Пример #1
0
def test_single_gpu_batch_parse():
    tutils.reset_seed()

    if not tutils.can_run_gpu_test():
        return

    trainer = Trainer()

    # batch is just a tensor
    batch = torch.rand(2, 3)
    batch = trainer.transfer_batch_to_gpu(batch, 0)
    assert batch.device.index == 0 and batch.type() == 'torch.cuda.FloatTensor'

    # tensor list
    batch = [torch.rand(2, 3), torch.rand(2, 3)]
    batch = trainer.transfer_batch_to_gpu(batch, 0)
    assert batch[0].device.index == 0 and batch[0].type(
    ) == 'torch.cuda.FloatTensor'
    assert batch[1].device.index == 0 and batch[1].type(
    ) == 'torch.cuda.FloatTensor'

    # tensor list of lists
    batch = [[torch.rand(2, 3), torch.rand(2, 3)]]
    batch = trainer.transfer_batch_to_gpu(batch, 0)
    assert batch[0][0].device.index == 0 and batch[0][0].type(
    ) == 'torch.cuda.FloatTensor'
    assert batch[0][1].device.index == 0 and batch[0][1].type(
    ) == 'torch.cuda.FloatTensor'

    # tensor dict
    batch = [{'a': torch.rand(2, 3), 'b': torch.rand(2, 3)}]
    batch = trainer.transfer_batch_to_gpu(batch, 0)
    assert batch[0]['a'].device.index == 0 and batch[0]['a'].type(
    ) == 'torch.cuda.FloatTensor'
    assert batch[0]['b'].device.index == 0 and batch[0]['b'].type(
    ) == 'torch.cuda.FloatTensor'

    # tuple of tensor list and list of tensor dict
    batch = ([torch.rand(2, 3) for _ in range(2)], [{
        'a': torch.rand(2, 3),
        'b': torch.rand(2, 3)
    } for _ in range(2)])
    batch = trainer.transfer_batch_to_gpu(batch, 0)
    assert batch[0][0].device.index == 0 and batch[0][0].type(
    ) == 'torch.cuda.FloatTensor'

    assert batch[1][0]['a'].device.index == 0
    assert batch[1][0]['a'].type() == 'torch.cuda.FloatTensor'

    assert batch[1][0]['b'].device.index == 0
    assert batch[1][0]['b'].type() == 'torch.cuda.FloatTensor'
Пример #2
0
def test_running_test_pretrained_model_ddp(tmpdir):
    """Verify `test()` on pretrained model."""
    if not tutils.can_run_gpu_test():
        return

    tutils.reset_seed()
    tutils.set_random_master_port()

    hparams = tutils.get_hparams()
    model = LightningTestModel(hparams)

    # exp file to get meta
    logger = tutils.get_test_tube_logger(tmpdir, False)

    # exp file to get weights
    checkpoint = tutils.init_checkpoint_callback(logger)

    trainer_options = dict(show_progress_bar=False,
                           max_epochs=1,
                           train_percent_check=0.4,
                           val_percent_check=0.2,
                           checkpoint_callback=checkpoint,
                           logger=logger,
                           gpus=[0, 1],
                           distributed_backend='ddp')

    # fit model
    trainer = Trainer(**trainer_options)
    result = trainer.fit(model)

    log.info(os.listdir(tutils.get_data_path(logger, path_dir=tmpdir)))

    # correct result and ok accuracy
    assert result == 1, 'training failed to complete'
    pretrained_model = tutils.load_model(logger,
                                         trainer.checkpoint_callback.filepath,
                                         module_class=LightningTestModel)

    # run test set
    new_trainer = Trainer(**trainer_options)
    new_trainer.test(pretrained_model)

    dataloaders = model.test_dataloader()
    if not isinstance(dataloaders, list):
        dataloaders = [dataloaders]

    for dataloader in dataloaders:
        tutils.run_prediction(dataloader, pretrained_model)
def test_multi_gpu_none_backend(tmpdir):
    """Make sure when using multiple GPUs the user can't use `distributed_backend = None`."""
    tutils.reset_seed()

    if not tutils.can_run_gpu_test():
        return

    model, hparams = tutils.get_model()
    trainer_options = dict(default_save_path=tmpdir,
                           show_progress_bar=False,
                           max_epochs=1,
                           train_percent_check=0.1,
                           val_percent_check=0.1,
                           gpus='-1')

    with pytest.warns(UserWarning):
        tutils.run_model_test(trainer_options, model)
Пример #4
0
def test_amp_gpu_ddp_slurm_managed(tmpdir):
    """Make sure DDP + AMP work."""
    if not tutils.can_run_gpu_test():
        return

    tutils.reset_seed()

