Пример #1
0
 def forward(self, data):
     self.weight_tensor = utils.from_numpy(self.weight.data.swapaxes(0, 1))
     self.bias_tensor = utils.from_numpy(self.bias.data)
     self.data = utils.from_numpy(data)
     self.output = F.conv2d(self.data, self.weight_tensor, self.bias_tensor,
                            self.stride, self.padding)
     return utils.to_numpy(self.output)
Пример #2
0
def _test_backward(input_shape, reduction, axis):
    layer = SoftmaxCrossEntropyLossLayer(reduction=reduction)
    data = np.random.random(input_shape) * 2 - 1
    labels_shape = list(data.shape)
    labels_shape.pop(axis)
    labels = np.random.randint(0, data.shape[axis],
                               labels_shape).astype(np.int64)
    loss = layer(data, labels, axis=axis)
    if axis == 1:
        torch_input = utils.from_numpy(data).requires_grad_(True)
    else:
        torch_input = utils.from_numpy(np.moveaxis(data, axis,
                                                   1)).requires_grad_(True)
    pytorch_loss = F.cross_entropy(torch_input,
                                   utils.from_numpy(labels),
                                   reduction=reduction)
    if len(pytorch_loss.shape) > 0:
        pytorch_loss.sum().backward()
    else:
        pytorch_loss.backward()

    utils.assert_close(loss, utils.to_numpy(pytorch_loss))

    grad = layer.backward()
    torch_grad = utils.to_numpy(torch_input.grad)
    if axis != 1:
        torch_grad = np.moveaxis(torch_grad, 1, axis)

    utils.assert_close(grad, torch_grad, atol=0.001)
Пример #3
0
def _test_conv_backward(input_shape, out_channels, kernel_size, stride):
    np.random.seed(0)
    torch.manual_seed(0)
    in_channels = input_shape[1]
    #print('test ksize',kernel_size)
    #print('strid',stride)
    padding = (kernel_size - 1) // 2
    #print('test pad',padding)
    input = np.random.random(input_shape).astype(np.float32) * 20
    layer = ConvLayer(in_channels, out_channels, kernel_size, stride)

    torch_layer = nn.Conv2d(in_channels,
                            out_channels,
                            kernel_size,
                            stride,
                            padding,
                            bias=True)
    utils.assign_conv_layer_weights(layer, torch_layer)

    output = layer.forward(input)
    out_grad = layer.backward(2 * np.ones_like(output) / output.size)

    torch_input = utils.from_numpy(input).requires_grad_(True)
    torch_out = torch_layer(torch_input)
    (2 * torch_out.mean()).backward()

    utils.assert_close(out_grad, torch_input.grad, atol=TOLERANCE)
    utils.check_conv_grad_match(layer, torch_layer)
Пример #4
0
def _test_conv_forward(input_shape, out_channels, kernel_size, stride):
    np.random.seed(0)
    torch.manual_seed(0)
    in_channels = input_shape[1]
    padding = (kernel_size - 1) // 2
    input = np.random.random(input_shape).astype(np.float32) * 20
    original_input = input.copy()
    layer = ConvLayer(in_channels, out_channels, kernel_size, stride)

    torch_layer = nn.Conv2d(in_channels,
                            out_channels,
                            kernel_size,
                            stride,
                            padding,
                            bias=True)
    utils.assign_conv_layer_weights(layer, torch_layer)

    output = layer.forward(input)

    torch_data = utils.from_numpy(input)
    torch_out = torch_layer(torch_data)

