Пример #1
0
    def map_concepts(self):
        """
        Concepts are weighted according to the number of annotator summaries
        in which they apper.
        """

        ## make sure gold summaries are loaded
        if (not self.problem.annotators) or (not self.problem.training):
            sys.stderr.write('\nError: no gold summaries loaded\n')
            return

        concepts = {}
        for annotator in self.problem.annotators:
            annotator_concepts = {}

            for rawsent in self.problem.training[annotator]:
                sent = text.Sentence(rawsent)
                units = self.unit_selector(sent.stemmed)

                for unit in units:
                    if not unit in annotator_concepts:
                        annotator_concepts[unit] = 0
                    annotator_concepts[unit] += 1

            for concept in annotator_concepts:
                if not concept in concepts: concepts[concept] = 0
                concepts[concept] += 1

        self.concepts = concepts
        return True
Пример #2
0
    def __init__(self, sentences, gold_sentences, idx=None,
            label_sentences=None):
        """Create an instance with multiple input sentences and output
        sentences.
        """
        TransductionInstance.__init__(self, sentences, idx=idx)

        # Add each gold sentence as a MultiSentence (for annotation purposes)
        self.gold_sentences = [text.MultiSentence(
                                [text.Sentence(gold_sentence)])
                                for gold_sentence in gold_sentences]

        self.sum_gold_len = sum(len(gold_sent.tokens)
                                for gold_sent in self.gold_sentences)
        self.avg_gold_len = self.sum_gold_len / len(self.gold_sentences)

        # If provided, add additional sentences as well.
        if label_sentences is not None:
            self.label_sentences = [text.MultiSentence(
                                    [text.Sentence(label_sentence)])
                                    for label_sentence in label_sentences]
Пример #3
0
    def __init__(self, id, title, narr, new_docs, old_docs, old_problems=[]):
        self.id = id
        self.title = title
        self.narr = narr
        self.query = text.Sentence(title + ": " + narr)
        self.new_docs_paths = new_docs[:]
        self.old_docs_paths = old_docs[:]
        self.old_problems = old_problems

        ## variables that might get set later
        self.new_docs = None
        self.old_docs = None
        self.training = {}
        self.annotators = set()
Пример #4
0
    def map_concepts(self):

        concepts = {}
        for annotator in self.problem.annotators:
            annotator_concepts = {}
            for sent in self.problem.training[annotator]:
                sentence = text.Sentence(sent)
                units = self.unit_selector(sentence.stemmed)
                for unit in units:
                    if unit not in annotator_concepts: annotator_concepts[unit] = 0
                    annotator_concepts[unit] += 1
            for concept in annotator_concepts:
                if concept not in concepts: concepts[concept] = 0
                concepts[concept] += 1

        self.concept_sets = [concepts]
Пример #5
0
def get_program_result(program):
    # get the selected sentences
    selection = []
    for id in program.output:
        if id.startswith("s") and program.output[id] == 1:
            node = program.binary[
                id]  # gives you back the actual node (which can be a subsentence, or a chunk not removed)
            if not program.nodeHasSelectedParent(
                    node):  # only start printing at the topmost nodes
                # create a fake sentence to hold the compressed content
                sentence = text.Sentence(compression.postProcess(program.getSelectedText(node)), \
                        node.root.sentence.order, node.root.sentence.source, node.root.sentence.date)
                sentence.parsed = str(node)
                sentence.original_node = node
                selection.append(sentence)
                #print node.root.getPrettyCandidates()
    return selection
Пример #6
0
    def __init__(self, id, title, narr, new_docs, old_docs):
        self.id = id
        self.title = title
        self.narr = narr
        self.query = text.Sentence(title + ": " + narr)
        self.new_docs_paths = new_docs[:]
        self.old_docs_paths = old_docs[:]

