    def test_with_unnecessary_target(self, teardown):
        x = Input()
        y_t = Input()
        classifier = RandomForestClassifier()
        y_p = classifier(x, y_t)
        model = Model(x, y_p, y_t)

        model.fit(iris.data, iris.target)

        # won't require the target is trainable was set to False,
        # but won't complain if it was passed to fit
        classifier.trainable = False
        model.fit(iris.data, iris.target)
Пример #2
0
def test_nested_model_stack(teardown):
    x_data = iris.data
    y_t_data = iris.target
    random_state = 123
    n_components = 2

    # ----------- baikal way
    stacked_model_baikal = make_naive_stacked_model(
        n_components, random_state, x_data, y_t_data
    )
    y_pred_baikal = stacked_model_baikal.predict(x_data)

    # ----------- traditional way
    # Submodel 1
    submodel1 = LogisticRegression(
        multi_class="multinomial", solver="lbfgs", random_state=random_state
    )
    pca = PCA(n_components=n_components, random_state=random_state)
    pca.fit(x_data)
    pca_trans = pca.transform(x_data)
    submodel1.fit(pca_trans, y_t_data)
    submodel1_pred = submodel1.predict(pca_trans)

    # Submodel 2 (a nested stacked model)
    random_forest = RandomForestClassifier(random_state=random_state)
    random_forest.fit(x_data, y_t_data)
    random_forest_pred = random_forest.predict(x_data)

    extra_trees = ExtraTreesClassifier(random_state=random_state)
    extra_trees.fit(x_data, y_t_data)
    extra_trees_pred = extra_trees.predict(x_data)

    features = np.stack([random_forest_pred, extra_trees_pred], axis=1)
    submodel2 = LogisticRegression(
        multi_class="multinomial", solver="lbfgs", random_state=random_state
    )
    submodel2.fit(features, y_t_data)
    submodel2_pred = submodel2.predict(features)

    # Stacked model
    features = np.stack([submodel1_pred, submodel2_pred], axis=1)
    stacked_model_traditional = LogisticRegression(
        multi_class="multinomial", solver="lbfgs", random_state=random_state
    )
    stacked_model_traditional.fit(features, y_t_data)
    y_pred_traditional = stacked_model_traditional.predict(features)

    assert_array_equal(y_pred_baikal, y_pred_traditional)
Пример #3
0
def test_fit_predict_ensemble(teardown):
    mask = iris.target != 2  # Reduce to binary problem to avoid ConvergenceWarning
    x_data = iris.data
    y_t_data = iris.target
    random_state = 123

    # baikal way
    x = Input()
    y_t = Input()
    y1 = LogisticRegression(random_state=random_state)(x, y_t)
    y2 = RandomForestClassifier(random_state=random_state)(x, y_t)
    features = Stack(axis=1)([y1, y2])
    y = LogisticRegression(random_state=random_state)(features, y_t)

    model = Model(x, y, y_t)
    model.fit(x_data, y_t_data)
    y_pred_baikal = model.predict(x_data)

    # traditional way
    logreg = sklearn.linear_model.LogisticRegression(random_state=random_state)
    logreg.fit(x_data, y_t_data)
    logreg_pred = logreg.predict(x_data)

    random_forest = sklearn.ensemble.RandomForestClassifier(random_state=random_state)
    random_forest.fit(x_data, y_t_data)
    random_forest_pred = random_forest.predict(x_data)

    features = np.stack([logreg_pred, random_forest_pred], axis=1)
    ensemble = sklearn.linear_model.LogisticRegression(random_state=random_state)
    ensemble.fit(features, y_t_data)
    y_pred_traditional = ensemble.predict(features)

    assert_array_equal(y_pred_baikal, y_pred_traditional)
Пример #4
0
def test_grid_search_cv_with_tunable_step():
    param_grid = {
        "classifier": [
            LogisticRegression(random_state=random_state),
            RandomForestClassifier(random_state=random_state),
        ],
        "pca__n_components": [2, 4],
    }