    assert np.all(input == original_input)
    assert output.shape == torch_out.shape
    utils.assert_close(output, torch_out, atol=TOLERANCE)
Пример #5
0
 def backward(self, previous_partial_gradient):
     gradients = utils.from_numpy(previous_partial_gradient)
     new_gradients = torch.autograd.grad(self.output,
                                         self.data,
                                         gradients,
                                         retain_graph=False)[0]
     return utils.to_numpy(new_gradients)
Пример #6
0
def _test_forward(input_shape, reduction, axis):
    layer = SoftmaxCrossEntropyLossLayer(reduction=reduction)
    data = np.random.random(input_shape) * 2 - 1
    labels_shape = list(data.shape)
    labels_shape.pop(axis)
    labels = np.random.randint(0, data.shape[axis],
                               labels_shape).astype(np.int64)
    loss = layer(data, labels, axis=axis)
    if axis == 1:
        pytorch_loss = F.cross_entropy(utils.from_numpy(data),
                                       utils.from_numpy(labels),
                                       reduction=reduction)
    else:
        pytorch_loss = F.cross_entropy(utils.from_numpy(data.swapaxes(1,
                                                                      axis)),
                                       utils.from_numpy(labels),
                                       reduction=reduction)
    pytorch_loss = utils.to_numpy(pytorch_loss)

    utils.assert_close(loss, pytorch_loss, atol=0.001)
Пример #7
0
    def backward(self, previous_partial_gradient):
        gradients = utils.from_numpy(previous_partial_gradient)
        input_grad = grad.conv2d_input(self.data.shape, self.weight_tensor,
                                       gradients, self.stride, self.padding)
        weight_grad = grad.conv2d_weight(self.data, self.weight_tensor.shape,
                                         gradients, self.stride, self.padding)
        bias_grad = gradients.sum((0, 2, 3))

        self.weight.grad = utils.to_numpy(weight_grad.transpose(1, 0))
        self.bias.grad = utils.to_numpy(bias_grad)
        data_gradient = utils.to_numpy(input_grad)
        return data_gradient
Пример #8
0
def _test_linear_backward(input_shape, out_channels):
    in_channels = input_shape[1]
    input = np.random.random(input_shape).astype(np.float32) * 20
    layer = LinearLayer(in_channels, out_channels)

    torch_layer = nn.Linear(in_channels, out_channels, bias=True)
    utils.assign_linear_layer_weights(layer, torch_layer)

    output = layer.forward(input)
    out_grad = layer.backward(np.ones_like(output) * 2)

    torch_input = utils.from_numpy(input).requires_grad_(True)
    torch_out = torch_layer(torch_input)
    (2 * torch_out).sum().backward()

    utils.assert_close(out_grad, torch_input.grad, atol=TOLERANCE)
    utils.check_linear_grad_match(layer, torch_layer, tolerance=TOLERANCE)
Пример #9
0
def _test_linear_forward(input_shape, out_channels):
    in_channels = input_shape[1]
    input = np.random.random(input_shape).astype(np.float32) * 20
    original_input = input.copy()
    layer = LinearLayer(in_channels, out_channels)

    torch_layer = nn.Linear(in_channels, out_channels, bias=True)
    utils.assign_linear_layer_weights(layer, torch_layer)

    output = layer.forward(input)

    torch_data = utils.from_numpy(input)
    torch_out = torch_layer(torch_data)

    assert np.all(input == original_input)
    assert output.shape == torch_out.shape
    utils.assert_close(output, torch_out, atol=TOLERANCE)
Пример #10
0
def _test_max_pool_backward(input_shape, kernel_size, stride):
    np.random.seed(0)
    torch.manual_seed(0)
    padding = (kernel_size - 1) // 2
    input = np.random.random(input_shape).astype(np.float32) * 20
    layer = MaxPoolLayer(kernel_size, stride)

    torch_layer = nn.MaxPool2d(kernel_size, stride, padding)

    output = layer.forward(input)
    out_grad = layer.backward(2 * np.ones_like(output) / output.size)

    torch_input = utils.from_numpy(input).requires_grad_(True)
    torch_out = torch_layer(torch_input)
    (2 * torch_out.mean()).backward()

    torch_out_grad = utils.to_numpy(torch_input.grad)
    utils.assert_close(out_grad, torch_out_grad, atol=TOLERANCE)
Пример #11
0
def _test_max_pool_forward(input_shape, kernel_size, stride):
    np.random.seed(0)
    torch.manual_seed(0)
    padding = (kernel_size - 1) // 2
    input = np.random.random(input_shape).astype(np.float32) * 20
    original_input = input.copy()
    layer = MaxPoolLayer(kernel_size, stride)