        ## for checking state
        self.loaded_docs = False
        self.parsed = False
        self.loaded_ir_docs = False

        ## variables that might get set later
        self.new_docs = None
        self.old_docs = None
        self.training = {}
        self.annotators = set()
Пример #7
0
def by_dendrogram(sentences, concept_weight, problem):
    cooccurrences = build_cooccurrence_matrix(problem)
    clusters = []
    for sentence in sentences:
        #concepts = util.get_ngrams(sentence.stemmed, n=1, bounds=False)
        #concepts = dict([(x, concept_weight[x]) for x in concepts if x in concept_weight])
        concepts = dict([(x, 1.0) for x in sentence.no_stop])
        clusters.append(Cluster(concepts, text=sentence))
    while len(clusters) > 1:
        max_sim = -1
        argmax = (None, None)
        for i in range(len(clusters)):
            for j in range(i + 1, len(clusters)):
                #similarity = clusters[i].similarity(clusters[j]) + clusters[j].similarity(clusters[i])
                similarity = 0.0
                for word in clusters[i].words:
                    for peer in clusters[j].words:
                        occurrence = tuple(sorted([word, peer]))
                        if occurrence in cooccurrences:
                            similarity += cooccurrences[occurrence]
                similarity /= len(clusters[i].words) * len(clusters[j].words)
                #print similarity, i, j
                if (similarity > max_sim):
                    max_sim = similarity
                    argmax = (i, j)
        child1 = clusters[argmax[0]]
        child2 = clusters[argmax[1]]
        #print max_sim, child1.original_order, child2.original_order
        #clusters[argmax[0]] = Cluster(child1.words | child2.words, child1, child2)
        clusters[argmax[0]] = Cluster(
            merge_vectors(child1.words, child2.words), child1, child2)
        del clusters[argmax[1]]
    #print clusters[0]
    fake_query = text.Sentence('')
    fake_query.no_stop = {}
    for concept in concept_weight:
        for gram in concept:
            if gram not in text.text_processor._stopwords:
                fake_query.no_stop[gram] = 1
    return clusters[0].get_ordered(fake_query)
Пример #8
0
def build_alternative_program(problem,
                              concept_weight,
                              length=100,
                              sentences=None,
                              longuest_candidate_only=False,
                              providedAcronyms=None):
    if not sentences:
        sentences = problem.get_new_sentences()

    for sentence in problem.get_new_and_old_sentences():
        if not hasattr(sentence, "compression_node"):
            sentence.compression_node = compression.TreebankNode(
                sentence.parsed)

    nounPhraseMapping = compression.generateNounPhraseMapping(
        [s.compression_node for s in problem.get_new_and_old_sentences()])
    #print "generating acronyms"
    acronymMapping = None
    if providedAcronyms:
        acronymMapping = providedAcronyms
    else:
        acronymMapping = compression.generateAcronymMapping(
            problem.get_new_and_old_sentences())
    print problem.id, acronymMapping

    compressed_sentences = []
    seen_sentences = {}
    group_id = 0
    for sentence in sentences:
        subsentences = sentence.compression_node.getNodesByFilter(
            compression.TreebankNode.isSubsentence)
        candidates = {}
        for node in subsentences:
            candidates.update(
                node.getCandidates(beam=100,
                                   mapping=nounPhraseMapping,
                                   use_mandatory_removals=True))
        if longuest_candidate_only:
            max_length = 0
            argmax = None
            for candidate in candidates:
                if len(candidate) > max_length:
                    max_length = len(candidate)
                    argmax = candidate
            if argmax != None:
                candidates = [argmax]
        for candidate in candidates:
            new_sentence = text.Sentence(compression.postProcess(candidate),
                                         sentence.order, sentence.source,
                                         sentence.date)
            if new_sentence.length <= 5: continue  # skip short guys
            new_sentence.group_id = group_id
            compressed_sentences.append(new_sentence)
            seen_sentences[new_sentence.original] = 1
        group_id += 1

    compression.replaceAcronyms(compressed_sentences, acronymMapping)
    #log_file = open("%s.log" % problem.id, "w")
    #for sentence in compressed_sentences:
    #    log_file.write("%d %s\n" %( group_id, str(sentence)))
    #log_file.close()

    # generate ids for acronyms
    acronym_id = {}
    acronym_length = {}
    for definition, acronym in acronymMapping.items():
        if acronym not in acronym_id:
            acronym_id[acronym] = len(acronym_id)
            acronym_length[acronym] = len(definition.strip().split())