    # simulate setting slurm flags
    tutils.set_random_master_port()
    os.environ['SLURM_LOCALID'] = str(0)

    hparams = tutils.get_hparams()
    model = LightningTestModel(hparams)

    trainer_options = dict(
        show_progress_bar=True,
        max_epochs=1,
        gpus=[0],
        distributed_backend='ddp',
        precision=16
    )

    # exp file to get meta
    logger = tutils.get_test_tube_logger(tmpdir, False)

    # exp file to get weights
    checkpoint = tutils.init_checkpoint_callback(logger)

    # add these to the trainer options
    trainer_options['checkpoint_callback'] = checkpoint
    trainer_options['logger'] = logger

    # fit model
    trainer = Trainer(**trainer_options)
    trainer.is_slurm_managing_tasks = True
    result = trainer.fit(model)

    # correct result and ok accuracy
    assert result == 1, 'amp + ddp model failed to complete'

    # test root model address
    assert trainer.resolve_root_node_address('abc') == 'abc'
    assert trainer.resolve_root_node_address('abc[23]') == 'abc23'
    assert trainer.resolve_root_node_address('abc[23-24]') == 'abc23'
    assert trainer.resolve_root_node_address('abc[23-24, 45-40, 40]') == 'abc23'
def test_multi_gpu_model_ddp(tmpdir):
    """Make sure DDP works."""
    if not tutils.can_run_gpu_test():
        return

    tutils.reset_seed()
    tutils.set_random_master_port()

    model, hparams = tutils.get_model()
    trainer_options = dict(default_save_path=tmpdir,
                           show_progress_bar=False,
                           max_epochs=1,
                           train_percent_check=0.4,
                           val_percent_check=0.2,
                           gpus=[0, 1],
                           distributed_backend='ddp')

    tutils.run_model_test(trainer_options, model)
Пример #6
0
def test_amp_single_gpu(tmpdir):
    """Make sure DDP + AMP work."""
    tutils.reset_seed()

    if not tutils.can_run_gpu_test():
        return

    hparams = tutils.get_hparams()
    model = LightningTestModel(hparams)

    trainer_options = dict(default_save_path=tmpdir,
                           show_progress_bar=True,
                           max_epochs=1,
                           gpus=1,
                           distributed_backend='ddp',
                           precision=16)

    tutils.run_model_test(trainer_options, model)
Пример #7
0
def test_amp_gpu_dp(tmpdir):
    """Make sure DP + AMP work."""
    tutils.reset_seed()

    if not tutils.can_run_gpu_test():
        return

    model, hparams = tutils.get_model()
    trainer_options = dict(
        default_save_path=tmpdir,
        max_epochs=1,
        gpus='0, 1',  # test init with gpu string
        distributed_backend='dp',
        precision=16)

    trainer = Trainer(**trainer_options)
    result = trainer.fit(model)

    assert result == 1
Пример #8
0
def test_amp_gpu_ddp(tmpdir):
    """Make sure DDP + AMP work."""
    if not tutils.can_run_gpu_test():
        return

    tutils.reset_seed()
    tutils.set_random_master_port()

    hparams = tutils.get_hparams()
    model = LightningTestModel(hparams)

    trainer_options = dict(default_save_path=tmpdir,
                           show_progress_bar=True,
                           max_epochs=1,
                           gpus=2,
                           distributed_backend='ddp',
                           use_amp=True)

    tutils.run_model_test(trainer_options, model)
def test_multi_gpu_model_dp(tmpdir):
    """Make sure DP works."""
    tutils.reset_seed()

    if not tutils.can_run_gpu_test():
        return

    model, hparams = tutils.get_model()
    trainer_options = dict(default_save_path=tmpdir,
                           show_progress_bar=False,
                           distributed_backend='dp',
                           max_epochs=1,
                           train_percent_check=0.1,
                           val_percent_check=0.1,
                           gpus='-1')

    tutils.run_model_test(trainer_options, model)

    # test memory helper functions
    memory.get_memory_profile('min_max')
Пример #10
0
def test_no_amp_single_gpu(tmpdir):
    """Make sure DDP + AMP work."""
    tutils.reset_seed()

    if not tutils.can_run_gpu_test():
        return

    hparams = tutils.get_hparams()
    model = LightningTestModel(hparams)

    trainer_options = dict(default_save_path=tmpdir,
                           show_progress_bar=True,
                           max_epochs=1,
                           gpus=1,
                           distributed_backend='dp',
                           use_amp=True)

    trainer = Trainer(**trainer_options)
    result = trainer.fit(model)

    assert result == 1
Пример #11
0
def test_running_test_pretrained_model_dp(tmpdir):
    """Verify test() on pretrained model."""
    tutils.reset_seed()

    if not tutils.can_run_gpu_test():
        return

    hparams = tutils.get_hparams()
    model = LightningTestModel(hparams)