    torch_layer = nn.MaxPool2d(kernel_size, stride, padding)
    output = layer.forward(input)

    torch_data = utils.from_numpy(input)
    torch_out = utils.to_numpy(torch_layer(torch_data))
    output[np.abs(output) < 1e-4] = 0
    torch_out[np.abs(torch_out) < 1e-4] = 0

    assert np.all(input == original_input)
    assert output.shape == torch_out.shape
    utils.assert_close(output, torch_out, atol=TOLERANCE)
Пример #12
0
def test_networks():
    np.random.seed(0)
    torch.manual_seed(0)
    data = np.random.random((100, 1, 28, 28)).astype(np.float32) * 10 - 5
    labels = np.random.randint(0, 10, 100).astype(np.int64)

    net = MNISTResNetwork()
    torch_net = TorchMNISTResNetwork()
    utils.assign_conv_layer_weights(net.layers[0], torch_net.layers[0])
    utils.assign_conv_layer_weights(net.layers[3], torch_net.layers[3])
    utils.assign_conv_layer_weights(net.layers[4].conv_layers[0],
                                    torch_net.layers[4].conv1)
    utils.assign_conv_layer_weights(net.layers[4].conv_layers[2],
                                    torch_net.layers[4].conv2)
    utils.assign_conv_layer_weights(net.layers[5].conv_layers[0],
                                    torch_net.layers[5].conv1)
    utils.assign_conv_layer_weights(net.layers[5].conv_layers[2],
                                    torch_net.layers[5].conv2)
    utils.assign_linear_layer_weights(net.layers[9], torch_net.layers[9])
    utils.assign_linear_layer_weights(net.layers[11], torch_net.layers[11])
    utils.assign_linear_layer_weights(net.layers[13], torch_net.layers[13])

    forward = net(data)

    data_torch = utils.from_numpy(data).requires_grad_(True)
    forward_torch = torch_net(data_torch)

    utils.assert_close(forward, forward_torch)

    loss = net.loss(forward, labels)
    torch_loss = torch_net.loss(forward_torch, utils.from_numpy(labels))

    utils.assert_close(loss, torch_loss)

    out_grad = net.backward()
    torch_loss.backward()

    utils.assert_close(out_grad, data_torch.grad, atol=0.01)

    tolerance = 1e-4
    utils.check_linear_grad_match(net.layers[13],
                                  torch_net.layers[13],
                                  tolerance=tolerance)
    utils.check_linear_grad_match(net.layers[11],
                                  torch_net.layers[11],
                                  tolerance=tolerance)
    utils.check_linear_grad_match(net.layers[9],
                                  torch_net.layers[9],
                                  tolerance=tolerance)
    utils.check_conv_grad_match(net.layers[5].conv_layers[2],
                                torch_net.layers[5].conv2,
                                tolerance=tolerance)
    utils.check_conv_grad_match(net.layers[5].conv_layers[0],
                                torch_net.layers[5].conv1,
                                tolerance=tolerance)
    utils.check_conv_grad_match(net.layers[4].conv_layers[2],
                                torch_net.layers[4].conv2,
                                tolerance=tolerance)
    utils.check_conv_grad_match(net.layers[4].conv_layers[0],
                                torch_net.layers[4].conv1,
                                tolerance=tolerance)
    utils.check_conv_grad_match(net.layers[3],
                                torch_net.layers[3],
                                tolerance=tolerance)
    utils.check_conv_grad_match(net.layers[0],
                                torch_net.layers[0],
                                tolerance=tolerance)
Пример #13
0
 def forward(self, data):
     self.data = utils.from_numpy(data)
     self.data.requires_grad_(True)
     self.output = F.max_pool2d(self.data, self.kernel_size, self.stride,
                                self.padding)
     return utils.to_numpy(self.output)