    # get concepts
    relevant_sentences = []
    sentence_concepts = []
    groups = {}
    used_concepts = set()
    acronym_index = {}
    sent_index = 0
    for sentence in compressed_sentences:
        units = util.get_ngrams(sentence.stemmed, n=2, bounds=False)
        overlapping = set([u for u in units if u in concept_weight])
        if len(overlapping) == 0:
            continue  # get rid of sentences that do not overlap with concepts
        relevant_sentences.append(sentence)
        sentence_concepts.append(overlapping)
        used_concepts.update(overlapping)
        if sentence.group_id not in groups: groups[sentence.group_id] = []
        groups[sentence.group_id].append(sent_index)
        # generate an acronym index
        for acronym in acronym_id:
            if re.search(r'\b' + acronym + r'\b', sentence.original):
                if acronym not in acronym_index: acronym_index[acronym] = []
                acronym_index[acronym].append(sent_index)
        sent_index += 1

    # build inverted index
    filtered_concepts = {}
    concept_index = {}
    index = 0
    for concept in used_concepts:
        concept_index[concept] = index
        filtered_concepts[concept] = concept_weight[concept]
        index += 1
    relevant_sent_concepts = [[concept_index[c] for c in cs]
                              for cs in sentence_concepts]
    concept_weights = filtered_concepts
    curr_concept_sents = {}
    for sent_index in range(len(relevant_sentences)):
        concepts = relevant_sent_concepts[sent_index]
        for concept in concepts:
            if not concept in curr_concept_sents:
                curr_concept_sents[concept] = []
            curr_concept_sents[concept].append(sent_index)

    # generate the actual ILP
    program = ilp.IntegerLinearProgram()

    program.objective["score"] = ' + '.join([
        '%f c%d' % (concept_weight[concept], concept_index[concept])
        for concept in concept_index
    ])

    s1 = ' + '.join([
        '%d s%d' % (relevant_sentences[sent_index].length, sent_index)
        for sent_index in range(len(relevant_sentences))
    ])
    # add enough space to fit the definition of each acronym employed in the summary
    s_acronyms = ' + '.join([
        '%d a%d' % (acronym_length[acronym], acronym_id[acronym])
        for acronym in acronym_id
    ])
    if s_acronyms != "":
        s_acronyms = " + " + s_acronyms
    s2 = ' <= %s\n' % length
    program.constraints["length"] = s1 + s_acronyms + s2

    for concept, index in concept_index.items():
        ## at least one sentence containing a selected bigram must be selected
        s1 = ' + '.join(
            ['s%d' % sent_index for sent_index in curr_concept_sents[index]])
        s2 = ' - c%d >= 0' % index
        program.constraints["presence_%d" % index] = s1 + s2
        ## if a bigram is not selected then all sentences containing it are deselected
        #### this constraint is disabled since it is not necessary when all sentences contain at least one concept
        #### it might also be the reason for singlar matrices that crash the solver
        #s1 = ' + '.join([ 's%d' %sent_index for sent_index in curr_concept_sents[index]])
        #s2 = ' - %d c%d <= 0' %(len(curr_concept_sents[index]), index)
        #program.constraints["absence_%d" % index] = s1 + s2

    # constraints so that acronyms get selected along with sentences they belong to
    for acronym, index in acronym_index.items():
        s1 = ' + '.join(['s%d' % sent_index for sent_index in index])
        s2 = ' - a%d >= 0' % acronym_id[acronym]
        program.constraints["acronym_presence_%d" %
                            acronym_id[acronym]] = s1 + s2
        s1 = ' + '.join(['s%d' % sent_index for sent_index in index])
        s2 = ' - %d a%d <= 0' % (len(index), acronym_id[acronym])
        program.constraints["acronym_absence_%d" %
                            acronym_id[acronym]] = s1 + s2

