def construct(self, Y, X=None, forcefullrank=False, SNPs0=None, i_exclude=None, nullModel=None, altModel=None, scoring=None, greater_is_better=None): ''' The same code gets executed for both linear and logistic, because the logistic is an approximation. ''' assert nullModel['effect'] == 'mixed' and altModel['effect'] == 'mixed',\ 'You have not used mixed effects for the two kernel case.' assert nullModel['link'] == 'linear' assert altModel['link'] == 'linear' if self.score == 'mom': assert nullModel['link'] == 'linear' and altModel['link'] == 'linear', 'You are allowed to use '\ 'only the linear link for sc mom test.' G0, K0 = tu.set_snps0(SNPs0=SNPs0, sample_size=Y.shape[0], i_exclude=i_exclude, forcefullrank=forcefullrank) return score.scoretest2K(Y=Y[:, SP.newaxis], X=X, K=K0, G0=G0)
def construct(self, Y, X=None, forcefullrank = False, SNPs0 = None, i_exclude = None, nullModel = None, altModel = None, scoring = None, greater_is_better = None): ''' The same code gets executed for both linear and logistic, because the logistic is an approximation. ''' assert nullModel['effect'] == 'mixed' and altModel['effect'] == 'mixed',\ 'You have not used mixed effects for the two kernel case.' assert nullModel['link'] == 'linear' assert altModel['link'] == 'linear' if self.score == 'mom': assert nullModel['link'] == 'linear' and altModel['link'] == 'linear', 'You are allowed to use '\ 'only the linear link for sc mom test.' G0,K0=tu.set_snps0(SNPs0=SNPs0,sample_size=Y.shape[0],i_exclude=i_exclude,forcefullrank=forcefullrank) return score.scoretest2K(Y=Y[:,SP.newaxis],X=X,K=K0,G0=G0)
def construct(self, Y, X=None, forcefullrank=False, SNPs0=None, i_exclude=None, nullModel=None, altModel=None, scoring=None, greater_is_better=None): G0, K0 = tu.set_snps0(SNPs0=SNPs0, sample_size=Y.shape[0], i_exclude=i_exclude) print "constructing LMM - this should only happen once." return lrt(Y, X=X, forcefullrank=forcefullrank, G0=G0, K0=K0, nullModel=nullModel, altModel=altModel)
def construct(self, Y, X=None, forcefullrank=False, SNPs0=None, i_exclude=None, nullModel=None, altModel=None, scoring=None, greater_is_better=None): G0, K0 = tu.set_snps0(SNPs0=SNPs0, sample_size=Y.shape[0], i_exclude=i_exclude) return lr.lrt(Y=Y, X=X, model0=None, appendbias=False, forcefullrank=forcefullrank, G0=G0, K0=K0, nullModel=nullModel, altModel=altModel)
def construct(self, Y, X=None, forcefullrank = False, SNPs0 = None, i_exclude = None, nullModel = None, altModel = None, scoring = None, greater_is_better = None): G0,K0=tu.set_snps0(SNPs0=SNPs0,sample_size=Y.shape[0],i_exclude=i_exclude) return lr.lrt(Y=Y, X=X, model0=None, appendbias=False, forcefullrank=forcefullrank, G0=G0,K0=K0, nullModel=nullModel, altModel=altModel)
def construct(self, Y, X=None, forcefullrank = False, SNPs0 = None, i_exclude=None, nullModel = None, altModel = None, scoring = None, greater_is_better = None): G0,K0=tu.set_snps0(SNPs0=SNPs0,sample_size=Y.shape[0],i_exclude=i_exclude) print "constructing LMM - this should only happen once." return lrt(Y, X=X, forcefullrank=forcefullrank, G0=G0, K0=K0, nullModel=nullModel,altModel=altModel)