    # baikal way
    def build_fn():
        x = Input()
        y_t = Input()
        h = PCA(random_state=random_state, name="pca")(x)
        y = LogisticRegression(random_state=random_state,
                               name="classifier")(h, y_t)
        model = Model(x, y, y_t)
        return model

    sk_model = SKLearnWrapper(build_fn)
    gscv_baikal = GridSearchCV(
        sk_model,
        param_grid,
        cv=cv,
        scoring="accuracy",
        return_train_score=True,
        verbose=verbose,
    )
    gscv_baikal.fit(x_data, y_t_data)

    # traditional way
    pca = sklearn.decomposition.PCA(random_state=random_state)
    classifier = sklearn.linear_model.LogisticRegression(
        random_state=random_state)
    pipe = Pipeline([("pca", pca), ("classifier", classifier)])

    gscv_traditional = GridSearchCV(
        pipe,
        param_grid,
        cv=cv,
        scoring="accuracy",
        return_train_score=True,
        verbose=verbose,
    )
    gscv_traditional.fit(x_data, y_t_data)

    assert gscv_traditional.best_params_ == gscv_baikal.best_params_
    assert_array_equal(
        gscv_traditional.cv_results_["mean_train_score"],
        gscv_baikal.cv_results_["mean_train_score"],
    )
    assert_array_equal(
        gscv_traditional.cv_results_["mean_test_score"],
        gscv_baikal.cv_results_["mean_test_score"],
    )
Пример #5
0
def test_fit_predict_naive_stack(teardown):
    x_data = iris.data
    y_t_data = iris.target
    random_state = 123

    # baikal way
    x = Input()
    y_t = Input()
    y1 = LogisticRegression(random_state=random_state, solver="liblinear")(x, y_t)
    y2 = RandomForestClassifier(random_state=random_state)(x, y_t)
    features = Stack(axis=1)([y1, y2])
    y = LogisticRegression(random_state=random_state, solver="liblinear")(features, y_t)

    model = Model(x, y, y_t)
    model.fit(x_data, y_t_data)
    y_pred_baikal = model.predict(x_data)

    # traditional way
    logreg = LogisticRegression(random_state=random_state, solver="liblinear")
    logreg.fit(x_data, y_t_data)
    logreg_pred = logreg.predict(x_data)

    random_forest = RandomForestClassifier(random_state=random_state)
    random_forest.fit(x_data, y_t_data)
    random_forest_pred = random_forest.predict(x_data)

    features = np.stack([logreg_pred, random_forest_pred], axis=1)
    stacked = LogisticRegression(random_state=random_state, solver="liblinear")
    stacked.fit(features, y_t_data)
    y_pred_traditional = stacked.predict(features)

    assert_array_equal(y_pred_baikal, y_pred_traditional)
Пример #6
0
def test_get_set_params_invariance(teardown):
    pca = PCA(name="pca")
    classifier = RandomForestClassifier(name="classifier")

    x = Input()
    h = pca(x)
    y = classifier(h)
    model = Model(x, y)

    params1 = model.get_params()
    model.set_params(**params1)
    params2 = model.get_params()
    assert params1 == params2
Пример #7
0
def make_naive_stacked_model(n_components, random_state, x_data, y_t_data):
    # An unnecessarily complex Model

    # Sub-model 1
    x1 = Input(name="x1")
    y1_t = Input(name="y1_t")
    h1 = PCA(n_components=n_components, random_state=random_state, name="pca_sub1")(x1)
    y1 = LogisticRegression(
        multi_class="multinomial",
        solver="lbfgs",
        random_state=random_state,
        name="logreg_sub1",
    )(h1, y1_t)
    submodel1 = Model(x1, y1, y1_t, name="submodel1")

    # Sub-model 2 (a nested stacked model)
    x2 = Input(name="x2")
    y2_t = Input(name="y2_t")
    y2_1 = RandomForestClassifier(random_state=random_state, name="rforest_sub2")(
        x2, y2_t
    )
    y2_2 = ExtraTreesClassifier(random_state=random_state, name="extrees_sub2")(
        x2, y2_t
    )
    features = Stack(axis=1, name="stack_sub2")([y2_1, y2_2])
    y2 = LogisticRegression(
        multi_class="multinomial",
        solver="lbfgs",
        random_state=random_state,
        name="logreg_sub2",
    )(features, y2_t)
    submodel2 = Model(x2, y2, y2_t, name="submodel2")