    # add sentence compression groups
    for group in groups:
        if len(groups[group]) > 1:
            program.constraints["group_%d" % group] = " + ".join(
                ["s%d" % sent_index for sent_index in groups[group]]) + " <= 1"

    for sent_index in range(len(relevant_sentences)):
        program.binary["s%d" % sent_index] = relevant_sentences[sent_index]
    for concept, concept_index in concept_index.items():
        program.binary["c%d" % concept_index] = 1
    for acronym, id in acronym_id.items():
        program.binary["a%d" % id] = 1

    sys.stderr.write("compression candidates: %d, original: %d\n" %
                     (len(relevant_sentences), len(sentences)))
    program.acronyms = acronymMapping
    return program
Пример #9
0
def run_standard(options, max_sents=10000):

    ## create output directory
    try:
        os.popen('rm -rf %s' % options.output)
    except:
        pass
    try:
        os.popen('mkdir -p %s' % options.output)
    except:
        sys.stderr.write('Error: could not create output directory [%s]\n')
        sys.exit()

    ## summarize!
    sys.stderr.write('generating summaries for task [%s]\n' % options.task)
    sys.stderr.write('length limit [%d]\n' % task.length_limit)
    sys.stderr.write('writing output to [%s]\n' % options.output)

    map_times, run_times = {}, {}

    ## sentence compression
    if options.compress:
        for problem in task.problems:
            if not '-A' in problem.id: continue
            sys.stderr.write(
                "%s %d\n" %
                (problem.id,
                 sum([len(doc.sentences) for doc in problem.new_docs])))
            #mapper = concept_mapper.HeuristicMapper(problem, "n2")
            mapper = concept_mapper.CheatingMapper(problem, "n2")
            mapper.map_concepts()
            mapper.choose_sents()
            concept_weights = mapper.concept_weights
            #print concept_weight
            #program = framework.build_program(problem, concept_weight, length=task.length_limit, sentences=mapper.relevant_sent_sets[0])
            program = framework.build_alternative_program(
                problem,
                concept_weights,
                length=task.length_limit,
                sentences=mapper.relevant_sents,
                longuest_candidate_only=False)
            # run the program and get the output
            program.debug = 0
            program.run()
            #selection = framework.get_program_result(program)
            selection = []
            for variable in program.output:
                if re.match(r'^s\d+$',
                            variable) and program.output[variable] == 1:
                    selection.append(program.binary[variable])
            selection = ordering.by_date(selection)
            summary = "\n".join(sentence.original for sentence in selection)
            #summary = compression.addAcronymDefinitionsToSummary(summary, program.acronyms)

            ## TAC id convention is annoying
            output_id = problem.id
            if options.task in ['u09', 'u08']:
                output_id = problem.id[:5] + problem.id[6:]
            output_file = open('%s/%s' % (options.output, output_id), 'w')
            output_file.write(summary)
            output_file.close()

    elif options.mcd:
        for problem in task.problems:
            num_problem_sentences = len(problem.get_new_sentences())
            if num_problem_sentences < 500: continue
            used_sent_count = 0
            for sentence in problem.get_new_sentences():
                used_sent_count += 1
                sentence.set_text(sentence.original)
                if used_sent_count < max_sents: sentence.used = True
                else: sentence.used = False
            problem.query.set_text(problem.query.original)
            sys.stdout.write(
                "%s %d\n" %
                (problem.id,
                 sum([len(doc.sentences) for doc in problem.new_docs])))

            # compute idf values
            word_idf = {}
            for doc in problem.new_docs:
                seen_words = {}
                for sentence in doc.sentences:
                    if not sentence.used: continue
                    for word in sentence.no_stop_freq:
                        if word not in seen_words: seen_words[word] = 1
                for word in seen_words:
                    if word not in word_idf: word_idf[word] = 1
                    else: word_idf[word] += 1
            for word in word_idf:
                word_idf[word] = 1.0 / word_idf[word]

            # compare sentences to centroid and derive McDonald's relevance score
            sentences = []
            index = 0
            for doc in problem.new_docs:
                doc_text = " ".join([
                    sentence.original for sentence in doc.sentences
                    if sentence.used
                ])
                centroid = text.Sentence(doc_text)
                centroid.compute_norm()
                problem.query.compute_norm()
                for sentence in doc.sentences:
                    if not sentence.used: continue
                    sentence.compute_norm()
                    sentence.rel_score = sentence.sim_cosine(
                        centroid, word_idf) + 1 / (sentence.order + 1)
                    #sentence.rel_score = sentence.sim_cosine(centroid, word_idf) + sentence.sim_cosine(problem.query, word_idf)
                    sentences.append(sentence)
                    sentence.index = index
                    index += 1

