Пример #1
0
    def __init__(self,
                 pretrained_model_name: Optional[str] = None,
                 cache_dir: Optional[str] = None,
                 hparams=None):

        super().__init__(hparams=hparams)

        # Create the underlying encoder
        encoder_hparams = dict_fetch(hparams, GPT2Encoder.default_hparams())

        self._encoder = GPT2Encoder(pretrained_model_name=pretrained_model_name,
                                    cache_dir=cache_dir,
                                    hparams=encoder_hparams)

        # Create a dropout layer
        self._dropout_layer = nn.Dropout(self._hparams.dropout)

        # Create an additional classification layer if needed
        self.num_classes = self._hparams.num_classes
        if self.num_classes <= 0:
            self._logits_layer = None
        else:
            logit_kwargs = self._hparams.logit_layer_kwargs
            if logit_kwargs is None:
                logit_kwargs = {}
            elif not isinstance(logit_kwargs, HParams):
                raise ValueError("hparams['logit_layer_kwargs'] "
                                 "must be a dict.")
            else:
                logit_kwargs = logit_kwargs.todict()

            if self._hparams.clas_strategy == 'all_time':
                self._logits_layer = nn.Linear(
                    self._encoder.output_size *
                    self._hparams.max_seq_length,
                    self.num_classes,
                    **logit_kwargs)
            else:
                self._logits_layer = nn.Linear(
                    self._encoder.output_size, self.num_classes,
                    **logit_kwargs)

        if self._hparams.initializer:
            initialize = get_initializer(self._hparams.initializer)
            assert initialize is not None
            if self._logits_layer is not None:
                initialize(self._logits_layer.weight)
                if self._logits_layer.bias is not None:
                    initialize(self._logits_layer.bias)

        self.is_binary = (self.num_classes == 1) or \
                         (self.num_classes <= 0 and
                          self._hparams.dim == 1)
    def default_hparams():
        r"""Returns a dictionary of hyperparameters with default values.

        .. code-block:: python

            {
                # (1) Same hyperparameters as in GPT2Encoder
                ...
                # (2) Additional hyperparameters
                "num_classes": 2,
                "logit_layer_kwargs": None,
                "clas_strategy": `cls_time`,
                "max_seq_length": None,
                "dropout": 0.1,
                "name": `gpt2_classifier`
            }

        Here:

        1. Same hyperparameters as in
           :class:`~texar.torch.modules.GPT2Encoder`.
           See the :meth:`~texar.torch.modules.GPT2Encoder.default_hparams`.
           An instance of GPT2Encoder is created for feature extraction.

        2. Additional hyperparameters:

            `"num_classes"`: int
                Number of classes:

                - If **> 0**, an additional `Linear`
                  layer is appended to the encoder to compute the logits over
                  classes.
                - If **<= 0**, no dense layer is appended. The number of
                  classes is assumed to be the final dense layer size of the
                  encoder.

            `"logit_layer_kwargs"`: dict
                Keyword arguments for the logit Dense layer constructor,
                except for argument "units" which is set to `num_classes`.
                Ignored if no extra logit layer is appended.

            `"clas_strategy"`: str
                The classification strategy, one of:

                - **cls_time**: Sequence-level classification based on the
                  output of the last time step. Each sequence has a class.
                - **all_time**: Sequence-level classification based on
                  the output of all time steps. Each sequence has a class.
                - **time_wise**: Step-wise classification, i.e., make
                  classification for each time step based on its output.

            `"max_seq_length"`: int, optional
                Maximum possible length of input sequences. Required if
                `clas_strategy` is `all_time`.

            `"dropout"`: float
                The dropout rate of the GPT2 encoder output.

            `"name"`: str
                Name of the classifier.
        """

        hparams = GPT2Encoder.default_hparams()
        hparams.update({
            "num_classes": 2,
            "logit_layer_kwargs": None,
            "clas_strategy": "cls_time",
            "max_seq_length": None,
            "dropout": 0.1,
            "name": "gpt2_classifier"
        })
        return hparams