    # Stack of submodels
    x = Input(name="x")
    y_t = Input(name="y_t")
    y1 = submodel1(x, y_t)
    y2 = submodel2(x, y_t)
    features = Stack(axis=1, name="stack")([y1, y2])
    y = LogisticRegression(
        multi_class="multinomial",
        solver="lbfgs",
        random_state=random_state,
        name="logreg_stacked",
    )(features, y_t)
    stacked_model_baikal = Model(x, y, y_t, name="stacked")

    stacked_model_baikal.fit(x_data, y_t_data)

    return stacked_model_baikal
Пример #8
0
def test_fit_predict_standard_stack(teardown):
    # This uses the "standard" protocol where the 2nd level features
    # are the out-of-fold predictions of the 1st. It also appends the
    # original data to the 2nd level features.
    # See for example: https://www.kdnuggets.com/2017/02/stacking-models-imropved-predictions.html
    X_data, y_t_data = breast_cancer.data, breast_cancer.target
    X_train, X_test, y_t_train, y_t_test = train_test_split(X_data,
                                                            y_t_data,
                                                            test_size=0.2,
                                                            random_state=0)
    random_state = 42

    # baikal way
    x = Input()
    y_t = Input()

    y_p1 = RandomForestClassifierOOF(n_estimators=10,
                                     random_state=random_state)(
                                         x, y_t, compute_func="predict_proba")
    y_p1 = Lambda(lambda array: array[:, 1:])(y_p1)  # remove collinear feature

    x_scaled = StandardScaler()(x)
    y_p2 = LinearSVCOOF(random_state=random_state)(
        x_scaled, y_t, compute_func="decision_function")

    stacked_features = ColumnStack()([x, y_p1, y_p2])
    y_p = LogisticRegression(solver="liblinear",
                             random_state=random_state)(stacked_features, y_t)

    model = Model(x, y_p, y_t)
    model.fit(X_train, y_t_train)
    y_pred_baikal = model.predict(X_test)

    # traditional way
    estimators = [
        ("rf",
         RandomForestClassifier(n_estimators=10, random_state=random_state)),
        ("svr",
         make_pipeline(StandardScaler(),
                       LinearSVC(random_state=random_state))),
    ]
    clf = sklearn.ensemble.StackingClassifier(
        estimators=estimators,
        final_estimator=LogisticRegression(solver="liblinear",
                                           random_state=random_state),
        passthrough=True,
    )
    y_pred_traditional = clf.fit(X_train, y_t_train).predict(X_test)

    assert_array_equal(y_pred_baikal, y_pred_traditional)
Пример #9
0
def test_fit_predict_ensemble_with_proba_features(teardown):
    mask = iris.target != 2  # Reduce to binary problem to avoid ConvergenceWarning
    x_data = iris.data[mask]
    y_t_data = iris.target[mask]
    random_state = 123
    n_estimators = 5

    # baikal way
    x = Input()
    y_t = Input()
    y1 = LogisticRegression(random_state=random_state, function="predict_proba")(x, y_t)
    y2 = RandomForestClassifier(
        n_estimators=n_estimators, random_state=random_state, function="apply"
    )(x, y_t)
    features = Concatenate(axis=1)([y1, y2])
    y = LogisticRegression(random_state=random_state)(features, y_t)

    model = Model(x, y, y_t)
    model.fit(x_data, y_t_data)
    y_pred_baikal = model.predict(x_data)

    # traditional way
    logreg = sklearn.linear_model.LogisticRegression(random_state=random_state)
    logreg.fit(x_data, y_t_data)
    logreg_proba = logreg.predict_proba(x_data)

    random_forest = sklearn.ensemble.RandomForestClassifier(
        n_estimators=n_estimators, random_state=random_state
    )
    random_forest.fit(x_data, y_t_data)
    random_forest_leafidx = random_forest.apply(x_data)

    features = np.concatenate([logreg_proba, random_forest_leafidx], axis=1)
    ensemble = sklearn.linear_model.LogisticRegression(random_state=random_state)
    ensemble.fit(features, y_t_data)
    y_pred_traditional = ensemble.predict(features)

    assert_array_equal(y_pred_baikal, y_pred_traditional)
Пример #10
0
def test_fit_predict_naive_stack_with_proba_features(teardown):
    mask = iris.target != 2  # Reduce to binary problem to avoid ConvergenceWarning
    x_data = iris.data[mask]
    y_t_data = iris.target[mask]
    random_state = 123
    n_estimators = 5