            # apply cutoff
            sentences.sort(lambda x, y: 1 if x.rel_score < y.rel_score else -1)
            if options.cutoff > 0 and len(sentences) > options.cutoff:
                sentences = sentences[0:options.cutoff]

            # construct ILP
            program = ilp.IntegerLinearProgram(debug=0)
            objective = []
            length_constraint = []
            for sentence in sentences:
                objective.append("%+g s%d" %
                                 (sentence.rel_score, sentence.index))
                program.binary["s%d" % sentence.index] = sentence
                length_constraint.append("%+g s%d" %
                                         (sentence.length, sentence.index))
                for peer in sentences:
                    if sentence == peer: continue
                    score = sentence.sim_cosine(peer, word_idf)
                    if score > 0:
                        objective.append("%+g s%d_%d" %
                                         (-score, sentence.index, peer.index))
                        program.binary["s%d_%d" %
                                       (sentence.index, peer.index)] = [
                                           sentence, peer
                                       ]
                        program.constraints["c1_%d_%d" % (sentence.index, peer.index)] = \
                            "s%d_%d - s%d <= 0" % (sentence.index, peer.index, sentence.index)
                        program.constraints["c2_%d_%d" % (sentence.index, peer.index)] = \
                            "s%d_%d - s%d <= 0" % (sentence.index, peer.index, peer.index)
                        program.constraints["c3_%d_%d" % (sentence.index, peer.index)] = \
                            "s%d + s%d - s%d_%d <= 1" % (sentence.index, peer.index, sentence.index, peer.index)
            program.objective["score"] = " ".join(objective)
            program.constraints["length"] = " ".join(
                length_constraint) + " <= %g" % task.length_limit

            run_times[problem.id] = time.time()
            program.run()
            run_times[problem.id] = time.time() - run_times[problem.id]

            selection = []
            score = 0
            # get solution and check consistency
            for variable in program.binary:
                if variable in program.output and program.output[variable] == 1:
                    if type(program.binary[variable]) == type(sentences[0]):
                        selection.append(program.binary[variable])
                        score += program.binary[variable].rel_score
                        for peer in program.output:
                            if program.output[
                                    peer] == 0 or peer == variable or type(
                                        program.binary[peer]) != type(
                                            sentences[0]):
                                continue
                            if program.binary[variable].sim_cosine(
                                    program.binary[peer], word_idf) == 0:
                                continue
                            quadratic = "s%d_%d" % (
                                program.binary[variable].index,
                                program.binary[peer].index)
                            if quadratic not in program.output or program.output[
                                    quadratic] != 1:
                                print "WARNING: %s selected but %s not selected" % (
                                    variable, quadratic)

                    else:
                        score -= program.binary[variable][0].sim_cosine(
                            program.binary[variable][1], word_idf)
                        if program.output[
                                "s%d" %
                                program.binary[variable][0].index] != 1:
                            print "WARNING: %s selected while s%d not selected" % (
                                variable, program.binary[variable][0].index)
                        if program.output[
                                "s%d" %
                                program.binary[variable][1].index] != 1:
                            print "WARNING: %s selected while s%d not selected" % (
                                variable, program.binary[variable][1].index)
            #if math.fabs(program.result["score"] - score) > .1:
            #    print "WARNING: difference between score = %g and expected = %g" % (program.result["score"], score)
            selection = ordering.by_date(selection)
            new_id = re.sub(r'.-(.)$', r'-\1', problem.id)
            output_file = open("%s/%s" % (options.output, new_id), "w")
            for sentence in selection:
                output_file.write(sentence.original + "\n")
            output_file.close()

    else:
        hist = prob_util.Counter()
        input_sents = []
        for problem in task.problems:
            num_problem_sentences = len(problem.get_new_sentences())
            #if num_problem_sentences < 300: continue
            if not '-A' in problem.id: continue

            if options.ir:
                #docs = [doc for doc, val in problem.ir_docs]
                #for doc in docs: doc.get_sentences()
                num_overlap = len(
                    set([d.id for d in problem.ir_docs
                         ]).intersection(set([d.id
                                              for d in problem.new_docs])))
                print '%s overlap: %d' % (problem.id, num_overlap)
                info_fh.write('%s overlap [%d]\n' % (problem.id, num_overlap))

            sys.stderr.write('problem [%s] input sentences [%d]' %
                             (problem.id, num_problem_sentences))
            input_sents.append(num_problem_sentences)

