Пример #1
0
 def __init__(self):
     super().__init__()
     self.conv1 = create_conv(1, 3, 2, 1, -2)
     self.conv2 = create_conv(1, 3, 2, 2, -2)
     self.conv3 = create_conv(1, 3, 2, 3, -2)
     self.relu = nn.ReLU()
     self.conv4 = create_conv(3, 1, 3, 10, 0)
     self.conv5 = create_conv(3, 1, 3, -10, 0)
Пример #2
0
    def __init__(self):
        super().__init__()
        self.conv1 = create_conv(1, 16, 2, 0, 1)
        for i in range(16):
            self.conv1.weight.data[i] += i
        self.relu = nn.ReLU()
        self.conv2 = create_conv(16, 32, 3, 20, 0)
        for i in range(32):
            self.conv2.weight.data[i] += i
        self.bn = nn.BatchNorm2d(32)

        self.conv3 = create_conv(32, 1, 5, 5, 1)
Пример #3
0
 def __init__(self):
     super().__init__()
     self.conv1 = create_conv(1, 2, 2, 9, -2)
     self.conv2 = create_conv(2, 1, 3, -10, 0)
Пример #4
0
 def __init__(self):
     super().__init__()
     self.features = []
     self.conv1 = create_conv(1, 2, 2, -1, -2)
     self.conv2 = create_conv(1, 2, 2, -1, -2)
     self.relu = nn.ReLU()
Пример #5
0
 def __init__(self):
     super().__init__()
     self.conv1 = create_conv(1, 2, 2, -1, -2)
     self.conv2 = create_conv(1, 2, 2, -1, -2)
Пример #6
0
def get_magnitude_test_model(input_shape):
    inputs = tf.keras.Input(shape=input_shape)
    x = create_conv(1, 2, 2, 9., -2.)(inputs)
    outputs = create_conv(2, 1, 3, -10., 0.)(x)
    return tf.keras.Model(inputs=inputs, outputs=outputs)