def __init__(self): super().__init__() self.conv1 = create_conv(1, 3, 2, 1, -2) self.conv2 = create_conv(1, 3, 2, 2, -2) self.conv3 = create_conv(1, 3, 2, 3, -2) self.relu = nn.ReLU() self.conv4 = create_conv(3, 1, 3, 10, 0) self.conv5 = create_conv(3, 1, 3, -10, 0)
def __init__(self): super().__init__() self.conv1 = create_conv(1, 16, 2, 0, 1) for i in range(16): self.conv1.weight.data[i] += i self.relu = nn.ReLU() self.conv2 = create_conv(16, 32, 3, 20, 0) for i in range(32): self.conv2.weight.data[i] += i self.bn = nn.BatchNorm2d(32) self.conv3 = create_conv(32, 1, 5, 5, 1)
def __init__(self): super().__init__() self.conv1 = create_conv(1, 2, 2, 9, -2) self.conv2 = create_conv(2, 1, 3, -10, 0)
def __init__(self): super().__init__() self.features = [] self.conv1 = create_conv(1, 2, 2, -1, -2) self.conv2 = create_conv(1, 2, 2, -1, -2) self.relu = nn.ReLU()
def __init__(self): super().__init__() self.conv1 = create_conv(1, 2, 2, -1, -2) self.conv2 = create_conv(1, 2, 2, -1, -2)
def get_magnitude_test_model(input_shape): inputs = tf.keras.Input(shape=input_shape) x = create_conv(1, 2, 2, 9., -2.)(inputs) outputs = create_conv(2, 1, 3, -10., 0.)(x) return tf.keras.Model(inputs=inputs, outputs=outputs)