            ## select a concept mapper
            map_times[problem.id] = time.time()
            if options.cheat:
                mapper = concept_mapper.CheatingMapper(problem, options.units)
            else:
                mapper = concept_mapper.HeuristicMapperExp(
                    problem, options.units)

            ## timing test
            mapper.max_sents = max_sents

            ## map input concepts to weights
            success = mapper.map_concepts()
            if not success: sys.exit()

            ## choose a subset of the input sentences based on the mapping
            success = mapper.choose_sents()
            if not success: sys.exit()
            map_times[problem.id] = time.time() - map_times[problem.id]

            ## testing
            #fh = open('concept_matrix', 'w')
            for sent in mapper.relevant_sent_concepts:
                hist[len(sent)] += 1
                #fh.write(''.join(['%d, ' %concept for concept in sent[:-1]]))
                #fh.write('%d\n' %sent[-1])
            hist[0] += (num_problem_sentences -
                        len(mapper.relevant_sent_concepts))
            #hist.displaySorted(N=100)
            #sys.exit()
            ## end testing

            ## setup and run the ILP
            run_times[problem.id] = time.time()
            selection = mapper.run(task.length_limit)
            selection = ordering.by_date(selection)
            run_times[problem.id] = time.time() - run_times[problem.id]

            ## TAC id convention is annoying
            output_id = problem.id
            if options.task in ['u09', 'u08']:
                output_id = problem.id[:5] + problem.id[6:]

            output_file = open('%s/%s' % (options.output, output_id), 'w')
            word_count = 0
            for sentence in selection:
                output_file.write(sentence.original + '\n')
                word_count += len(sentence.original.split())
            output_file.close()
            curr_time = map_times[problem.id] + run_times[problem.id]
            sys.stderr.write(' word count [%d] time [%1.2fs]\n' %
                             (word_count, curr_time))
Пример #10
0
def setup_features(problem, unit_selector, train=True):

    ## for training, get gold concepts
    gold_concepts = prob_util.Counter()
    if train:
        for annotator in problem.annotators:
            annotator_concepts = {}
            for sent in problem.training[annotator]:
                sentence = text.Sentence(sent)
                units = unit_selector(sentence.stemmed)
                for unit in units:
                    if unit not in annotator_concepts: annotator_concepts[unit] = 0
                    annotator_concepts[unit] += 1
            for concept in annotator_concepts:
                gold_concepts[concept] += 1

    ## get all sentences and unit frequencies
    sents = []
    doc_freq = prob_util.Counter()
    sent_freq = prob_util.Counter()
    raw_freq = prob_util.Counter()
    for doc in problem.new_docs:
        #if doc.doctype != 'NEWS STORY': continue

        doc_counts = prob_util.Counter()
        for sent in doc.sentences:
            sent_counts = prob_util.Counter()
            sents.append(sent)
            for unit in unit_selector(sent.stemmed):
                doc_counts[unit] += 1
                sent_counts[unit] += 1

            for unit in sent_counts:
                sent_freq[unit] += 1

        for unit in doc_counts:
            doc_freq[unit] += 1
            raw_freq[unit] += doc_counts[unit]

    ## get features for each concept unit
    lines = []
    concepts = []

    title = text.Sentence(problem.title)
    narr = text.Sentence(problem.narr)

    for sent in sents:
            
        ## sentence features
        sentence_sim = sent.sim_basic(problem.query)
        sentence_order = sent.order
        sentence_source = sent.source
        sentence_length = sent.length
            
        units = unit_selector(sent.stemmed)
        for unit in units:
                