    # logger file to get meta
    logger = tutils.get_test_tube_logger(tmpdir, False)

    # logger file to get weights
    checkpoint = tutils.init_checkpoint_callback(logger)

    trainer_options = dict(show_progress_bar=True,
                           max_epochs=4,
                           train_percent_check=0.4,
                           val_percent_check=0.2,
                           checkpoint_callback=checkpoint,
                           logger=logger,
                           gpus=[0, 1],
                           distributed_backend='dp')

    # fit model
    trainer = Trainer(**trainer_options)
    result = trainer.fit(model)

    # correct result and ok accuracy
    assert result == 1, 'training failed to complete'
    pretrained_model = tutils.load_model(logger,
                                         trainer.checkpoint_callback.filepath,
                                         module_class=LightningTestModel)

    new_trainer = Trainer(**trainer_options)
    new_trainer.test(pretrained_model)

    # test we have good test accuracy
    tutils.assert_ok_model_acc(new_trainer)
Пример #12
0
def test_ddp_sampler_error(tmpdir):
    """Make sure DDP + AMP work."""
    if not tutils.can_run_gpu_test():
        return

    tutils.reset_seed()
    tutils.set_random_master_port()

    hparams = tutils.get_hparams()
    model = LightningTestModel(hparams, force_remove_distributed_sampler=True)

    logger = tutils.get_test_tube_logger(tmpdir, True)

    trainer = Trainer(logger=logger,
                      show_progress_bar=False,
                      max_epochs=1,
                      gpus=[0, 1],
                      distributed_backend='ddp',
                      use_amp=True)

    with pytest.warns(UserWarning):
        trainer.get_dataloaders(model)
Пример #13
0
def test_ddp_all_dataloaders_passed_to_fit(tmpdir):
    """Make sure DDP works with dataloaders passed to fit()"""
    if not tutils.can_run_gpu_test():
        return

    tutils.reset_seed()
    tutils.set_random_master_port()

    model, hparams = tutils.get_model()
    trainer_options = dict(default_save_path=tmpdir,
                           show_progress_bar=False,
                           max_epochs=1,
                           train_percent_check=0.4,
                           val_percent_check=0.2,
                           gpus=[0, 1],
                           distributed_backend='ddp')

    fit_options = dict(train_dataloader=model.train_dataloader(),
                       val_dataloaders=model.val_dataloader())

    trainer = Trainer(**trainer_options)
    result = trainer.fit(model, **fit_options)
    assert result == 1, "DDP doesn't work with dataloaders passed to fit()."
Пример #14
0
def test_dp_resume(tmpdir):
    """Make sure DP continues training correctly."""
    if not tutils.can_run_gpu_test():
        return

    tutils.reset_seed()

    hparams = tutils.get_hparams()
    model = LightningTestModel(hparams)

    trainer_options = dict(
        show_progress_bar=True,
        max_epochs=2,
        gpus=2,
        distributed_backend='dp',
    )

    # get logger
    logger = tutils.get_test_tube_logger(tmpdir, debug=False)

    # exp file to get weights
    # logger file to get weights
    checkpoint = tutils.init_checkpoint_callback(logger)

    # add these to the trainer options
    trainer_options['logger'] = logger
    trainer_options['checkpoint_callback'] = checkpoint

    # fit model
    trainer = Trainer(**trainer_options)
    trainer.is_slurm_managing_tasks = True
    result = trainer.fit(model)

    # track epoch before saving. Increment since we finished the current epoch, don't want to rerun
    real_global_epoch = trainer.current_epoch + 1

    # correct result and ok accuracy
    assert result == 1, 'amp + dp model failed to complete'

    # ---------------------------
    # HPC LOAD/SAVE
    # ---------------------------
    # save
    trainer.hpc_save(tmpdir, logger)

    # init new trainer
    new_logger = tutils.get_test_tube_logger(tmpdir, version=logger.version)
    trainer_options['logger'] = new_logger
    trainer_options['checkpoint_callback'] = ModelCheckpoint(tmpdir)
    trainer_options['train_percent_check'] = 0.2
    trainer_options['val_percent_check'] = 0.2
    trainer_options['max_epochs'] = 1
    new_trainer = Trainer(**trainer_options)

    # set the epoch start hook so we can predict before the model does the full training
    def assert_good_acc():
        assert new_trainer.current_epoch == real_global_epoch and new_trainer.current_epoch > 0

        # if model and state loaded correctly, predictions will be good even though we
        # haven't trained with the new loaded model
        dp_model = new_trainer.model
        dp_model.eval()

        dataloader = trainer.train_dataloader
        tutils.run_prediction(dataloader, dp_model, dp=True)

    # new model
    model = LightningTestModel(hparams)
    model.on_train_start = assert_good_acc

    # fit new model which should load hpc weights
    new_trainer.fit(model)

    # test freeze on gpu
    model.freeze()
    model.unfreeze()