    # baikal way
    x = Input()
    y_t = Input()
    y_p1 = LogisticRegression(random_state=random_state)(
        x, y_t, compute_func="predict_proba"
    )
    y_p2 = RandomForestClassifier(n_estimators=n_estimators, random_state=random_state)(
        x, y_t, compute_func="apply"
    )
    y_p1 = Lambda(compute_func=lambda array: array[:, 1:])(y_p1)
    y_p2 = Lambda(compute_func=lambda array: array[:, 1:])(y_p2)
    features = Concatenate(axis=1)([y_p1, y_p2])
    y_p = LogisticRegression(random_state=random_state)(features, y_t)

    model = Model(x, y_p, y_t)
    model.fit(x_data, y_t_data)
    y_pred_baikal = model.predict(x_data)

    # traditional way
    logreg = LogisticRegression(random_state=random_state)
    logreg.fit(x_data, y_t_data)
    logreg_proba = logreg.predict_proba(x_data)

    random_forest = RandomForestClassifier(
        n_estimators=n_estimators, random_state=random_state
    )
    random_forest.fit(x_data, y_t_data)
    random_forest_leafidx = random_forest.apply(x_data)

    features = np.concatenate(
        [logreg_proba[:, 1:], random_forest_leafidx[:, 1:]], axis=1
    )
    stacked = LogisticRegression(random_state=random_state)
    stacked.fit(features, y_t_data)
    y_pred_traditional = stacked.predict(features)

    assert_array_equal(y_pred_baikal, y_pred_traditional)
Пример #11
0
def test_set_params(teardown):
    pca = PCA(name="pca")
    classifier = RandomForestClassifier(name="classifier")
    concat = Concatenate(name="concat")  # a step without get_params/set_params

    x = Input()
    h = pca(x)
    c = concat([x, h])
    y = classifier(c)
    model = Model(x, y)

    # Fails when setting params on step that does not implement set_params
    new_params_wrong = {"concat__axis": 2}
    with pytest.raises(AttributeError):
        model.set_params(**new_params_wrong)

    # Fails when setting params on step that does not exist
    new_params_wrong = {"non_existent_step__param": 42}
    with pytest.raises(ValueError):
        model.set_params(**new_params_wrong)

    # Fails when setting a non-existent param in a step
    new_params_wrong = {"pca__non_existent_param": 42}
    with pytest.raises(ValueError):
        model.set_params(**new_params_wrong)

    new_classifier = LogisticRegression()
    new_params = {
        "classifier": new_classifier,
        "pca__n_components": 4,
        "pca__whiten": True,
        "classifier__C": 100.0,
        "classifier__fit_intercept": False,
        "classifier__penalty": "l1",
    }

    model.set_params(**new_params)
    params = model.get_params()

    expected = {
        "pca": pca,
        "classifier": new_classifier,
        "concat": concat,
        "pca__n_components": 4,
        "pca__whiten": True,
        "pca__tol": 0.0,
        "pca__svd_solver": "auto",
        "pca__copy": True,
        "pca__random_state": None,
        "pca__iterated_power": "auto",
        "classifier__C": 100.0,
        "classifier__class_weight": None,
        "classifier__dual": False,
        "classifier__fit_intercept": False,
        "classifier__intercept_scaling": 1,
        "classifier__max_iter": 100,
        "classifier__multi_class": "warn",
        "classifier__n_jobs": None,
        "classifier__penalty": "l1",
        "classifier__random_state": None,
        "classifier__solver": "warn",
        "classifier__tol": 0.0001,
        "classifier__verbose": 0,
        "classifier__warm_start": False,
        "classifier__l1_ratio": None,
    }

    assert expected == params