            ## concept features
            stopword_ratio = 1 - (1.0*len(text.text_processor.remove_stopwords(unit)) / len(unit))
            doc_ratio = 1.0 * doc_freq[unit] / len(problem.new_docs)
            sent_ratio = 1.0 * sent_freq[unit] / len(sents)
            ngram = ' '.join(unit)

            sunit = text.Sentence(ngram)
            title_sim = sunit.sim_basic(title)
            narr_sim = sunit.sim_basic(narr)

            ## output format (boostexter)
            line = '%s, %1.2f, %1.2f, %1.2f, ' %(ngram, doc_ratio, sent_ratio, stopword_ratio)
            line += '%1.2f, %d, %s, %d, ' %(sentence_sim, sentence_order, sentence_source, sentence_length)
            line += '%1.2f, %1.2f, ' %(title_sim, narr_sim)
            if train: line += '%s' %int(gold_concepts[unit]>0)
            else: line += '0'
            line += '.'
            
            if stopword_ratio == 1: continue

            lines.append(line)
            concepts.append(unit)
            for rep in range(int(gold_concepts[unit]-1)):
                if train:
                    lines.append(line)
                    concepts.append(unit)
    return lines, concepts, doc_freq
Пример #11
0
    def decode(self, weights, feats, relax=False, display_output=False,
            **kwargs):
        """Decode a transduction for this instance.
        """
        if not hasattr(self, 'decoder'):
            # Looks like we've given up on this one
            print "wut?"
            return

        # Update weights and solve the LP. Don't save the internal LP
        # if we don't have much memory left. TODO: handle large LPs gracefully
        self.decoder.update(weights, first_call=(len(self.decode_times)==0))
        start_moment = time.time()
        self.decoder.solve(save=psutil.virtual_memory()[2] < 90,
                      relax=relax,
                      **kwargs)
        self.decode_times.append(time.time() - start_moment)

        if self.decoder.has_solution():
            if not relax:
                # Recover the current sentence and optionally display it.
                # Note that output tokens are stored separately for evaluation.
                # TODO: added timing here as well
                start_moment2 = time.time()
                self.output_idxs = self.decoder.get_solution(self)
                self.solution_times.append(time.time() - start_moment2)

                self.output_tokens = [self.input_sents[s].tokens[w]
                                      for s, w in self.output_idxs]
                if len(self.output_tokens) > 0:
                    self.output_sent = text.Sentence(self.output_tokens)
                    if 'dep' in feats.categories:
                        # Record inferred parse
                        self.output_sent.outtree = \
                                self.decoder.get_tree_solution(
                                        self, self.output_idxs)
                    if 'arity' in feats.categories:
                        self.decoder.verify_arity(self, self.output_idxs,
                                active_tree=self.output_sent.outtree)
                    if 'range' in feats.categories:
                        self.decoder.verify_range(self, self.output_idxs,
                                active_tree=self.output_sent.outtree)
                    if 'frame' in feats.categories or 'fe' in feats.categories:
                        self.output_sent.outframes = \
                                self.decoder.get_frame_solution(
                                        self, self.output_idxs)

                    if display_output:
                        print self.get_display_string()

                        print self.output_sent.outtree.to_text(
                                ext_nodes=self.output_tokens,
                                attribute='score')
                        print

            # HACK: Before returning the final feature vector, we should
            # nullify the fixed feature values so that scores will be
            # displayed properly by the learner. For this, we replace
            # them with the corresponding gold feature values, if available.
            feat_vector = self.decoder.get_solution_feats()
            return feats.sanitize_feat_vector(feat_vector, self)
        else:
            print "Failed on instance", self.idx
            self.failed_count += 1
            for s, sent in enumerate(self.input_sents):
                print str(s) + ':', ' '.join(sent.tokens)
                for edge in sent.dparse.edges:
                    print sent.tokens[edge.src_idx],
                    print '--[' + edge.label + ']->',
                    print sent.tokens[edge.tgt_idx]

            # If this rarely succeeds, don't bother with this instance in
            # the future
            if self.failed_count >= 2:
                delattr(self, 'decoder')
            return None