Пример #1
0
 def setUpClass(cls):
     export_config = get_config(config_file, section='export')
     export_config['dataset'] = get_config(config_file, section='eval')['dataset']
     cls.config = export_config
     cls.config.update({'expected_outputs': expected_outputs})
     cls.model_path = os.path.join(mkdtemp(), os.path.split(cls.config.get('model_path'))[1])
     cls.res_model_name = os.path.join(os.path.dirname(cls.model_path), cls.config.get('res_model_name'))
     cls.config['res_model_name'] = cls.res_model_name
     cls.config['model_path'] = cls.model_path
     if not os.path.exists(cls.model_path):
         download_checkpoint(cls.model_path, cls.config.get('model_url'))
     cls.exporter = Exporter(cls.config)
Пример #2
0
import argparse

from text_recognition.utils.get_config import get_config
from text_recognition.utils.exporter import Exporter


def parse_args():
    args = argparse.ArgumentParser()
    args.add_argument('--config')
    return args.parse_args()


if __name__ == '__main__':
    arguments = parse_args()
    export_config = get_config(arguments.config, section='export')
    head_type = export_config.get('head').get('type')
    exporter = Exporter(export_config)
    if head_type == 'AttentionBasedLSTM':
        exporter.export_encoder()
        exporter.export_decoder()
    elif head_type == 'LSTMEncoderDecoder':
        exporter.export_complete_model()
    print('Model succesfully exported to ONNX')
    if export_config.get('export_ir'):
        if head_type == 'AttentionBasedLSTM':
            exporter.export_encoder_ir()
            exporter.export_decoder_ir()
        elif head_type == 'LSTMEncoderDecoder':
            exporter.export_complete_model_ir()
        print('Model succesfully exported to OpenVINO IR')